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Abstract: The Police Robot for Inspection and Mapping of Underwater Evidence (PRIME) is an
uncrewed surface vehicle (USV) currently being developed for underwater search and recovery
teams to assist in crime scene investigation. The USV maps underwater scenes using sidescan sonar
(SSS). Test exercises use a clothed mannequin lying on the seafloor as a target object to evaluate
system performance. A robust, automated method for detecting human body-shaped objects is
required to maximise operational functionality. The use of a convolutional neural network (CNN)
for automatic target recognition (ATR) is proposed. SSS image data acquired from four different
locations during previous missions were used to build a dataset consisting of two classes, i.e., a
binary classification problem. The target object class consisted of 166 196 × 196 pixel image snippets
of the underwater mannequin, whereas the non-target class consisted of 13,054 examples. Due to the
large class imbalance in the dataset, CNN models were trained with six different imbalance ratios.
Two different pre-trained models (ResNet-50 and Xception) were compared, and trained via transfer
learning. This paper presents results from the CNNs and details the training methods used. Larger
datasets are shown to improve CNN performance despite class imbalance, achieving average F1
scores of 97% in image classification. Average F1 scores for target vs background classification with
unseen data are only 47% but the end result is enhanced by combining multiple weak classification
results in an ensemble average. The combined output, represented as a georeferenced heatmap,
accurately indicates the target object location with a high detection confidence and one false positive
of low confidence. The CNN approach shows improved object detection performance when compared
to the currently used ATR method.

Keywords: underwater search; automation; robotics; sidescan sonar (SSS); automated target recognition
(ATR); machine learning; convolutional neural networks (CNN)

1. Introduction

Locating, identifying and recovering evidence from underwater environments is gener-
ally a manual, labour-intensive process reserved for specialist-trained divers [1]. Personnel
involved in such operations have specific skill sets for proper and timely search procedures,
as well as documentation and retrieval of any evidence discovered [2]. A common mission
scenario is to locate and retrieve missing persons from inland waterways such as rivers or
harbours [3,4]. Such environments can be dangerous to navigate due to poor underwater
visibility, further complicated by potential hazards and obstructions littered in the area.
Such time-consuming operations place considerable strain on increasingly over-stretched
workforces with limited resources and personnel.

Sidescan sonar (SSS) is often employed in such scenarios to aid in underwater searches.
However, it is still primarily a manual operation, requiring oversight from trained sonar
operators [5–7]. Autonomous vessels have been developed for similar marine sensing
scenarios [8,9], but automatic target recognition (ATR) of SSS data focuses primarily on
applications such as mine hunting [10,11], seafloor characterisation [12–14], or general
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man-made object and debris detection [15–17]. Autonomous detection of human-shaped
targets has been demonstrated in multibeam sonar data [18,19] but in general, SSS is better
suited for object detection, providing images of higher resolution and better quality [20,21].

The Police Robot for Inspection and Mapping of Underwater Evidence (PRIME) is
an uncrewed surface vessel (USV) currently in development to assist in missing persons
search and recovery scenarios. Detailed descriptions of the hardware design and software
architecture are provided in the literature [22,23]. The USV is deployed to scan an area,
producing SSS imagery of the floor. An ATR algorithm uses wavelet filtering and complexity
mapping to identify human body-shaped objects, and produces simplified survey maps
for dive teams in the form of a ‘heatmap’ for easy interpretation. The heatmap uses a
two-colour scale, where benign regions are highlighted in blue, and areas highlighted in
red indicate the potential presence of a body. This system has been shown to autonomously
identify and locate a sunken mannequin, representing a human body in a missing persons
scenario. However, the current image processing-based ATR approach incorrectly classifies
water-land boundaries and changes in floor texture as regions of interest, resulting in
several false positives as well as false negatives.

