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Abstract: Limited by the imaging capabilities of sensors, research based on single modality is difficult
to cope with faults and dynamic perturbations in detection. Effective multispectral object detection,
which can achieve better detection accuracy by fusing visual information from different modalities,
has attracted widespread attention. However, most of the existing methods adopt simple fusion
mechanisms, which fail to utilize the complementary information between modalities while lacking
the guidance of a priori knowledge. To address the above issues, we propose a novel background-
aware cross-attention multiscale fusion network (BA-CAMF Net) to achieve adaptive fusion in visible
and infrared images. First, a background-aware module is designed to calculate the light and contrast
to guide the fusion. Then, a cross-attention multiscale fusion module is put forward to enhance inter-
modality complement features and intra-modality intrinsic features. Finally, multiscale feature maps
from different modalities are fused according to background-aware weights. Experimental results
on LLVIP, FLIR, and VEDAI indicate that the proposed BA-CAMF Net achieves higher detection
accuracy than the current State-of-the-Art multispectral detectors.

Keywords: multispectral object detection; complementary information; priori knowledge; background
aware; cross attention; multiscale fusion

1. Introduction

Object detection has long been a core technology in computer vision tasks due to
its wide range of applications in autonomous driving, patrol, and remote sensing [1–6].
However, limited by the sensing performance and adaptive capability of the sensors,
the detection based on single modality often struggles to cope with the sensor’s own
failures and dynamic perturbations in the environment and lacks robustness. Although
visible sensors can provide abundant color and texture information, their images are
susceptible to the phenomenon of the same object but different spectra, especially under
complex conditions such as inclement weather and changing light conditions, leading to
inconsistent performance [7]. In contrast, infrared sensors are more sensitive to temperature
and radiation, which perform well under the aforementioned harsh conditions. Yet the
low resolution and unclear edges of infrared images make it difficult to capture detailed
features [8]. As shown in Figure 1a, the visible spectrum is poorly hierarchical in low-
light scenes. The foreground and background cannot be recognized either in the image
or in the feature space, while objects in infrared images are clearly distinguished from
the background. The features of objects (red) and those of the background (blue) are
divided into 2 groups. The opposite case is illustrated for Figure 1b. For this reason, even
with the great advances in convolutional neural networks (CNNs), detection techniques
using only one single source of data continue to encounter difficulties in increasingly
elaborate environments.

To alleviate the limitations of single modality in terms of imaging and realize all-
weather monitoring, more researchers are focusing on multispectral object detection, by
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which the visual information of different spectra can be fused to achieve higher detection
accuracy. The solutions for multispectral object detection are currently divided into manual
methods and deep learning methods. On the one hand, manual methods are realized
through the traditional approach of feature extraction and classifier. Yet the manually de-
signed multimodal operator has limited capability for feature extraction, making it difficult
to obtain reliable detection [9]. On the other hand, due to their strong characterization
capabilities, CNN-based feature fusion methods [10–17] have been widely used for multi-
spectral object detection, most of which are based on two-stream CNNs. However, existing
fusion strategies based on two-stream CNNs only use element summation, multiplication,
and splicing [18]. While they offer higher performance than single-modality detection,
the interaction and correlation between modalities are not sufficiently taken into account,
which implies less adaptability. Worse still, the lack of long-term dependency and the
multiscale of different objects may exacerbate the imbalance of the network, leading to
unsatisfactory results. In addition, considering the differences in light sensitivity between
visible and infrared images, illumination-aware networks are proposed to learn the weight
occupancy of different modalities [15,16]. The main idea of these methods is to predict the
illumination-aware weights through a formulated gate function, followed by a proportion-
ally weighted fusion of the two branches to obtain the final detection result. However, it is
not sufficient to compute modal weights using only illumination information as a priori
knowledge, since this method cannot measure other relevant factors or achieve satisfactory
performance in complex weather. We aim to obtain intrinsic and complementary informa-
tion within and across modalities via designing effective fusion mechanisms and learning
reliable priori knowledge.
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Figure 1. Visualization of foreground and background features in different modes using t-SNE tech-
nique. The first and second rows show the original and t-SNE images under low and normal light 
conditions, respectively. The foreground objects are labeled with red rectangular boxes. In the t-SNE 
images, the red points 1 indicate the foreground and the blue points 2 identify the background. 
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Figure 1. Visualization of foreground and background features in different modes using t-SNE
technique. The first and second rows show the original and t-SNE images under low and normal
light conditions, respectively. The foreground objects are labeled with red rectangular boxes. In the
t-SNE images, the red points 1 indicate the foreground and the blue points 2 identify the background.

