Automated Recognition of Submerged Body-like Objects in Sonar Images Using Convolutional Neural Networks
Abstract
:1. Introduction
2. Data Curation and Classifier Training
2.1. Data Collection
2.2. Image Preparation
2.3. Data Labelling
2.4. Transfer Learning
2.5. Object Detection and Mapping
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ATR | automatic target recognition |
CNN | convolutional neural network |
PRIME | police robot for inspection and mapping of underwater evidence |
SSS | sidescan sonar |
USV | uncrewed surface vessel |
References
- Becker, R.F.; Nordby, S.H.; Jon, J. Underwater Forensic Investigation; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Erskine, K.L.; Armstrong, E.J. Water-Related Death Investigation: Practical Methods and Forensic Applications; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Jahangir, R. Nicola Bulley: Lancashire Police Find Body in RiverWyre. BBC News. Available online: https://www.bbc.co.uk/news/uk-england-64697300 (accessed on 7 July 2023).
- Brown, S. Police Find Body in Poole Harbour During Search for Missing 20-Year-Old. Dorset Live. Available online: https://www.dorset.live/news/dorset-news/police-find-body-poole-harbour-8305294 (accessed on 7 July 2023).
- Ruffell, A. Lacustrine flow (divers, side scan sonar, hydrogeology, water penetrating radar) used to understand the location of a drowned person. J. Hydrol. 2014, 513, 164–168. [Google Scholar] [CrossRef]
- Schultz, J.J.; Healy, C.A.; Parker, K.; Lowers, B. Detecting submerged objects: The application of side scan sonar to forensic contexts. Forensic Sci. Int. 2013, 231, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Healy, C.A.; Schultz, J.J.; Parker, K.; Lowers, B. Detecting Submerged Bodies: Controlled Research Using Side-Scan Sonar to Detect Submerged Proxy Cadavers. J. Forensic Sci. 2015, 60, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Moulton, J.; Karapetyan, N.; Bukhsbaum, S.; McKinney, C.; Malebary, S.; Sophocleous, G.; Li, A.Q.; Rekleitis, I. An autonomous surface vehicle for long term operations. In Proceedings of the OCEANS 2018 MTS/IEEE Charleston, Charleston, SC, USA, 22–25 October 2018; pp. 1–10. [Google Scholar]
- Smith, T.; Mukhopadhyay, S.; Murphy, R.R.; Manzini, T.; Rodriguez, I. Path Coverage Optimization for USV with Side Scan Sonar for Victim Recovery. In Proceedings of the 2022 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Sevilla, Spain, 8–10 November 2022; pp. 160–165. [Google Scholar] [CrossRef]
- Chapple, P.B. Unsupervised detection of mine-like objects in seabed imagery from autonomous underwater vehicles. In Proceedings of the OCEANS 2009, Biloxi, MS, USA, 26–29 October 2009; pp. 1–6. [Google Scholar] [CrossRef]
- Gebhardt, D.; Parikh, K.; Dzieciuch, I.; Walton, M.; Vo Hoang, N.A. Hunting for naval mines with deep neural networks. In Proceedings of the OCEANS 2017—Anchorage, Anchorage, AK, USA, 18–21 September 2017; pp. 1–5. [Google Scholar]
- Hamilton, L. Towards autonomous characterisation of side scan sonar imagery for seabed type by unmanned underwater vehicles. In Proceedings of the Proceedings of ACOUSTICS, Perth, Australia, 19–22 November 2017; pp. 1–10.
