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Abstract: Surface water fraction mapping is an essential preprocessing step for the subpixel mapping
(SPM) of surface water, providing valuable prior knowledge about surface water distribution at
the subpixel level. In recent years, spectral mixture analysis (SMA) has been extensively applied
to estimate surface water fractions in multispectral images by decomposing each mixed pixel into
endmembers and their corresponding fractions using linear or nonlinear spectral mixture models.
However, challenges emerge when introducing existing surface water fraction mapping methods
to hyperspectral images (HSIs) due to insufficient exploration of spectral information. Additionally,
inaccurate extraction of endmembers can result in unsatisfactory water fraction estimations. To
address these issues, this paper proposes an adaptive unmixing method based on iterative multi-
objective optimization for surface water fraction mapping (IMOSWFM) using Zhuhai-1 HSIs. In
IMOSWFM, a modified normalized difference water fraction index (MNDWFI) was developed to
fully exploit the spectral information. Furthermore, an iterative unmixing framework was adopted
to dynamically extract high-quality endmembers and estimate their corresponding water fractions.
Experimental results on the Zhuhai-1 HSIs from three test sites around Nanyi Lake indicate that water
fraction maps obtained by IMOSWFM are closest to the reference maps compared with the other three
SMA-based surface water fraction estimation methods, with the highest overall accuracy (OA) of
91.74%, 93.12%, and 89.73% in terms of pure water extraction and the lowest root-mean-square errors
(RMSE) of 0.2506, 0.2403, and 0.2265 in terms of water fraction estimation. This research provides a
reference for adapting existing surface water fraction mapping methods to HSIs.

Keywords: surface water mapping; endmember extraction; spectral unmixing; hyperspectral image

1. Introduction

Surface water, a vital component of land water storage, is crucial for maintaining
diverse and complex social and ecological systems [1]. Climate change and increasing
anthropogenic activities are causing deteriorating water quality, declining water levels,
and shrinking surface water areas, which has widespread impacts on human production
and daily activities [2–5]. Changes in surface water distribution affect both the terrestrial
and global water cycles, leading to severe floods or droughts [6–8]. Therefore, precisely
mapping and monitoring the spatial distribution of surface water is essential for water
resource management, agricultural irrigation, ecological conservation, disaster alerting, as
well as the sustainable development of society and the economy [9–12].

In recent years, the rapid advancement of remote sensing (RS) technology has made
it an efficient tool for comprehensively monitoring surface water bodies, thanks to its
macrographic, periodic, and cost-effective nature [13]. RS data with various temporal,
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spatial, and spectral resolutions have been widely used for surface water extraction. Data
from the Moderate-Resolution Imaging Spectroradiometer (MODIS), Landsat series, and
Sentinel-2 are particularly popular on account of their relatively high spatial or temporal
resolutions and free access [14–17]. For example, Xiao et al. [16] proposed a remote sensing
framework for detailed monitoring of surface water dynamics using Landsat series in
which a gap-filling method was developed to restore water bodies obscured by clouds
and an innovative index was designed to quantify the intermittency of surface water
bodies. Li et al. [17] proposed a high spatiotemporal surface water mapping framework
combining Sentinel-1 and Sentinel-2 satellite imagery with ancillary products to generate
10 m surface water maps at a temporal resolution of 15 days. However, these multispectral
images (MSIs) contain only a limited number of discrete spectral bands. The insufficient
spectral information restricts their capability to distinguish surface water bodies from other
background features with similar spectral characteristics [18]. In the past few decades,
the hyperspectral image (HSI), which contains hundreds of continuous spectral channels
from visible light to infrared, has witnessed enticing prospects in extracting water body
information [19]. Extensive research has been conducted on applying HSIs for surface water
mapping [20–23]. Zhao et al. [20] proposed a PCA-NDWI model for surface water extraction
in urban areas using uncrewed aerial vehicle (UAV) hyperspectral data. In this model, the
traditional normalized difference water index (NDWI) was calculated with the principal
components obtained by principal component analysis (PCA) of the green and near-infrared
bands to exploit the abundant spectral information of HSIs. Xie et al. [21] developed
a hyperspectral difference water index (HDWI) for water extraction by integrating the
reflectance of the red and near-infrared bands and calculating the reflectance difference
between these two spectral regions. Considering the difficulties of selecting optimal
threshold parameters for the traditional spectral water index, Chen et al. [22] deeply
analyzed the characteristics of surface water spectra collected from HSIs and constructed
inequality constraints as well as physical magnitude constraints to identify water from
urban scenes. Qin et al. [23] proposed an improved U-Net to extract small water bodies
from Zhuhai-1 HSIs, where the structure of the traditional U-Net was deepened to learn
the nuances of different spectral bands in consideration of the large number of bands in
HSIs. Actually, the primary advantage of HSIs lies in their richness of spectral information.
However, directly applying traditional surface water extraction methods to HSIs often
leads to inadequate leverage of the abundant spectral information. Effectively exploiting
the spectral information contained in HSIs is a central focus in hyperspectral surface
water mapping.