Therefore, we propose a novel background-aware guided cross-attention multiscale
fusion network (BA-CAMF Net) to address the lack of interaction between modalities and
prior knowledge. First, a background-aware module (BA) is designed to measure the light
conditions as well as the contrast to obtain adaptive fusion weights. Then, we design a
cross-attention multiscale fusion (CAMF) module to focus on inter-modality complement
features and intra-modality intrinsic features, which consists of a differential attention
(DA) module and a common attention (CA) module. Next, the enhanced features from the
two modules are guided to sum according to the background-aware weights to obtain a
combined feature map. Finally, the feature maps are fed into the detection head to yield
detection results.
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The main contributions of this article are as follows:

(1) A two-stream network BA-CAMF Net is proposed for multispectral object detection.
The network achieves reliable detection through the guidance of a priori knowledge
and the interaction within modalities;

(2) A BA module is designed to guide the fusion of visible and infrared modality, in
which we utilize light conditions and contrast to obtain adaptive fusion weights for
two branches;

(3) We put forward a CAMF module consisting of DA and CA modules to enhance inter-
modality complement features and intra-modality intrinsic features and to achieve
adaptive fusion;

(4) Extensive comparative experiments on three typical multispectral detection datasets
(LLVIP, FLIR, and VEDAI) have been carried out, and the results show that the
proposed BA-CAMF Net achieves higher detection accuracy than the current State-of-
the-Art multispectral detectors.

The remainder of this paper is organized as follows: Section 2 briefly describes related
work. In Section 3, the proposed BA-CAMF Net is presented. Section 4 illustrates extensive
comparison and ablation experiments on three benchmark datasets, followed by some
concluding remarks in Section 5.

2. Materials and Methods

In this section, we review several algorithms with single-modality object detection, CNN-
based multispectral object detection, and illustration-guided multispectral object detection.

2.1. Single-Modality Object Detection

Single-modality object detection is known as generic object detection, which is one
of the important branches in the field of remote sensing. It is commonly categorized into
two-stage and single-stage methods. The two-stage algorithm is realized through two steps
of candidate region selection and identification, the advantage of which is that candidate
frames can fully extract the target features with higher accuracy. However, the two steps
lead to an increase in model complexity and a decrease in speed, making it even less suitable
for the fusion of different modalities. The single-stage algorithm accomplishes classification
and positional regression directly by covering the image with a dense set of candidate
frames or anchors. Among the single-stage detection algorithms, OverFeat [19] was first
proposed to replace the sliding window search with CNNs. The SSD algorithm [20] utilized
feature maps from different scales for classification and regression. Subsequently, due to
its unrivaled performance, the YOLO algorithm became the mainstream framework for
embedded object detection with a series of improvements, which include YOLOv3 [21],
YOLOv4 [22], YOLOv5, YOLOX [23], YOLOv6 [24], and YOLOv7 [25]. The innovations
include multi-scale training, network structure optimization, loss function modification,
anchor adaptation, model reparameterization, and so on, all of which are also widely used
in the field of remote sensing. In fact, single-modality object detection is adopted for feature
extraction as part of multispectral detection networks.

2.2. CNN-Based Multispectral Object Detection

A single data source is difficult to meet the information needs in industry applications.
Multispectral object detection, especially visible-infrared fusion detection, which allows
complementary access to richer features, has become one of the future development direc-
tions. Currently, the widely used feature fusion architecture is the two-stream CNNs, which
aim to solve the problems of weak alignment and large inter-modal variance in the fusion
process. Weak alignment problems usually include differences in location, scale, and angle.
Considering the factors that exist in sensor locations and internal references, AR-CNN [26]
is proposed to align the regional properties of different modalities by means of a regional
feature alignment module and to be trained in an end-to-end manner. Zhou et al. [27]
propose MBNet, which is designed with a differential modality-aware fusion module to
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solve the weakly aligned problem. However, the weak alignment problem can be solved by
mapping of matrices, and the above methods do not really mine the differences between
modals. In addition, attention structures are used to fuse complementary information
across modalities and suppress noise, thus enhancing the feature representation of single-
branch networks. Zhang et al. [28] designed a multispectral feature adaptive weighted
network using the attention module. Fang et al. [11] achieved lightweight multispectral
feature fusion at low computational cost by extracting attention maps from between modal-
ities. However, the above methods do not fully utilize the relevance within modalities, so
they perform poorly in situations such as low illumination.

2.3. Illustration-Guided Multispectral Object Detection

Recently, some researchers have taken illumination conditions into account when
fusing different modalities. Wang et al. [29] proposed an illumination-aware network for the
global enhancement of low-light images. In particular, the illumination-aware network may
help to enhance features based on the illumination conditions. Additionally, illumination
information is also used to verify the feasibility of multispectral pedestrian detection.
The faster RCNN is improved by designing gate functions to measure the illumination
conditions [15]. However, the performance of the approaches based on the illumination-
aware network is not good in dawn, dusk, and background-mixed scenes, which means
that relying only on illumination information for adaptive fusion is not sufficient.

In summary, how to design a two-stream fusion network to learn feature differences
across modalities remains a valuable and challenging task. Inspired by attention feature fu-
sion and illumination-aware networks, we propose an effective background-aware guided
cross-attention multiscale fusion network that learns intrinsic and complementary intra-
modality and inter-modality features by fusing them in a proportionally weighted manner
to achieve an adaptive multispectral detection.

3. Methodology

As shown in Figure 2, the proposed BA-CAMF Net consists of a backbone network, a
BA, and CAMF.
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Figure 2. Structure of BA-CAMF Net. The blue and orange cubes represent the visible and infrared
branches of the network, respectively. The region connected by the dashed line describes the CAMF
structure proposed in this paper.
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In order to optimize the feature extraction capability of the network and to improve the
robustness of the model in complex scenarios, the backbone network employs a two-branch
network consisting of Darknet53 and cross-stage partial structures (CSP). BA utilizes light
conditions and the contrast as a priori knowledge to guide the fusion of modalitis. CAMF
consists of two parts, the DA module and the CA module. Features from the two parts are
fused in a weighted manner to obtain the fused attention map. Finally, the detection results
are generated by feature weighting.

