Terahertz Emission Modeling of Lunar Regolith
Abstract
:1. Introduction
2. Lunar Regolith as an Emission Layer
2.1. Roughness Description
2.2. Dielectric Properties
3. Physics-Based Emission Modeling
- (i)
- Emissions from bounded inhomogeneous layer , ;
- (ii)
- Emission from the host medium ;
- (iii)
- Emission from layer–boundary interactions .
3.1. Phase Matrices of Rough Boundaries
3.2. Phase Matrix of Regolith Layer
4. Results and Discussion
4.1. Dielectric Effect
4.2. Roughness Effect
4.3. Coupling Effect
5. Conclusions
- (i)
- The geometric shape of scatterers in the regolith layer were modeled as spheres in this model. In future work, the models should incorporate other types of scatterers over the entire frequency region of interest.
- (ii)
- A thorough examination of multiscale roughness on the lunar surface emissivity is necessary.
- (iii)
- It is important to treat the lunar regolith layer as a dense and random medium and compare the model results with experimental measurements.
- (iv)
- Retrieving geophysical parameters from surface emission is pivotal in the passive sensing of planetary surfaces. Since the emissivity lies within the range, even a small change in it leads to a significant difference in brightness temperature. Several factors, including surface RMS height, correlation length, dielectric constant, albedo, and optical depth, contribute to such slight variations in emission. Making full use of this slight variation is promising in deciphering the geophysical parameters of planetary surfaces.
- (v)
- The new THz emission model should be made readily applicable to other bodies with no atmosphere in the solar system, such as Mercury, Ceres, Vesta, Eros, and Phobos, as well as to bodies with atmosphere, such as comets (e.g., 67P/Churyumov– Gerasimenko) and Jupiter’s icy moons, like Ganymede.
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Heiken, G.H.; Vaniman, D.T.; French, B.M. Lunar Sourcebook, a User’s Guide to the Moon; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Saal, A.E.; Hauri, E.H.; Cascio, M.L.; Van Orman, J.A.; Rutherford, M.C.; Cooper, R.F. Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior. Nature 2008, 454, 192–195. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Tang, H.; Li, X.; Zeng, X.; Mo, B.; Yu, W.; Wu, Y.; Zeng, X.; Liu, J.; Wen, Y. Chang’E-5 samples reveal high water content in lunar minerals. Nat. Commun. 2022, 13, 5336. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, B.; Ren, X.; Li, C.; Shu, R.; Guo, L.; Yu, S.; Zhou, Q.; Liu, D.; Zeng, X.; et al. Evidence of water on the lunar surface from Chang’E-5 in-situ spectra and returned samples. Nat. Commun. 2022, 13, 3119. [Google Scholar] [CrossRef] [PubMed]
- Prettyman, T.H.; Hagerty, J.J.; Elphic, R.C.; Feldman, W.C.; Lawrence, D.J.; McKinney, G.W.; Vaniman, D.T. Elemental composition of the lunar surface: Analysis of gamma ray spectroscopy data from Lunar Prospector. J. Geophys. Res. (Planets) 2006, 111, E12007. [Google Scholar] [CrossRef]
- Bhatt, M.; Wöhler, C.; Grumpe, A.; Hasebe, N.; Naito, M. Global mapping of lunar refractory elements: Multivariate regression vs. machine learning. Astron. Astrophys. 2019, 627, A155. [Google Scholar] [CrossRef]