Convolutional neural networks (CNNs) are widely used for pattern recognition in
tasks related to computer vision [24]. Recent work using CNNs has shown promising results
in image classification [25,26] and object detection in sonar images [27,28]. Popular CNN
architectures include Alexnet [29], VGGNets [30], ResNet [31], and Xception [32]. CNNs
have been used extensively for object detection in sonar images [33–35]. Developing and
training a complete CNN requires considerable time, computational resources, and training
data. One approach to circumvent these requirements is to use transfer learning, where a
pre-trained CNN is adapted for a new task by using the lower network layers to extract
image features (e.g., edges, shapes, and textures) and retraining only the final output
classification layer. This method has demonstrated excellent performance in applications
ranging from Alzheimer’s detection in MRI images to flower species recognition from
mobile phone photography [36–38], and has also been demonstrated to be suitable for
object detection in SSS images [39–41].

In this paper, we describe a CNN approach for ATR. Two CNNs (ResNet-50 and
Xception) were trained via transfer learning using data collected from previous missions.
Most of the training data contain non-target imagery, resulting in an imbalanced class
distribution. Basic data augmentation was thus performed, and the effect of varying the
imbalance ratio on target versus background classification performance was examined.
Results are further refined via ensemble averaging of classifications from multiple survey
passes at different orientations. This minimises the effects of false negatives and results in
improved target detection and localisation performance of the system.

2. Data Curation and Classifier Training

Traditional machine learning involves training models from scratch on specific datasets
for a particular task. This typically requires significant computational resources and large
amounts of good-quality training data, followed by testing and tuning to produce a model
which can accurately classify new data. Transfer learning adapts existing models that have
been trained on large datasets for general tasks and repurposes them for a specific task.
The top-most classification layers are removed allowing the remaining pre-trained network
to be used as a feature extractor. This reduces the requirement of using large datasets for
training. New output layers are then added and trained on a smaller dataset to classify
task-specific features, before fine-tuning of the whole network to refine overall performance.

Data collected from previous missions and testing were manually sorted and labelled
to use for transfer learning with two CNN architectures, ResNet-50 [31] and Xception [32].
Two classes were specified as object and background, and datasets with varying imbal-
ance ratios were prepared. Some data were withheld from training to be used later as
unseen datasets after experimenting with different CNN architectures and imbalance ratios.
After transfer learning, model performances were evaluated on full-size sonar images.
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The unseen datasets were used to simulate new missions and evaluate object detection
performance. Finally, CNN outputs were integrated into the PRIME autonomy chain to
generate an intelligence map and compare against the existing object detection method.

2.1. Data Collection

The USV has been tested extensively during previous development stages at several
locations between Bath and Bristol, UK. SSS data gathered from four locations were curated
for training and testing the CNNs. This consists of sonar images generated using the higher
frequency Starfish-990 SSS (Blueprint Subsea, UK) implemented on the USV platform.
Table 1 lists details of each mission including location, number of survey runs, and number
of sonar images collected in each survey. Underfall Yard is a boatyard serving Bristol
Harbour with a water depth of approximately 5 m, see Figure 1. It is a moderately busy
operational harbour with traffic from passing boats and sailing activities. The seafloor is
soft and muddy with some clutter, rock formations, and texture. Bathampton and Dundas
Aqueduct are two locations at different points along the Kennet and Avon Canal. Water is
shallow, varying in depth from 1.2–1.5 m, with some clutter such as rocks, tyres, and other
man-made objects on the muddy floor. Boats are moored at several locations along the
length of the canal, and there is traffic from passing canal boats. Minerva Bath Rowing
Club is a quiet area situated on the River Avon. The water is approximately 2.5 m deep,
with a muddy floor and moderately complex underwater environment containing rocks,
aquatic plants and fish. These locations are highlighted on a map in Figure 2.

Table 1. List of previous surveys indicating test location, date, number of survey runs, and number of
sonar images collected. Surveys with fewer images are from incomplete runs. Data from highlighted
lines were retained as unseen datasets for CNN evaluation.