3.1. BA Module

The factors affecting the reliability of multispectral detection are complex and diverse.
Currently, academics mainly use illumination information as a guide for multimodal fusion.
Although illumination information is effective for cross-modality fusion, utilizing only
illumination information still has the following limitations: (1) illumination-aware guided
methods perform better in stationary scenarios such as daytime and nighttime, but it is
difficult to discriminate between objects and the surrounding area in complex backgrounds
such as rain, fog, and camouflage; (2) illumination information is usually used to guide the
fusion of inter-modality features but is insufficient for intra-modality feature enhancement.
However, in foggy or low-visibility scenes, where more factors affect image quality, light
conditions play a more limited role. In this case, contrast is crucial for distinguishing objects
from the background. Therefore, we propose BA module, in which the light and the contrast
are calculated as the prediction weights to guide the adaptive fusion of intra-modality and
inter-modality features.

Due to the difference in spectral bands, visible images are more dependent on external
light sources than infrared images. Visible images vary greatly from day to night. Infrared
images, on the contrary, are passive imaging, reflecting more the difference between
the radiation of the target and the background. In general, visible images have higher
imaging quality and contain more color and texture information in daytime scenes. Infrared
images are sharper and give an outline of objects in dark scenes. Therefore, during the
fusion process, when the scene is daytime, visible images contribute more to the detection
results. When the scene is dark, the information in visible images fails and infrared images
contribute more to the detection results. In order to quantify the effect of light conditions
on fusion, we calculate the light conditions. Given a visible image as Iv, the probabilities
that the image belongs to day or night are defined as td and tn. Note that, td + tn = 1. In
natural scenes, daytime light conditions are usually better than those of dark scenes. The
better the light conditions, the greater the td. We intend to use the probability values to
represent the perceptual weights contributed by the different modalities. Due to the binary
nature of the light source, td and tn will be close to 0 or 1. If the values are multiplied
directly by the results of the branches, the modality with lower probability would be
significantly suppressed during the fusion process. In order to optimize the weights used
in fusion, a gate function is designed to realign the weights of the two modalities so that
their complementary information can be more fully integrated. The function is

Wv =
pd − pn + 1

2
(1)

Wi =
pn − pd + 1

2
(2)

where Wv and Wi denote the weights used to guide the fusion of visible and infrared images,
and Wv + Wi = 1. When the daytime probability pd is larger, the weight for visible images
is greater than 1/2 and the weight for infrared images is no longer close to 0. And vice
versa. Therefore, we design a classification network to predict the light intensity to guide
the fusion of inter-modality features. The image pair is resized to 128 × 128 and fed into BA.
The visible image is fed into the light prediction network, which consists of a convolutional
layer and a fully connected layer. After the convolutional layer, an activation layer and
2 × 2 adaptive pooling are added to compress and extract light features. Subsequently,
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features are fed into the fully connected and computed to convert the output to the desired
weights. In Figure 3, the blue box represents the prediction process of the light conditions.
In this case, the blue cubes consist of a convolution module, an activation layer, and a
pooling layer. The gray box represents the fully connected layer.
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As mentioned above, using only light information to guide fusion is not sufficient.
For example, the similarity in color in visible images and the similarity in temperature
in infrared images between objects and backgrounds can affect the accuracy of detection.
The higher the similarity between objects and the background, the more difficult it is to be
discriminated. Therefore, this paper introduces the contrast as a priori knowledge to guide
the fusion of intra-modality features. The contrast is measured by the gray scale difference
between objects and the surrounding background. First, the target region is divided into a
3 × 3 grid, and a variable m is defined to represent the pixel mean of the remaining grid
regions except the object. The calculation process is

mi =
1
Ni

Ni

∑
j=1

Xi
j (3)

where i represents the ordinal number of the region, and N is the total number of pixel
points in each region. j represents the ordinal number of the pixel points and X represents
the gray value of the pixel points. Equation (3) calculates the average pixel intensity of the
divided region, which is crucial for differentiating them in multispectral images. During
rectangular box sliding, the target is usually located in the center region. The variable L
is introduced to represent the largest gray value in the object region. The role of L is to
quantify the pixel differences between the object and the rest of the region. The contrast
difference c can be described by

c =
1
n

n

∑
i=1

L
mi

(4)

The process of calculating the contrast is shown in the right part of Figure 3. Area 0
is the object area. Here, L is the maximum gray value of region 0, i represents the ordinal
number of the background region, and n is 8. Therefore, contrast indicates the mean value
of the pixel difference between the target region and the remaining 8 background regions.
The process is shown on the right side of Figure 3. By calculating the contrast, the network
better discriminates objects from the background, which would be used in the subsequent
fusion module.
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3.2. CAMF Module