- Kobayashi, S.; Hasebe, N.; Shibamura, E.; Okudaira, O.; Kobayashi, M.; Yamashita, N.; Karouji, Y.; Hareyama, M.; Hayatsu, K.; D’Uston, C.; et al. Determining the Absolute Abundances of Natural Radioactive Elements on the Lunar Surface by the Kaguya Gamma-ray Spectrometer. Space Sci. Rev. 2010, 154, 193–218. [Google Scholar] [CrossRef]
- Weider, S.Z.; Kellett, B.J.; Swinyard, B.M.; Crawford, I.A.; Joy, K.H.; Grande, M.; Howe, C.J.; Huovelin, J.; Narendranath, S.; Alha, L.; et al. The Chandrayaan-1 X-ray Spectrometer: First results. Planet. Space Sci. 2012, 60, 217–228. [Google Scholar] [CrossRef]
- Araki, H.; Tazawa, S.; Noda, H.; Ishihara, Y.; Goossens, S.; Sasaki, S.; Kawano, N.; Kamiya, I.; Otake, H.; Oberst, J.; et al. Lunar Global Shape and Polar Topography Derived from Kaguya-LALT Laser Altimetry. Science 2009, 323, 897. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.E.; Zuber, M.T.; Neumann, G.A.; Lemoine, F.G.; Mazarico, E.; Torrence, M.H.; McGarry, J.F.; Rowlands, D.D.; Head, J.W.; Duxbury, T.H.; et al. Initial observations from the Lunar Orbiter Laser Altimeter (LOLA). Geophys. Res. Lett. 2010, 37, L18204. [Google Scholar] [CrossRef]
- Kato, M.; Sasaki, S.; Takizawa, Y. The Kaguya Mission Overview. Space Sci. Rev. 2010, 154, 3–19. [Google Scholar] [CrossRef]
- Robinson, M.S.; Brylow, S.M.; Tschimmel, M.; Humm, D.; Lawrence, S.J.; Thomas, P.C.; Denevi, B.W.; Bowman-Cisneros, E.; Zerr, J.; Ravine, M.A.; et al. Lunar Reconnaissance Orbiter Camera (LROC) Instrument Overview. Space Sci. Rev. 2010, 150, 81–124. [Google Scholar] [CrossRef]
- Clark, R.N. Detection of Adsorbed Water and Hydroxyl on the Moon. Science 2009, 326, 562. [Google Scholar] [CrossRef] [PubMed]
- Pieters, C.M.; Goswami, J.N.; Clark, R.N.; Annadurai, M.; Boardman, J.; Buratti, B.; Combe, J.P.; Dyar, M.D.; Green, R.; Head, J.W.; et al. Character and Spatial Distribution of OH/H2O on the Surface of the Moon Seen by M3 on Chandrayaan-1. Science 2009, 326, 568. [Google Scholar] [CrossRef] [PubMed]
- Lucey, P.G. A Lunar Waterworld. Science 2009, 326, 531–532. [Google Scholar] [CrossRef] [PubMed]
- Sunshine, J.M.; Farnham, T.L.; Feaga, L.M.; Groussin, O.; Merlin, F.; Milliken, R.E.; A’Hearn, M.F. Temporal and Spatial Variability of Lunar Hydration As Observed by the Deep Impact Spacecraft. Science 2009, 326, 565. [Google Scholar] [CrossRef]
- Honniball, C.I.; Lucey, P.G.; Li, S.; Shenoy, S.; Orlando, T.M.; Hibbitts, C.A.; Hurley, D.M.; Farrell, W.M. Molecular water detected on the sunlit Moon by SOFIA. Nat. Astron. 2021, 5, 121–127. [Google Scholar] [CrossRef]
- Colaprete, A.; Schultz, P.; Heldmann, J.; Wooden, D.; Shirley, M.; Ennico, K.; Hermalyn, B.; Marshall, W.; Ricco, A.; Elphic, R.C.; et al. Detection of Water in the LCROSS Ejecta Plume. Science 2010, 330, 463. [Google Scholar] [CrossRef]
- Schultz, P.H.; Hermalyn, B.; Colaprete, A.; Ennico, K.; Shirley, M.; Marshall, W.S. The LCROSS Cratering Experiment. Science 2010, 330, 468. [Google Scholar] [CrossRef]
- Stacy, N.J.S.; Campbell, D.B.; Ford, P.G. Arecibo radar mapping of the lunar poles: A search for ice deposits. Science 1997, 276, 1527–1530. [Google Scholar] [CrossRef]
- Nozette, S.; Lichtenberg, C.L.; Spudis, P.; Bonner, R.; Ort, W.; Malaret, E.; Robinson, M.; Shoemaker, E.M. The Clementine Bistatic Radar Experiment. Science 1996, 274, 1495–1498. [Google Scholar] [CrossRef]