- Nian, R.; Zang, L.; Geng, X.; Yu, F.; Ren, S.; He, B.; Li, X. Towards characterizing and developing formation and migration cues in seafloor sand waves on topology, morphology, evolution from high-resolution mapping via side-scan sonar in autonomous underwater vehicles. Sensors 2021, 21, 3283. [Google Scholar] [CrossRef]
- Williams, D.P. Fast unsupervised seafloor characterization in sonar imagery using lacunarity. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6022–6034. [Google Scholar] [CrossRef]
- Fakiris, E.; Papatheodorou, G.; Geraga, M.; Ferentinos, G. An Automatic Target Detection Algorithm for Swath Sonar Backscatter Imagery, Using Image Texture and Independent Component Analysis. Remote Sens. 2016, 8, 373. [Google Scholar] [CrossRef]
- Rhinelander, J. Feature extraction and target classification of side-scan sonar images. In Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens, Greece, 6–9 December 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Merrifield, S.T.; Celona, S.; McCarthy, R.A.; Pietruszka, A.; Batchelor, H.; Hess, R.; Nager, A.; Young, R.; Sadorf, K.; Levin, L.A.; et al. Wide-Area Debris Field and Seabed Characterization of a Deep Ocean Dump Site Surveyed by Autonomous Underwater Vehicles. Environ. Sci. Technol. 2023, 57, 18162–18171. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Lee, E.H.; Lee, S. Study on the classification performance of underwater sonar image classification based on convolutional neural networks for detecting a submerged human body. Sensors 2019, 20, 94. [Google Scholar] [CrossRef]
- Lee, S.; Park, B.; Kim, A. A Deep Learning based Submerged Body Classification Using Underwater Imaging Sonar. In Proceedings of the 2019 16th International Conference on Ubiquitous Robots (UR), Jeju, Republic of Korea, 24–27 June 2019; pp. 106–112. [Google Scholar] [CrossRef]
- Bates, C.R.; Lawrence, M.; Dean, M.; Robertson, P. Geophysical Methods for Wreck-Site Monitoring: The Rapid Archaeological Site Surveying and Evaluation (RASSE) programme. Int. J. Naut. Archaeol. 2011, 40, 404–416. [Google Scholar] [CrossRef]
- Smith, C.J.; Rumohr, H. Imaging Techniques. In Methods for the Study of Marine Benthos; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; Chapter 3; pp. 97–124. [Google Scholar] [CrossRef]
- Rymansaib, Z.; Thomas, B.; Treloar, A.A.; Metcalfe, B.; Wilson, P.; Hunter, A. A prototype autonomous robot for underwater crime scene investigation and emergency response. J. Field Robot. 2023, 40, 983–1002. [Google Scholar] [CrossRef]
- Rymansaib, Z.; Nga, Y.; Treloar, A.A.; Hunter, A. Sidescan sonar images for training automated recognition of submerged body-like objects. Univ. Bath Res. Data Arch. 2024. [Google Scholar]
- Rawat, W.; Wang, Z. Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review. Neural Comput. 2017, 29, 2352–2449. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Jiao, J.; Yin, J.; Zhao, W.; Han, X.; Sun, B. Underwater sonar image classification using adaptive weights convolutional neural network. Appl. Acoust. 2019, 146, 145–154. [Google Scholar] [CrossRef]
- Li, C.; Ye, X.; Cao, D.; Hou, J.; Yang, H. Zero shot objects classification method of side scan sonar image based on synthesis of pseudo samples. Appl. Acoust. 2021, 173, 107691. [Google Scholar] [CrossRef]
- Jiang, L.; Cai, T.; Ma, Q.; Xu, F.; Wang, S. Active Object Detection in Sonar Images. IEEE Access 2020, 8, 102540–102553. [Google Scholar] [CrossRef]
- Karimanzira, D.; Renkewitz, H.; Shea, D.; Albiez, J. Object Detection in Sonar Images. Electronics 2020, 9, 1180. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2012, 60, 84–90. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807. [Google Scholar]
- Thanh Le, H.; Phung, S.L.; Chapple, P.B.; Bouzerdoum, A.; Ritz, C.H.; Tran, L.C. Deep Gabor Neural Network for Automatic Detection of Mine-like Objects in Sonar Imagery. IEEE Access 2020, 8, 94126–94139. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, W.; Cheng, C.; Hou, X.; Cao, C. Detection of Small Objects in Side-Scan Sonar Images Using an Enhanced YOLOv7-Based Approach. J. Mar. Sci. Eng. 2023, 11, 2155. [Google Scholar] [CrossRef]
- Ge, L.; Singh, P.; Sadhu, A. Advanced deep learning framework for underwater object detection with multibeam forward-looking sonar. Struct. Health Monit. 2024, 14759217241235637. [Google Scholar] [CrossRef]
- Afzal, S.; Maqsood, M.; Nazir, F.; Khan, U.; Aadil, F.; Awan, K.M.; Mehmood, I.; Song, O.Y. A data augmentation-based framework to handle class imbalance problem for Alzheimer’s stage detection. IEEE Access 2019, 7, 115528–115539. [Google Scholar] [CrossRef]
- Phong, T.D.; Duong, H.N.; Nguyen, H.T.; Trong, N.T.; Nguyen, V.H.; Van Hoa, T.; Snasel, V. Brain Hemorrhage Diagnosis by Using Deep Learning. In Proceedings of the 2017 International Conference on Machine Learning and Soft Computing, Ho Chi Minh City, Vietnam, 13–16 January 2017; pp. 34–39. [Google Scholar] [CrossRef]
- Gogul, I.; Kumar, V.S. Flower species recognition system using convolution neural networks and transfer learning. In Proceedings of the 2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN), Chennai, India, 16–18 March 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Ye, X.; Li, C.; Zhang, S.; Yang, P.; Li, X. Research on Side-scan Sonar Image Target Classification Method Based on Transfer Learning. In Proceedings of the OCEANS 2018 MTS/IEEE Charleston, Charleston, SC, USA, 22–25 October 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Ge, Q.; Ruan, F.; Qiao, B.; Zhang, Q.; Zuo, X.; Dang, L. Side-Scan Sonar Image Classification Based on Style Transfer and Pre-Trained Convolutional Neural Networks. Electronics 2021, 10, 1823. [Google Scholar] [CrossRef]
- Du, X.; Sun, Y.; Song, Y.; Sun, H.; Yang, L. A Comparative Study of Different CNN Models and Transfer Learning Effect for Underwater Object Classification in Side-Scan Sonar Images. Remote Sens. 2023, 15, 593. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Chollet, F. Keras. 2015. Available online: https://keras.io (accessed on 1 February 2021).