Both visible and infrared images have their intrinsic and complementary information,
and how to fuse the two modalities is the key to multispectral object detection. How-
ever, most of the existing methods based on two-branch networks only use simple fusion
schemes, which cannot fully utilize the inter-modality and intra-modality features. In addi-
tion, rough combinations and connections also increase the difficulty of network learning,
which leads to the degradation of detection performance. Inspired by differential amplifica-
tion circuits, in which the differential mode and common mode signals are amplified and
suppressed respectively, a CAMF module is proposed. CAMF consists of two parts: the
inter-modality DA module and intra-modality CA module, as shown in Figure 2. Given
visible and infrared convolutional feature maps as MV and MI , the differential features
MD and the common features MC can be represented as

MD =
MC + MD

2
− MC − MD

2
= MV − MI (5)

MC =
MC + MD

2
+

MC − MD

2
= MV + MI (6)

MD can be viewed as the difference between the two modalities, which is obtained
by subtraction to enhance the inter-modality specific feature. On the contrary, MC can be
regarded as the sum of the two modalities, which is obtained by addition to enhance the
intra-modality consistency feature. Based on this, our CAMF module defines two new
hybrid modals for the final fusion.

3.2.1. Inter-Modality DA Module

Inspired by signals in differential circuits, the inter-modality DA module aims at
extracting specific features by computing the difference between visible and infrared
modalities. As shown in Figure 4, the differential features are enhanced by the channel
attention weighting mechanism.
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First, visible features MV and infrared features MI are input into the module as the
initial values and differential features MD are obtained by direct subtraction. Second, the
differential features are encoded into global vectors VGAP and VGMP by global average
pooling (GAP) and global maximal pooling to integrate the global spatial information. The
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global vectors represent the differences in channel characteristics across modalities. Then,
the vectors are sent into a shared convolution, the outputs of which are summed to obtain
the channel attention map VDA. Moreover, the attention map is multiplied, respectively,
with the visible and infrared feature maps for adaptive aggregating. The results are summed
with the input modality to obtain feature maps after differential amplification. Finally, the
feature maps are summed according to the weights generated by BA to obtain the output
of the DA module. This process can be expressed by

MDA = Wv · MV ⊗ (1 + VDA) + Wi · MI ⊗ (1 + VDA) (7)

Through differential, compression, excitation, and weighted fusion, the DA module
adaptively learns the importance of different channels across modalities. The generalization
is also enhanced. Notably, DA draws on residual networks for enhancing the stability of
the network. Differential feature maps are added to the input modalities through jump
connections, which could avoid the loss of key features.

3.2.2. Inter-Modality CA Module

The similarity between foreground and background in multispectral object detection
affects the detection performance. In addition to complementary features, intrinsic features
are also crucial for discriminative feature extraction. Therefore, the CA module is designed
to focus on intra-modality shared information guided by contrast weights. As shown
in Figure 5, CA sums the features of two branch networks and remixes them into a new
feature to achieve an enhanced feature map.
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First, the visible features MV and infrared features MI are used as inputs and directly
summed to obtain the common features MC. Next, the visible attention maps VV

CA and
infrared attention maps V I

CA are computed through GAP and a fully connected layer (FC).
Subsequently, the attention maps of the two modalities are multiplied, respectively, with
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the input features and contrast weights from BA. Finally, the enhanced shared features are
summed up to obtain the output of ca within the modality. This process can be expressed by

MCA = MV ⊗ VV
CA + Ci · MI ⊗ V I

CA (8)

Through summation, weights sharing, compression, and normalization, the model
achieves adaptive channel selection. The innovations of this module are as follows: (1) the
parameters of FC are shared to reduce the dimension of features and improve the computa-
tional efficiency; (2) through channel selecting and the guidance of prior knowledge, the
weights of the model are redistributed to the feature channels of the visible and infrared
modality to avoid the introduction of redundant features; (3) the use of skip connections
enables the network to reuse shallow features and improves the representation of com-
plex features.

3.2.3. Multiscale Cross-Fusion Strategies

Fusing the outputs is the final step in our CAMF module. Generally, two-branch
features are fused by adding and subtracting. However, existing studies have demonstrated
that the above approaches may exacerbate the imbalance of the network. In addition,
variations in scales of objects, especially for some small-sized targets, can also lead to the
degradation of the model’s performance. Therefore, a multiscale cross-fusion strategy is
designed to achieve the fusion of cross-modality images, through which different levels of
feature maps are interacted with each other. As shown in Figure 2, we extract feature maps
from different modalities and scales (small, medium, and large) out and feed them into our
CAMF module, followed by connecting horizontally and feature weighting to achieve the
fusion of multiscale features. First, we use a convolutional layer after each result to reduce
their dimensions to 1/2 of the original ones. Then, the bilinear interpolation is performed to
restore them as the input aspect. Finally, the features at different scales are spliced together
as global features for multiscale fusion. The step of fusion is shown as follows:

FFUSE =
3

∑
i=1

(
Mi

CA + Mi
DA

)
(9)

where i takes values in the range of 1, 2, and 3, representing the attention feature maps at
three different scales: small, medium, and large, respectively. It is worth noting that the
features of both visible and infrared modalities are processed and refined by the attention
module to avoid the loss of key information.