- Nozette, S.; Spudis, P.D.; Robinson, M.S.; Bussey, D.B.J.; Lichtenberg, C.; Bonner, R. Integration of lunar polar remote-sensing data sets: Evidence for ice at the lunar south pole. J. Geophys. Res. Planets 2001, 106, 23253–23266. [Google Scholar] [CrossRef]
- Campbell, D.B.; Campbell, B.A.; Carter, L.M.; Margot, J.L.; Stacy, N.J.S. No evidence for thick deposits of ice at the lunar south pole. Nature 2006, 443, 835–837. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.C.; Tsang, K.T.; Chan, K.L.; Zou, Y.L.; Zhang, F.; Ouyang, Z.Y. First microwave map of the Moon with Chang’E-1 data: The role of local time in global imaging. Icarus 2012, 219, 194–210. [Google Scholar] [CrossRef]
- Zheng, Y.C.; Chan, K.L.; Tsang, K.T.; Zhu, Y.C.; Hu, G.P.; Blewett, D.T.; Neish, C. Analysis of Chang’E-2 brightness temperature data and production of high spatial resolution microwave maps of the Moon. Icarus 2019, 319, 627–644. [Google Scholar] [CrossRef]
- Paige, D.A.; Siegler, M.A.; Zhang, J.A.; Hayne, P.O.; Foote, E.J.; Bennett, K.A.; Vasavada, A.R.; Greenhagen, B.T.; Schofield, J.T.; McCleese, D.J.; et al. Diviner Lunar Radiometer Observations of Cold Traps in the Moon’s South Polar Region. Science 2010, 330, 479. [Google Scholar] [CrossRef]
- Hayne, P.O.; Aharonson, O.; Schörghofer, N. Micro cold traps on the Moon. Nat. Astron. 2021, 5, 169–175. [Google Scholar] [CrossRef]
- Hagfors, T. Remote probing of the moon by infrared and microwave emissions and by radar. Radio Sci. 1970, 5, 189–227. [Google Scholar] [CrossRef]
- Keihm, S.J. Interpretation of the lunar microwave brightness temperature spectrum: Feasibility of orbital heat flow mapping. Icarus 1984, 60, 568–589. [Google Scholar] [CrossRef]
- Fa, W.; Jin, Y.Q. Simulation of brightness temperature from lunar surface and inversion of regolith-layer thickness. J. Geophys. Res. (Planets) 2007, 112, E05003. [Google Scholar] [CrossRef]
- Siegler, M.A.; Feng, J.; Lehman-Franco, K.; Andrews-Hanna, J.C.; Economos, R.C.; Clair, M.S.; Million, C.; Head, J.W.; Glotch, T.D.; White, M.N. Remote detection of a lunar granitic batholith at Compton–Belkovich. Nature 2023, 620, 116–121. [Google Scholar] [CrossRef]
- Wang, S.; Yamada, T.; Kasai, Y. TSUKIMI: Forward modeling for lunar terahertz exploration. In Proceedings of the 44th COSPAR Scientific Assembly, Athens, Greece, 16–24 July 2022; Volume 44, p. 291. [Google Scholar]
- Siegel, P.H. Terahertz technology. IEEE Trans. Microw. Theory Tech. 2002, 50, 910–928. [Google Scholar] [CrossRef]
- Elachi, C.; Van Zyl, J.J. Introduction to the Physics and Techniques of Remote Sensing; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Speyerer, E.J.; Povilaitis, R.Z.; Robinson, M.S.; Thomas, P.C.; Wagner, R.V. Quantifying crater production and regolith overturn on the Moon with temporal imaging. Nature 2016, 538, 215–218. [Google Scholar] [CrossRef] [PubMed]
- Sohn, J.H.; Inaguma, Y.; Yoon, S.O.; Itoh, M.; Nakamura, T.; Yoon, S.J.; Kim, H.J. Microwave dielectric characteristics of ilmenite-type titanates with high Q values. Jpn. J. Appl. Phys. 1994, 33, 5466. [Google Scholar] [CrossRef]