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Hosang, J.; Benenson, R.; Schiele, B. Learning non-maximum suppression. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4507–4515. [Google Scholar]
- Geilhufe, M.; Midtgaard, Ø. Quantifying the complexity in sonar images for MCM performance estimation. In Proceedings of the 2nd International Conference and Exhibition on Underwater Acoustics, Rhodes, Greece, 22–27 June 2014; pp. 1041–1048. [Google Scholar]
- Peli, E. Contrast in complex images. JOSA A 1990, 7, 2032–2040. [Google Scholar] [CrossRef]
- Sokolova, M.; Japkowicz, N.; Szpakowicz, S. Beyond Accuracy, F-Score and ROC: A Family of Discriminant Measures for Performance Evaluation. In AI 2006: Advances in Artificial Intelligence; Sattar, A., Kang, B.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1015–1021. [Google Scholar]
- Williams, D.P. On the Use of Tiny Convolutional Neural Networks for Human-Expert-Level Classification Performance in Sonar Imagery. IEEE J. Ocean. Eng. 2021, 46, 236–260. [Google Scholar] [CrossRef]
- Isaksson, A.; Wallman, M.; Göransson, H.; Gustafsson, M.G. Cross-Validation and Bootstrapping Are Unreliable in Small Sample Classification. Pattern Recogn. Lett. 2008, 29, 1960–1965. [Google Scholar] [CrossRef]
- Fawcett, J.; Myers, V.; Hopkin, D.; Crawford, A.; Couillard, M.; Zerr, B. Multiaspect Classification of Sidescan Sonar Images: Four Different Approaches to Fusing Single-Aspect Information. IEEE J. Ocean. Eng. 2010, 35, 863–876. [Google Scholar] [CrossRef]
- Zerr, B.; Stage, B.; Guerrero, A. Automatic Target Classification Using Multiple Sidescan Sonar Images of Different Orientations; Technical Report; NATO, SACLANT Undersea Research Centre: La Spezia, Italy, 1997. [Google Scholar]
- Williams, D.P. The Mondrian Detection Algorithm for Sonar Imagery. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1091–1102. [Google Scholar] [CrossRef]
- Reed, S.; Petillot, Y.; Bell, J. An automatic approach to the detection and extraction of mine features in sidescan sonar. IEEE J. Ocean. Eng. 2003, 28, 90–105. [Google Scholar] [CrossRef]
- Williams, D.P. Fast Target Detection in Synthetic Aperture Sonar Imagery: A New Algorithm and Large-Scale Performance Analysis. IEEE J. Ocean. Eng. 2015, 40, 71–92. [Google Scholar] [CrossRef]
- Uijlings, J.; van de Sande, K.; Gevers, T.; Smeulders, A. Selective Search for Object Recognition. Int. J. Comput. Vis. 2013, 104, 154–171. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.K.; Girshick, R.B.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. arXiv 2015, arXiv:1506.02640. [Google Scholar]
- Wang, A.; Chen, H.; Liu, L.; Chen, K.; Lin, Z.; Han, J.; Ding, G. YOLOv10: Real-Time End-to-End Object Detection. arXiv 2024, arXiv:2405.14458. [Google Scholar]
- Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and Efficient Object Detection. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 10778–10787. [Google Scholar] [CrossRef]
No. | Location | Date | Run | No. of Images |
---|---|---|---|---|