3.3. Loss Function

To capture inter-modality and intra-modality information, we propose the multitask
perception loss in this paper. It is noted that the contrast needs not to be trained using a
separate network, so the loss function does not take contrast into account. Therefore, the
multitask loss consists of detection loss, light condition loss and which are used to calibrate
the multispectral detection results and the light prediction weights, respectively. The loss is
defined as

L = Ld + Ll (10)

The detection loss consists of the classification loss Lcls, the bounding-box regression
loss Lreg and the confidence loss Lcon f . The classification loss uses the strong correlation
of the states to enable that the labels could better guide the learning of the category. The
definition of Lcls is shown in Equation (11). The bounding-box regression loss is inspired by
GIoU, which is proposed to alleviate the gradient problem of IoU loss. We added a penalty
term to the original loss and defined it in Equation (12). The confidence loss is formulated as
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Equation (13), which mainly solves the problem of imbalance in the proportion of different
kinds of objects. It is suitable for complex scenarios, such as few samples and various scales.

Lcls = −[yi log(pi) + (1 − yi) log(1 − pi)] (11)

Lreg = 1 − IoU(B, A) +
|C − (B ∪ A)|

|C| (12)

Lcon f = −αi(1 − pi)
τ log(pi) (13)

where i denotes the ordinal number of the sample, p denotes the probability predicted by
the model, and y is a binary variable taking the value of 0 or 1. A denotes the area of the
real box, B denotes the area of the predicted box, and C denotes the area of the smallest box
that contains both the real and the predicted. α is used to address the imbalance between
positive and negative samples, and τ is used to address the imbalance between difficult
and easy samples, which have been set to 0.25 and 2, respectively, in this paper.

The fusion of inter-modal complement and intra-modality intrinsic information relies
heavily on the guidance of the background-aware module, especially the perception of light
conditions. The light condition reflects the strength of the light conditions in the image and
can be viewed as a classifier that calculates the probability of belonging to daytime and
nighttime. Therefore, we use the cross-entropy loss to constrain its training process with
the following equation:

Ll = −z log σ(x)− (1 − z) log(1 − σ(x)) (14)

where z is the label of the light condition, x denotes the probability that the image belongs
to the daytime, and σ is a softmax function that normalizes the light condition probability
to [0,1]. In order to fully characterize the strength of the light conditions, the value space of
z is set to 0, 0.5, and 1.0 to denote the dark, low light, and daytime scenes, respectively.

4. Experiments

In this section, experiments are conducted on VEDAI [30], FLIR-aligned [31], and
LLVIP [32] to vertify our BA-CAMF net. To begin with, the datasets and evaluation metrics
are introduced. Second, we describe the experimental setup and deployment. Then,
comparative experiments are carried out between the State-of-the-Art methods and our BA-
CAMF Net. Subsequently, we conduct ablation studies for the proposed method. Finally,
we discuss some limitations.

4.1. Datasets and Evaluation Metrics

We compare the available dual-modality detection datasets, focusing on three datasets
with remote sensing, roads, and low illumination as backgrounds: VEDAI, FLIR, and LLVIP.
Figure 6 shows the distribution of variables such as width and height of the three datasets
and the change of scale, which indicates that the datasets used in this paper cover examples
of different scales and have good representation.

The VEDAI dataset serves as a database in the field of optical remote sensing images,
which covers nine different types of small and medium-sized transport vehicles under
the backgrounds such as cities, roads, fields, forests, etc. The dataset contains 1246 image
pairs and 3640 instances. It is characterized by large differences in object sizes, which can
validate the algorithm’s ability for multi-scale objects.

As a benchmark in the field of autonomous driving, the FLIR-aligned dataset contains
a total of 5142 bimodal image pairs for objects as pedestrians, bicycles, and vehicles under
the background as streets and highways. Since the weak alignment between modalities
is not mentioned in this paper, in order to avoid the network failing to converge, the
experiments are performed on the FLIR-aligned dataset, which is made by manually
removing unaligned images from the original dataset. For convenience, the FLIR refers to
the alignment version.
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The LLVIP dataset is designed to solve the problem of multispectral pedestrian de-
tection in low-light scenes, with a ratio of 12:1 between night and day scenes. The dataset
contains 15,488 image pairs, of which 60% are used for training and the rest for testing and
validation. Compared with other datasets, the image pairs from different modalities in the
LLVIP dataset are strictly aligned in time and space.

To evaluate and compare the performance of the network in this paper, P (precision),
R (recall), mAP, which are the most recognized metrics are adopted. The metrics are
defined as

P =
TP

TP + FP
(15)

R =
TP

TP + FN
(16)

mAP =
1
n

n

∑
i=1

APi =
1
n

n

∑
i=1

Pi(r)dr (17)

where TP is true positive and denotes the number of objects that are correctly classified
as positive cases. Otherwise, they are considered false-positive (FP) cases. FN is false
negative, which means the number of objects incorrectly classified as negative cases. AP is
the integral of the precision-recall curve (PRC) for each category. mAP50 is the mean of all
the AP values for all forms when IoU = 0.5. mAP is the more challenging metric, which is
the mean of the AP values when IoU = 0.5:0.95.