No. Location Date Run No. of Images

1 Underfall Yard

02/10/2019
1 32

2 24

10/10/2019

1 70

2 72

3 68

03/01/2020

1 20

2 32

3 36

1 140
06/03/2020

2 70

1 144
14/07/2021

2 42

2 Bathampton Canal 05/10/2017 1 130

3 Dundas Aqueduct 17/06/2021 1 100

4 Minerva Bath Rowing Club 09/07/2021

1 100

2 68

3 96
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Figure 1. PRIME USV executing a survey at Underfall Yard, Bristol Harbour, UK.

Figure 2. Satellite map showing locations where experimental trials took place: (1) Bristol Harbour;
(2) Bathampton Canal; (3) Dundas Aqueduct; (4) Minerva Bath Rowing Club.

2.2. Image Preparation

SSS data are collected at a fixed ping repetition frequency of 50 Hz as the USV travels
along a path. Along-track sampling is thus determined by the USV velocity, which can vary
due to changes in wind or water current. Acquired images, therefore, require rescaling to
ensure object dimensions are consistent between images. Across-track sampling is assumed
to be uniform, where each sonar ping covers a fixed range of 15 m using 2048 samples.
Along-track samples are rescaled assuming a constant average velocity, with distance
determined from the USV GPS data. Images were rescaled using bicubic interpolation
(Figure 3), before manually sorting into two groups of object and background data.
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(a) (b)

Figure 3. Example of a sonar image of the target object before (a) and after (b) rescaling using
bicubic interpolation.

2.3. Data Labelling

Manual sorting of rescaled images resulted in 166 containing the target object and
680 without. Target images were cropped to 196 × 196 pixels centred on the highlight
and shadow features to generate samples for the object class with the remaining data
discarded, see Figure 4a. A 196 × 196 pixel sliding window with a 100 pixel step was
used to generate samples for the background class from non-target images, see Figure 4b.
This size was chosen to ensure the sliding window covered the entire sonar image. This
resulted in a total of 166 samples for the object class, and 13,054 for the background class.
To increase the amount of object class samples, basic data augmentation was performed
by mirroring in the along-track direction, duplicating the amount of available data. Other
common data augmentation techniques such as rotation cannot be used as the characteristic
highlight-shadow feature would not be correctly reproduced. A selection of samples is
shown in Figure 5, illustrating the wide variety of potential object configurations and
background features.

(a) (b)

Figure 4. Examples of generated training data: (a) Object class sample cropped from image containing
the target object, remaining data are discarded. (b) Background class data generated from entire
target-free image.
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(a)

(b)

Figure 5. Gallery of example training data for object class (a) and background class (b).

2.4. Transfer Learning

We perform transfer learning with two popular pre-trained networks, ResNet-50 [31]
and Xception [32], both trained on the ImageNet dataset [42]. ResNet-50 is a 50 layer
neural network which learns residual mappings between inputs and outputs, rather than
directly learning the output. Shortcut connections propagate inputs from one layer to later
layers, allowing the network to easily learn residual mappings without overfitting. The
use of residual blocks in the architecture addresses the problem of vanishing gradients in
deep neural networks. Xception is a 36 layer network that uses a more efficient version
of convolution known as depthwise separable convolution. Image input channels are
convolved separately and combined, which reduces the computation and number of
parameters required whilst maintaining performance comparable to deeper networks.

Pre-trained networks were obtained using Keras an open-source library for neural
networks written in Python [43]. The top layers were omitted and replaced with an
average pooling layer followed by a 2 output fully connected layer with softmax activation.
The new classifier head was then trained for 3 epochs with a batch size of 64 using the
Adam optimiser with a learning rate of 0.0001 [44]. The entire model was then fine-tuned
with the same parameters for 30 epochs or until early stopping, specified as a minimum
change in validation loss of 0.001 over 3 epochs.