- Buehler, S.A.; Eriksson, P.; Kuhn, T.; von Engeln, A.; Verdes, C. ARTS, the atmospheric radiative transfer simulator. J. Quant. Spectrosc. Radiat. Transf. 2005, 91, 65–93. [Google Scholar] [CrossRef]
- Eriksson, P.; Buehler, S.A.; Davis, C.P.; Emde, C.; Lemke, O. ARTS, the atmospheric radiative transfer simulator, version 2. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 1551–1558. [Google Scholar] [CrossRef]
- Buehler, S.A.; Mendrok, J.; Eriksson, P.; Perrin, A.; Larsson, R.; Lemke, O. ARTS, the Atmospheric Radiative Transfer Simulator - version 2.2, the planetary toolbox edition. Geosci. Model Dev. 2018, 11, 1537–1556. [Google Scholar] [CrossRef]
- Baron, P.; Mendrok, J.; Yasuko, K.; Satoshi, O.; Takamasa, S.; Kazutoshi, S.; Kodai, S.; Hideo, S.; Urban, J. 7-4 AMATERASU: Model for Atmospheric TeraHertz Radiation Analysis and Simulation. J. Natl. Inst. Inf. Commun. Technol. 2008, 55, 109–121. [Google Scholar]
- Mendrok, J.; Baron, P.; Yasuko, K. 7-5 the AMATERASU scattering module. J. Natl. Inst. Inf. Commun. Technol. 2008, 55, 123–133. [Google Scholar]
- Wu, D.L.; Jiang, J.H.; Davis, C.P. EOS MLS Cloud Ice Measurements and Cloudy-Sky Radiative Transfer Model. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1156–1165. [Google Scholar] [CrossRef]
- Feng, J.; Siegler, M.A.; White, M.N. Dielectric properties and stratigraphy of regolith in the lunar South Pole-Aitken basin: Observations from the Lunar Penetrating Radar. Astron. Astrophys. 2022, 661, A47. [Google Scholar] [CrossRef]
- Fa, W.; Wieczorek, M.A.; Heggy, E. Modeling polarimetric radar scattering from the lunar surface: Study on the effect of physical properties of the regolith layer. J. Geophys. Res. Planets 2011, 116. [Google Scholar] [CrossRef]
- Davidsson, B.J.; Rickman, H. Surface roughness and three-dimensional heat conduction in thermophysical models. Icarus 2014, 243, 58–77. [Google Scholar] [CrossRef]
- Hapke, B. Bidirectional reflectance spectroscopy: 3. Correction for macroscopic roughness. Icarus 1984, 59, 41–59. [Google Scholar] [CrossRef]
- Johnson, P.E.; Vogler, K.J.; Gardner, J.P. The effect of surface roughness on lunar thermal emission spectra. J. Geophys. Res. Planets 1993, 98, 20825–20829. [Google Scholar] [CrossRef]
- Fortezzo, C.; Spudis, P.; Harrel, S. Release of the digital unified global geologic map of the Moon at 1:5,000,000-Scale. In Proceedings of the 51st Annual Lunar and Planetary Science Conference, The Woodlands, TX, USA, 16–20 March 2020; Number 2326. p. 2760. [Google Scholar]
- Li, Q.; Shi, J.; Chen, K.S. A generalized power law spectrum and its applications to the backscattering of soil surfaces based on the integral equation model. IEEE Trans. Geosci. Remote Sens. 2002, 40, 271–280. [Google Scholar]
- Fa, W. Bulk Density of the Lunar Regolith at the Chang’E-3 Landing Site as Estimated From Lunar Penetrating Radar. Earth Space Sci. 2020, 7, e2019EA000801. [Google Scholar] [CrossRef]
- Fa, W.; Wieczorek, M.A. Regolith thickness over the lunar nearside: Results from Earth-based 70-cm Arecibo radar observations. Icarus 2012, 218, 771–787. [Google Scholar] [CrossRef]
- Montopoli, M.; Di Carlofelice, A.; Tognolatti, P.; Marzano, F.S. Remote sensing of the Moon’s subsurface with multifrequency microwave radiometers: A numerical study. Radio Sci. 2011, 46, 1–13. [Google Scholar] [CrossRef]