4.2. Experimental Setup

The proposed algorithm is implemented in Pytorch 1.9, and all experiments are
conducted on a ubuntu 20.04 system with 4 GPUs. To avoid instability, the training warms
up with a lower learning rate of 0.01 and the SGD optimizer is used with a momentum
of 0.93. In addition, the training parameters are set as follows: the elapsed time is set to
120, the batch size is set to 16, and the numworker is set to 8. For data enhancement, a
mosaic enhancement method is also adopted with random flipping and rotation. It should
be noted that the settings of the training parameters are consistent across experiments;
otherwise, the experimental results may be affected by other factors and the performance
of the algorithm cannot be measured.

4.3. Comparison with State-of-the-Art Methods

To validate the effectiveness of BA-CAMF Net in this paper, we compare it with
baseline detectors and other State-of-the-Art multispectral detection networks, including
CFT [11], LRAF-Net [33], YOLO-Fusion [5], ICAFusion [34], GAFF [28], TFDet [35], and
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single-modality detection networks Faster R-CNN and YOLOv9. The baseline detector is a
two-stream CNN that uses element summation for feature fusion.

4.3.1. On the VEDAI Dataset

In remote sensing scenarios, we compare our BA-CAMF method with other related
works. The experimental results are shown in Table 1. It can be observed from the bolded
font that on the VEDAI dataset, our method achieves the best detection performance
compared to other State-of-the-Art algorithms. For single-modal detection, our method
outperforms the one-stage YOLOv9 and Faster R-CNN by 11.3% and 18.2%, respectively, in
the mAP, which illustrates the importance of the dual-stream network. For multimodality
detection, our method outperforms the best method by 1.3% and 0.7% in the mAP50 and
the mAP, respectively.

Table 1. Comparison of different methods on the VEDAI dataset.

Model Modality Backbone mAP50 mAP

unimodality networks

Faster R-CNN visible ResNet50 64.5% 38.9%

Faster R-CNN infrared ResNet50 71.2% 41.6%

YOLOv9 visible CSPNet+ELAN 73.4% 42.5%

YOLOv9 infrared CSPNet+ELAN 75.6% 44.6%

multimodality networks

CFT two-stream CFB 85.3% 56.0%

LRAF-Net two-stream Darknet53 85.9% 59.1%

YOLO-Fusion two-stream Darknet53 78.6% 49.1%

ICAFusion two-stream Darknet53 76.6% 44.9%

Baseline two-stream Darknet53+CSP 83.9% 54.2%

Ours two-stream Darknet53+CSP 87.2% 59.8%

In addition to quantitative comparisons, we also perform qualitative analysis on the
VEDAI dataset. Figure 7 shows the original input image pairs, the detection results of
baseline, and our BA-CAMF. It is noted that the ground truth is labeled in the input IR
image. As shown in Figure 7a–c, objects in the remote sensing images have small target
sizes, dense arrangements, and weak texture features, which are prone to being missed
or detected falsely by using only a simple two-stream network. However, our method
fully integrates the complementary and inherent features of the two modalities, which can
significantly reduce the occurrence of missed and false detection, as shown in Figure 7d.
Therefore, it is proven that our algorithm has excellent detection performance in remote
sensing scenarios.

4.3.2. On the FLIR Dataset

In the road scenarios, the proposed method is compared with other detection methods,
as shown in Table 2. It can be seen from the bold footer that the performance of our BA-
CAMF is optimal on the FLIR dataset. In particular, our algorithm improves the mAP50
by 2.2% over the typical two-stream network LRAF-Net. In addition, compared with the
State-of-the-Art unimodal detection algorithms YOLOv9, our method improves the mAP50
and mAP by 8.6% and 4.0%, respectively. This indicates that the fusion algorithm in this
paper is effective and significantly improves the detection performance.
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Table 2. Comparison of different methods on the FLIR dataset.

Model Modality Backbone mAP50 mAP

unimodality networks

Faster R-CNN visible ResNet50 64.9% 28.9%

Faster R-CNN infrared ResNet50 74.4% 37.6%

YOLOv9 visible CSPNet+ELAN 69.5% 33.4%

YOLOv9 infrared CSPNet+ELAN 73.9% 38.9%

multimodality networks

CFT two-stream CFB 78.7% 40.2%

LRAF-Net two-stream Darknet53 80.5% 42.8%

GAFF two-stream ResNet18 72.9% 37.5%

ICAFusion two-stream Darknet53 79.2% 41.4%

Baseline two-stream Darknet53+CSP 80.3% 42.2%

Ours two-stream Darknet53+CSP 82.5% 43.9%

Similarly, we qualitatively analyze the FLIR dataset and select two scenarios, daytime
and nighttime. The detection results are shown in Figure 8. The ground truth is labeled
by white rectangular boxes in infrared images. Objects in the road scene may occlude
each other, which leads to the degradation of the algorithm’s performance. As shown
in Figure 8c, the pedestrian overlapping with utility poles is not detected in the daytime
scene, and the vehicle occluded by pedestrians is detected twice in the nighttime scene. In
contrast, in Figure 8d, the above objects are detected. The reason is that our method takes
into account both the global and local information, which effectively enhances the features
in the case of occlusion.