Several datasets were prepared to investigate the influence of class imbalance, see
Table 2. These were created using all available samples from the object class and randomly
selected samples from the background class. 20% of each dataset was assigned as testing
data, and manually curated to ensure that samples from every mission were included.
The remaining data were split 80:20 as training and validation data, respectively, with strat-
ified random sampling, resulting in a total of 12 trained networks. This was repeated
10 times to evaluate the average model performance for each imbalance ratio, for both CNN
architectures. Data from the missions highlighted in Table 1 were withheld from training to
use as unseen data.
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Table 2. List of training datasets with varying imbalance ratio.

No. Object Examples Background Examples Imbalance Ratio

a

332

332 1:1
b 664 1:2
c 1328 1:4
d 2656 1:8
e 5312 1:16
f 10,624 1:32

2.5. Object Detection and Mapping

The trained networks were used to perform object detection on full-size sonar images
from the testing data and from the unseen data. A total of 43 images from the testing data
were used, all containing the target object. The unseen dataset consisted of 144 images,
with 41 containing the target object. A 196 × 196 pixel sliding window with a 30 pixel
step was used to generate region proposals for classification. Non-maximum suppression
with an overlap threshold of 0.2 was used to produce bounding boxes with the highest
confidence rates around any detected objects [45]. Detections with confidence rates lower
than 50% were ignored. Images with any placed bounding boxes were then converted to a
heatmap with a blue-red colourscale where the bounded region is coloured red with the
intensity determined by the classification confidence rate.

Heatmaps were then fed into the georeferencing and mapping stages as implemented
in the PRIME processing chain, replacing the current wavelet filtering-based anomaly
detection algorithm. The implementation is described in previous work [22]. Images are
first filtered via wavelet transform to isolate features of similar scale to an average human
body. The complexity of the filtered image is then quantified via the root-mean-square
contrast metric to generate the anomaly map, where high complexity regions indicate an
increased likelihood of the presence of the target object [46,47]. Finally, edge detection is
performed to detect the seafloor and remove the water column region from sonar images
and corresponding heatmaps.

3. Results and Discussion

Precision, recall, and F1 score [48] were used to evaluate the classification performances
of both networks on the test datasets. The same metrics were used to evaluate object
detection performance on images used to generate the test dataset and images from the
unseen datasets. Figure 6 shows the distribution of F1 scores. Tables 3–5 show the averaged
performances for classification of image snippets, object detection on images from the test
data and object detection on unseen data, respectively.

Table 3. Averaged classification performance of Xception and ResNet-50 on test data samples (image
snippets). Networks were trained and tested 10 times per imbalance ratio. Each dataset consisted
of all available target object samples and a random subset of available background samples. The
red-yellow-green colour scale ranges from 0–1 indicating poor to good performance.

Model Xception ResNet-50
No. Imbalance Ratio Precision Recall F1 Score Precision Recall F1 Score

a 1:1 0.97 0.55 0.70 0.99 0.89 0.93
b 1:2 0.96 0.60 0.72 0.90 0.96 0.91
c 1:4 0.98 0.99 0.98 0.91 0.97 0.93
d 1:8 0.97 0.99 0.98 0.96 0.97 0.96
e 1:16 0.97 0.99 0.98 0.97 0.98 0.97
f 1:32 0.96 0.98 0.97 0.97 0.97 0.97
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Table 4. Averaged object detection performance of Xception and ResNet-50 on full-size sonar
images from the test dataset. The red-yellow-green colour scale ranges from 0–1 indicating poor to
good performance.

Model Xception ResNet-50

No. Imbalance Ratio Precision Recall F1 Score Precision Recall F1 Score

a 1:1 0.03 0.97 0.05 0.10 0.99 0.19
b 1:2 0.08 0.98 0.14 0.21 0.94 0.34
c 1:4 0.40 0.97 0.56 0.29 0.93 0.41
d 1:8 0.52 0.97 0.68 0.27 0.97 0.40
e 1:16 0.58 0.97 0.72 0.35 0.96 0.49
f 1:32 0.66 0.97 0.78 0.21 0.96 0.34

Table 5. Averaged object detection performance of Xception and ResNet-50 on full size sonar images
from the unseen dataset. The red-yellow-green colour scale ranges from 0–1 indicating poor to
good performance.