1 | Underfall Yard | 02/10/2019 | 1 | 32 |
2 | 24 | |||
10/10/2019 | 1 | 70 | ||
2 | 72 | |||
3 | 68 | |||
03/01/2020 | 1 | 20 | ||
2 | 32 | |||
3 | 36 | |||
06/03/2020 | 1 | 140 | ||
2 | 70 | |||
14/07/2021 | 1 | 144 | ||
2 | 42 | |||
2 | Bathampton Canal | 05/10/2017 | 1 | 130 |
3 | Dundas Aqueduct | 17/06/2021 | 1 | 100 |
4 | Minerva Bath Rowing Club | 09/07/2021 | 1 | 100 |
2 | 68 | |||
3 | 96 |
No. | Object Examples | Background Examples | Imbalance Ratio |
---|---|---|---|
a | 332 | 332 | 1:1 |
b | 664 | 1:2 | |
c | 1328 | 1:4 | |
d | 2656 | 1:8 | |
e | 5312 | 1:16 | |
f | 10,624 | 1:32 |
Model | Xception | ResNet-50 | |||||
---|---|---|---|---|---|---|---|
No. | Imbalance Ratio | Precision | Recall | F1 Score | Precision | Recall | F1 Score |
a | 1:1 | 0.97 | 0.55 | 0.70 | 0.99 | 0.89 | 0.93 |
b | 1:2 | 0.96 | 0.60 | 0.72 | 0.90 | 0.96 | 0.91 |
c | 1:4 | 0.98 | 0.99 | 0.98 | 0.91 | 0.97 | 0.93 |
d | 1:8 | 0.97 | 0.99 | 0.98 | 0.96 | 0.97 | 0.96 |
e | 1:16 | 0.97 | 0.99 | 0.98 | 0.97 | 0.98 | 0.97 |
f | 1:32 | 0.96 | 0.98 | 0.97 | 0.97 | 0.97 | 0.97 |
Model | Xception | ResNet-50 | |||||
---|---|---|---|---|---|---|---|
No. | Imbalance Ratio | Precision | Recall | F1 Score | Precision | Recall | F1 Score |
a | 1:1 | 0.03 | 0.97 | 0.05 | 0.10 | 0.99 | 0.19 |
b | 1:2 | 0.08 | 0.98 | 0.14 | 0.21 | 0.94 | 0.34 |
c | 1:4 | 0.40 | 0.97 | 0.56 | 0.29 | 0.93 | 0.41 |
d | 1:8 | 0.52 | 0.97 | 0.68 | 0.27 | 0.97 | 0.40 |
e | 1:16 | 0.58 | 0.97 | 0.72 | 0.35 | 0.96 | 0.49 |
f | 1:32 | 0.66 | 0.97 | 0.78 | 0.21 | 0.96 | 0.34 |
Model | Xception | ResNet-50 | |||||
---|---|---|---|---|---|---|---|
No. | Imbalance Ratio | Precision | Recall | F1 Score | Precision | Recall | F1 Score |
a | 1:1 | 0.02 | 1.00 | 0.04 | 0.03 | 1.00 | 0.05 |
b | 1:2 | 0.10 | 1.00 | 0.19 | 0.10 | 0.97 | 0.16 |
c | 1:4 | 0.10 | 1.00 | 0.19 | 0.19 | 0.94 | 0.29 |
d | 1:8 | 0.18 | 0.99 | 0.30 | 0.13 | 0.99 | 0.23 |
e | 1:16 | 0.21 | 0.98 | 0.35 | 0.25 | 0.99 | 0.39 |
f | 1:32 | 0.32 | 0.99 | 0.47 | 0.24 | 0.99 | 0.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nga, Y.Z.; Rymansaib, Z.; Anthony Treloar, A.; Hunter, A. Automated Recognition of Submerged Body-like Objects in Sonar Images Using Convolutional Neural Networks. Remote Sens. 2024, 16, 4036. https://doi.org/10.3390/rs16214036
Nga YZ, Rymansaib Z, Anthony Treloar A, Hunter A. Automated Recognition of Submerged Body-like Objects in Sonar Images Using Convolutional Neural Networks. Remote Sensing. 2024; 16(21):4036. https://doi.org/10.3390/rs16214036
Chicago/Turabian StyleNga, Yan Zun, Zuhayr Rymansaib, Alfie Anthony Treloar, and Alan Hunter. 2024. "Automated Recognition of Submerged Body-like Objects in Sonar Images Using Convolutional Neural Networks" Remote Sensing 16, no. 21: 4036. https://doi.org/10.3390/rs16214036
APA StyleNga, Y. Z., Rymansaib, Z., Anthony Treloar, A., & Hunter, A. (2024). Automated Recognition of Submerged Body-like Objects in Sonar Images Using Convolutional Neural Networks. Remote Sensing, 16(21), 4036. https://doi.org/10.3390/rs16214036