4.3.3. On the LLVIP Dataset

The comparison results of the proposed algorithm with other algorithms in low-light
scenarios are shown in Table 3. It can be seen from the bold that our BA-CAMF has
State-of-the-Art performance on the LLVIP dataset compared to other algorithms, with
the mAP50 reaching 97.9% and the mAP reaching 69.2%. Especially, the mAP is also 7.3%
and 2.9% higher compared to YOLOv9 and LRAF-Net, respectively. In addition, from
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the unimodal detection results, the mAP of infrared images is significantly higher than
that of visible images, which indicates that infrared images have a better ability of feature
representation in low-light scenarios.
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Table 3. Comparison of different methods on the LLVIP dataset.

Model Modality Backbone mAP50 mAP

unimodality networks

Faster R-CNN visible ResNet50 91.4% 49.2%

Faster R-CNN infrared ResNet50 96.1% 61.1%

YOLOv9 visible CSPNet+ELAN 90.8% 50.0%

YOLOv9 infrared CSPNet+ELAN 94.6% 61.9%

multimodality networks

CFT two-stream CFB 97.5% 63.6%

LRAF-Net two-stream Darknet53 97.9% 66.3%

TFDet two-stream ResNet18 96.0% 59.4%

ICAFusion two-stream Darknet53 97.8% 64.1%

Baseline two-stream Darknet53+CSP 95.9% 63.5%

Ours two-stream Darknet53+CSP 97.9% 69.2%

Figure 9 shows some experimental results of the baseline and the proposed algorithm.
It can be seen that infrared images in low illumination scenes have better detection perfor-
mance and can visualize the difference between foreground and background. As shown
in Figure 9b,c, when objects are overlapped or occluded, the baseline is prone to miss
detection. Especially in Figure 9c, there is light source interference beside the pedestrian,
which also exacerbates the missed detection. Our method effectively solves the above
problem by deeply fusing the information of the two modalities without simply adding the
two modalities as baseline does.
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4.3.4. Inference Time

To validate the real-time performance of the algorithm, we conduct experiments on the
FLIR dataset with a resolution of 512 × 512 multispectral image pairs. The inference time
of our BA-CAMF Net and other dual-stream detection algorithms is shown in Table 4. All
experiments in this section are performed with the same setting on the NVDIA RTX 3090
GPU from the USA. As can be seen from the table, our BA-CAMF Net runs slower than
the unimodal networks, like Faster R-CNN, YOLOv5, and YOLOv9. The reason is that the
model parameters and dimensions of a two-stream network are usually larger than those of
a single-stream network. In Table 4, we also compare the algorithm with other multispectral
networks. Although the speed of our BA-CAMF Net is slower than that of ICAFusion
(38.5 FPS), it still outperforms CFT and TFDet and is greater than 20 FPS. Overall, we
have designed a lightweight fusion module that can satisfy the real-time requirements in
embedded applications.

Table 4. Comparison of inference time for different methods.

Model Modality Backbone FPS

unimodality networks

Faster R-CNN visible ResNet50 21.7

YOLOv5 visible Darknet53 42.8

YOLOv9 visible CSPNet+ELAN 25.6

multimodality networks

TFDet two-stream ResNet18 7.7

CFT two-stream CFB 21.0

ICAFusion two-stream Darknet53 38.5

Ours two-stream Darknet53+CSP 21.2

4.4. Ablation Studies

To validate the effectiveness of the algorithm, we evaluate the performance of the
proposed method and measure the impact of the proposed module in this paper. Due to
its data covering different weathers, experiments are done on the FLIR dataset. First, we
explore the impact of different fusion strategies on the detection performance and verify
the effectiveness of the multiscale fusion strategy. Subsequently, we test the gain of BA and
CAMF modules.
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4.4.1. Necessity of Multiscale Cross-Fusion

This section focuses on the effectiveness of different stages and levels of fusion on
detection performance. A diagram of different fusion methods is shown in Figure 10. Early
fusion, also called pixel-level fusion, can be achieved by superimposing pixel values. Simple
early fusion methods may disturb the original features, resulting in poor performance that
is inferior to the performance of unimodal detection. Unlike early fusion, middle fusion
can deeply interact features of different modalities, which is advantageous in capturing
the correlation between different modalities and helps to improve the overall performance.
Late fusion, also called decision-level fusion, focuses on the fusion of results and may
ignore the possible inter-modality correlations. In addition, the arrangement of different
attention modules also affects the performance. In this paper, a multiscale cross-fusion
strategy is adopted. Moreover, the serial connection is also worth discussing.
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Therefore, we carry out ablation studies in four ways: early fusion, cross-fusion, serial
fusion, and late fusion. The results are shown in Table 5. It should be noted that Darknet53
is used for the backbone, and all models are trained for 100 epochs. It can be seen from
the bold footer that the detection performance of middle fusion is optimal (including both
cross-fusion and serial fusion), followed by late fusion. In addition, the performance of
the cross-fusion method is better than that of the serial fusion method. The reason is that
as the network passes forward, the cross-connection can retain different levels of features,
while the serial connection can only retain deep semantic information and cannot learn
shallow details. Therefore, in this paper, we use cross-connectivity to fuse information from
different modalities.

Table 5. Comparison of different fusion levels on the FLIR dataset.