Model Xception ResNet-50

No. Imbalance Ratio Precision Recall F1 Score Precision Recall F1 Score

a 1:1 0.02 1.00 0.04 0.03 1.00 0.05
b 1:2 0.10 1.00 0.19 0.10 0.97 0.16
c 1:4 0.10 1.00 0.19 0.19 0.94 0.29
d 1:8 0.18 0.99 0.30 0.13 0.99 0.23
e 1:16 0.21 0.98 0.35 0.25 0.99 0.39
f 1:32 0.32 0.99 0.47 0.24 0.99 0.37

(a)

(b)

Figure 6. Cont.



Remote Sens. 2024, 16, 4036 9 of 16

(c)
Figure 6. F1 scores of Xception and ResNet-50 for (a) classification on test data samples (image
snippets), (b) object detection on full-size sonar images, (c) object detection on full-size sonar images
from an unseen dataset, with increasing imbalance ratios. Lines show median and quartiles of
distributions. Networks were re-trained 10 times each.

In most cases, Xception outperforms ResNet-50. We postulate that this is due to
Xception being a smaller network and thus less prone to overfitting. Smaller networks
have been shown to outperform larger CNNs in classifying sonar imagery [49]. Both
networks tend to perform better overall when trained with higher imbalance ratios. This is
likely due to a greater amount of data being used when training, allowing the network to
more accurately model the background class. Figure 6a suggests the good performance
of both models with the most imbalance ratios; however, due to the limited amount of
available training data, k-fold cross-validation could not be properly performed and some
data overlap between training, validation and test datasets could not be avoided during
evaluation. This type of testing has been shown to be unreliable with small datasets [50].
A more representative assessment is shown in Figure 6c, where the best-performing models
achieve F1 scores of 0.63 in object detection on unseen images. This moderate performance
may also be due to the lack of sufficient training data. Additionally, the training and
validation data used here have been collected from multiple trials and environments, yet
the unseen data are from one environment only.

Some of the most common misclassifications are shown in Figure 7. Rocks (Figure 7a),
plants (Figure 7b) and fish (Figure 7c) can be incorrectly identified as the object class,
i.e., false positives. Plants and fish appear mainly in the water column, which is later
removed in the final mapping stage, thereby reducing their impact as false positives.
Figure 7d shows examples of false negatives, which are more likely to occur when the
target object is near some clutter or is viewed from an unfavourable angle.

The best performing CNN from Table 5, i.e., Xception trained with an imbalance
ratio of 1:32, was used to perform object detection on the unseen datasets. Detection
examples and corresponding heatmaps are shown in Figure 8. Some detections are poor,
incorrect, or missed altogether as seen in Figure 8b. With the average F1 score of this
network on unseen data achieving only 0.47, the single look classification performance
is poor. Each classification is view-dependent, with accuracy varying when viewing
the scene from different orientations. Figure 9 illustrates how viewing the target object
from an unfavourable orientation results in poor detection with the existing method,
but nearby fish give a slightly stronger detection resulting in a false positive, see Figure 9b.
The CNN-based approach results in a true positive detection for the target object but also
incorrectly classifies the fish with high confidence, see Figure 9c. However, a good outcome
is achieved by combining the results of multiple heatmaps, similar to an ensemble average
of multiple weak classifications. Similar improvements to the classification of SSS images by
using multiple looks of the same object have been demonstrated previously with dummy
mines [51,52]. Figure 10b shows how the true target object position is clearly identified,
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with the impact of false negatives arising from transient objects such as fish suppressed.
A secondary region with overlapping false positives of low confidence is also present,
due to rocks on the seafloor. This result is a significant improvement over the existing
method shown in Figure 10a, which shows two additional regions of interest due to the
algorithm incorrectly identifying changes in seafloor texture and the water-land boundary
as anomalies. Finally, Figure 11 illustrates the good repeatability of this method with the
additional unseen dataset, with the target location clearly identified when deployed in a
different position. The location of the rocks is less pronounced in this result, this could
be due to underwater changes which may have occurred in the 16-month period between
gathering the two datasets.