- Feng, J.; Siegler, M.A.; Hayne, P.O. New Constraints on Thermal and Dielectric Properties of Lunar Regolith from LRO Diviner and CE-2 Microwave Radiometer. J. Geophys. Res. (Planets) 2020, 125, e06130. [Google Scholar] [CrossRef]
- Siegler, M.A.; Feng, J.; Lucey, P.G.; Ghent, R.R.; Hayne, P.O.; White, M.N. Lunar Titanium and Frequency-Dependent Microwave Loss Tangent as Constrained by the Chang’E-2 MRM and LRO Diviner Lunar Radiometers. J. Geophys. Res. (Planets) 2020, 125, e06405. [Google Scholar] [CrossRef]
- Mitchell, D.L.; de Pater, I. Microwave Imaging of Mercury’s Thermal Emission at Wavelengths from 0.3 to 20.5 cm. Icarus 1994, 110, 2–32. [Google Scholar] [CrossRef]
- Vasavada, A.R.; Bandfield, J.L.; Greenhagen, B.T.; Hayne, P.O.; Siegler, M.A.; Williams, J.P.; Paige, D.A. Lunar equatorial surface temperatures and regolith properties from the Diviner Lunar Radiometer Experiment. J. Geophys. Res. (Planets) 2012, 117, E00H18. [Google Scholar] [CrossRef]
- Hayne, P.O.; Bandfield, J.L.; Siegler, M.A.; Vasavada, A.R.; Ghent, R.R.; Williams, J.P.; Greenhagen, B.T.; Aharonson, O.; Elder, C.M.; Lucey, P.G.; et al. Global Regolith Thermophysical Properties of the Moon From the Diviner Lunar Radiometer Experiment. J. Geophys. Res. (Planets) 2017, 122, 2371–2400. [Google Scholar] [CrossRef]
- Eom, H.J. A matrix doubling formulation of internal emission from a layer with irregular boundaries. IEEE Trans. Geosci. Remote Sens. 1992, 30, 177–180. [Google Scholar] [CrossRef]
- Chen, K.S.; Wu, T.D.; Tsang, L.; Li, Q.; Shi, J.; Fung, A.K. Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations. IEEE Trans. Geosci. Remote Sens. 2003, 41, 90–101. [Google Scholar] [CrossRef]
- Wu, T.D.; Chen, K.S. A reappraisal of the validity of the IEM model for backscattering from rough surfaces. IEEE Trans. Geosci. Remote Sens. 2004, 42, 743–753. [Google Scholar]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; John Wiley & Sons: Hoboken, NJ, USA, 1998. [Google Scholar]
- Tjuatja, S.; Fung, A.; Bredow, J. A scattering model for snow-covered sea ice. IEEE Trans. Geosci. Remote Sens. 1992, 30, 804–810. [Google Scholar] [CrossRef]
- Tsang, L.; Ishimaru, A. Radiative Wave Equations for Vector Electromagnetic Propagation in Dense Nontenuous Media. J. Electromagn. Waves Appl. 1987, 1, 59–72. [Google Scholar] [CrossRef]
- Wang, S.; Hiramatsu, K. Experimental Analysis of Terahertz Wave Scattering Characteristics of Simulated Lunar Regolith Surface. Remote Sens. 2024, 16, 3819. [Google Scholar] [CrossRef]
- Ishimaru, A. Wave Propagation and Scattering in Random Media; Academic Press: New York, NY, USA, 1978; Volume 2. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S. Terahertz Emission Modeling of Lunar Regolith. Remote Sens. 2024, 16, 4037. https://doi.org/10.3390/rs16214037
Wang S. Terahertz Emission Modeling of Lunar Regolith. Remote Sensing. 2024; 16(21):4037. https://doi.org/10.3390/rs16214037
Chicago/Turabian StyleWang, Suyun. 2024. "Terahertz Emission Modeling of Lunar Regolith" Remote Sensing 16, no. 21: 4037. https://doi.org/10.3390/rs16214037
APA StyleWang, S. (2024). Terahertz Emission Modeling of Lunar Regolith. Remote Sensing, 16(21), 4037. https://doi.org/10.3390/rs16214037