Method Backbone mAP50 mAP

Visible Darknet53+CSP 68.9% 33.8%

Infrared Darknet53+CSP 74.2% 38.5%

Early Fusion Darknet53+CSP 75.2% 38.3%

Cross Fusion (ours) Darknet53+CSP 82.5% 43.9%

Series Fusion Darknet53+CSP 79.5% 41.6%

Late Fusion Darknet53+CSP 78.3% 39.3%
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4.4.2. Necessity of the Proposed Module

The BA module adaptively guides the visible and infrared modalities to be fused
based on the light information and contrast weights of the input images. Table 6 shows the
performance of the networks before and after using the background-aware module, before
and after using the CAMF module.

√
indicates that the method is used in the model. It can

be seen from the bold footer that after using the background-aware module, mAP50 and
mAP are improved by 3.3% and 1.4%, respectively, which outperforms the performance of
the network when only light information or only contrast is used. This suggests that the
BA module can use the prior knowledge to better guide the network for fusion, which is
adaptive to more complex backgrounds.

Table 6. Comparison of different modules on the FLIR dataset.

Method

Backbone mAP50 mAPBA CAMF

Light Contrast DA CA

Darknet53+CSP 76.5% 38.8%
√

Darknet53+CSP 78.6% 39.6%
√

Darknet53+CSP 77.3% 39.1%
√ √

Darknet53+CSP 79.8% 40.2%
√

Darknet53+CSP 80.1% 39.8%
√

Darknet53+CSP 79.5% 39.4%
√ √

Darknet53+CSP 81.2% 41.4%
√ √ √ √

Darknet53+CSP 82.5% 43.9%

Figure 11 lists the weights of the lighting conditions predicted by the background-
aware module in the upper right corner of the image, with higher weights for visible
modalities in daytime scenarios and for infrared modalities in nighttime scenarios. In the
first graph visible weights can reach 0.557.
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Figure 11. Demonstration of light conditions.

Our CAMF consists of a DA module, which focuses on the complementary features
between modalities, and a CA module, which focuses on the inherent features of the
modalities themselves. Table 6 shows that the DA module alone improves the mAP by
1.0% while the whole CAMF module improves the model’s mAP by 2.6%. Figure 12
shows the visualization results of the feature map. The heatmap of single-branch features
and fused features is shown on Figure 12c,d. It can be seen that the unimodal features
are more dispersed while the fused features are more concentrated, in which objects are
significantly enhanced.

In addition, we explain the intrinsic relationship between the P, R, and PR metrics on
the FLIR dataset. Figure 13a–c show the P-curve, R-curve, and PR-curve of this paper’s
algorithm, respectively. It can be seen that as the confidence increases, the precision of the
model also increases, while the recall of the model shows a decreasing trend. When the



Remote Sens. 2024, 16, 4034 18 of 20

confidence level is greater than 0.3, the precision rate of the model is more stable. From
Figure 13c, it can be seen that the proposed network maintains a high accuracy under
different recall levels, which indicates that it has a good performance in dealing with
different-sized objects. Therefore, the BA-CAMF Net designed in this paper is conducive to
the interaction and fusion of multimodality information.
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5. Discussion
5.1. Limitations

As seen in Figures 7–9, the BA-CAMF Net in this paper has better performance and
robustness under different light conditions or environments. However, there are still
duplicate detection results in the case of densely arranged. When the arrangement is dense,
the network tends to recognize the one overlapping object as more than one, which leads to
false detection. In addition, the running time of the algorithm in this paper, although better
than most of the dual-stream networks, is still lower than that of ICAFusion. Its real-time
performance needs to be further optimized.
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5.2. Ideas for Future Researches

For those problems, data augmentation and the improvement of loss function are
better approaches. On public datasets, it is not easy to add new occluded samples, and
mosaic enhancement can be used. Specialized loss functions can be designed to focus on
the overlapping situation, such as repulsion loss, which can make the detection frame as
far away as possible from the non-object region, thus reducing the false detections in the
case of occlusion. Additionally, pruning, quantization, and embedded deployment are the
next steps of the algorithm in this paper.

6. Conclusions

In this paper, we propose a visible-infrared fusion detection network, BA-CAMF Net,
to solve the problems of poor correlation within modalities and lack of a priori knowledge
in multispectral detection. BA-CAMF Net consists of the backone, BA, and CAMF. The
backbone network employs a two-branch network consisting of Darknet53 and CSP. The
BA module calculates the adaptive weights based on lighting conditions and contrast. The
CAMF enhances module inter-modality complement features and intra-modality intrinsic
features by multiscale cross-fusion of DA and CA guided by adaptive weights. In addition,
we design a multitask function to balance the detection loss and background perception
loss for fusion detection. Extensive comparative experiments on LLVIP, FLIR, and VEDAI
have been carried out, and the results show that the proposed BA-CAMF Net achieves
higher detection accuracy than the current State-of-the-Art multispectral detectors.

Author Contributions: Conceptualization, R.G. and X.G.; methodology, R.G. and B.S.; validation,
X.G., X.S. and S.S.; formal analysis, X.G.; investigation, S.S.; resources, P.Z.; data curation, B.S.;
writing—original draft preparation, X.S.; writing—review and editing, R.G.; visualization, P.Z. All
authors have read and agreed to the published version of the manuscript.
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