(a)

(b)

(c)

(d)

Figure 7. Examples of region proposals with the highest misclassification rates. (a) Rocks, (b) veg-
etation, and (c) fish were frequently misclassified as the target object. (d) Shows the target object
misclassified as background.
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(a) (b)

(c) (d)

Figure 8. Examples of bounding box placement after object recognition. Left column (a,c) shows true
positive detected with a high confidence rate, right column (b,d) shows false positive with moderate
confidence rate and a false negative. Second row (c,d) shows corresponding heatmaps generated
from the bounding box and confidence rate. Blue-white-red colour scale ranges from 0–100 and
indicates confidence rate.

(a)

Figure 9. Cont.
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(b) (c)
Figure 9. Example of georeferenced (a) sonar image, with corresponding heatmaps generated using
(b) existing ATR method and (c) CNN-based ATR method. Both methods incorrectly identify a school
of fish as the target object. The blue-white-red colour scales in (b) and (c) range from 0.075–0.2 and
0–1, respectively.

(a)

(b)

Figure 10. Comparison of combined heatmaps produced using (a) existing image processing-based
anomaly detection method and (b) CNN-based object detection method. The blue-white-red colour
scales in (a) and (b) range from 0–0.015 0–0.3, respectively. Overlaid arrows indicate location of (A)
target, (B) rocks and (C) change in floor texture. These results correspond to run 1 of the 2021 dataset
highlighted in Table 1.
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Figure 11. Combined heatmap produced using CNN-based object detection method on additional
unseen dataset. Overlaid arrows indicate location of (A) target, (B) rocks shown in Figure 10.
The blue-white-red colour scale ranges from 0–0.3. This result corresponds to run 1 of the 2020 dataset
highlighted in Table 1.

4. Conclusions

This paper presents two CNN architectures, ResNet-50 and Xception, trained via trans-
fer learning for identifying body-like objects from sidescan sonar images collected from an
autonomous USV in missing persons scenarios. A scarcity of available data motivated the
investigation of training with varying imbalance ratios. In general, Xception outperformed
ResNet-50 based on F1 classification scores. Networks trained with higher imbalance ratios
achieved higher scores, suggesting that the negative class is more accurately modelled
and that additional data for the object class are required. When evaluated for object detec-
tion with unseen datasets, both networks performed poorly on single-look classification,
with average F1 scores for Xception and ResNet-50 achieving 0.47 and 0.37, respectively.
However, overall performance is enhanced by integrating the CNN outputs into the USV
mapping and visualisation processes, thereby combining the results on a georeferenced
map as an ensemble average. The end result is a significant improvement over the current
implementation with the target object clearly identified, allowing the system to produce
intelligence of better quality for search and recovery teams. Additional improvements
may be achieved by applying this methodology to other sonar image object detection
methods, for example, Mondrian detection, Markov random field, or integral-image-based
approaches [53–55]. However, improvements to the data-driven CNN method used here
will likely arise simply from using additional training data as they are acquired.

The sliding window-based approach used to generate region proposals is simple but
effective. More efficient methods such as the selective search algorithm could be explored
and compared, as well as more modern CNN architectures such as YOLO or Efficient-
Det [56–59]. Further improvements can be achieved by collecting more training data for
better object and background classification, or for identifying commonly misclassified
objects such as fish or rocks. Given the use case of search and rescue, detecting additional
classes such as discarded weapons or hazards would be beneficial, but also requires more
data for training, data collected from different environments, or data from additional sensor
types. The sonar image data used for this work have been released [23], as well as the
position data required for mapping, to replicate Figures 9–11. We encourage readers to
experiment with different CNN architectures and object detection frameworks.
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