Representative methods for extracting surface water bodies from MSIs or HSIs mainly
include the following: (1) Single-band thresholding. This kind of method extracts water
bodies by comparing the reflectance of a single band (usually the infrared band) to a
predefined threshold [24,25]. (2) Multi-band water index. This index is constructed by
performing numerical operations between different bands to enhance the spectral char-
acteristics of water bodies, and a corresponding threshold needs to be selected to extract
water pixels [26–28]. (3) Machine learning (ML) and deep learning (DL). Traditional ML
methods, such as support vector machine (SVM), random forest (RF), and gradient boosted
machines (GBM), have exhibited effective performance in water extraction [2,29,30]. Addi-
tionally, newly developed DL-based methods, especially convolutional neural networks
(CNNs), have become a research focus and demonstrated more robust results than tra-
ditional ML algorithms due to their capability to capture high-level abstractions of the
original data [31–34]. (4) Object-oriented classification. Unlike pixel-level extraction meth-
ods, object-oriented classification considers spatially adjacent pixels with similar spectral
features as a single object, serving as the basic processing unit [35]. Traditional methods
such as band thresholding or ML are then applied to detect surface water objects based on
their spectral and geometric features [36,37].

Most surface water extraction methods perform binary classification, dividing pixels
into water or non-water categories. However, due to limited spatial resolution and ground
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feature heterogeneity, many mixed pixels exist in remote sensing images [38]. Mixed
pixels create uncertainty in binary classification-based methods, particularly at water–land
transitions. To achieve more accurate water extraction, subpixel mapping (SPM) has been
introduced [39,40]. SPM determines the spatial distribution of each land cover class within
a mixed pixel by breaking the mixed pixel into subpixels and categorizing each subpixel
based on coarse fraction maps [41–43]. However, the accuracy of SPM is significantly
influenced by the quality of the estimated fraction maps [44], which serve as critical inputs
for SPM of land cover types, including water bodies [45]. Thus, an accurate water fraction
map is vital for subpixel-level surface water mapping.

Existing methods for water fraction estimation mainly involve soft classification-
based approaches [46], regression-based approaches [16,47], and spectral mixture anal-
ysis (SMA) [48–51]. SMA is a physically based technique for solving the mixed pixel
problem [52,53], which considers mixed pixels to be linear or nonlinear combinations of
endmember signatures weighted by their correspondent abundance fractions [54]. It is
widely employed in water fraction estimation, primarily due to its clear physical interpreta-
tion and its advantage of not necessitating a substantial number of training samples [49]. For
instance, Xie et al. [48] proposed an automated subpixel surface water mapping (ASWM)
method for Landsat 8 OLI imagery, where mixed water–land pixels were determined by
a double threshold segmentation method based on the histogram of the NDWI. Water
fractions of each mixed pixel were then estimated via a linear spectral mixture model
(LSMM), with endmembers iteratively selected from a local window. Xiong et al. [49]
introduced a subpixel surface water extraction (SSWE) method for Landsat 8 OLI data,
using a new water index, the all bands water index (ABWI), to extract pure water pixels.
Mixed water–land pixels were obtained by the morphological dilation of pure pixels, and
water fractions were calculated by local multiple endmember spectral mixture analysis.
Jiang et al. [50] improved surface water fraction mapping using Sentinel-2 images by com-
bining morphological dilation with morphological erosion to determine mixed pixels, and
solved spectral variability by locally generating multiple water and land endmembers
for unmixing. Lv et al. [51] proposed a spatial–spectral subpixel surface water extraction
method (SSEM), combining spatial and spectral attributes to refine and decompose mixed
water–land pixels.

Despite extensive research on water fraction estimation, challenges remain, partic-
ularly when the application scenarios transfer from MSIs to HSIs. Conventional water
indexes used for segmenting pure water, such as the normalized difference water index
(NDWI) [26] and the modified normalized difference water index (MNDWI) [27], uti-
lize only a few bands of RS images, missing vast quantities of spectral information in
HSIs. Strategies such as band averaging or summing multiple bands to construct water
indexes [20,49] fail to capture the intrinsic spectral characteristics of water bodies, which are
manifested as nuanced reflectance fluctuations across different bands in HSIs. Furthermore,
careful consideration should be given to the accuracy of endmember extraction. Widely
used local endmember extraction methods [48–51] may incorrectly identify endmembers,
particularly in two cases: (1) Pure water pixels are inaccurately classified. If pure water
pixels around a mixed pixel are mistakenly classified to the land class, they may be ex-
tracted as land endmembers, and vice versa. (2) Few pure pixels surround a mixed pixel.
In this case, neighboring mixed pixels may be extracted as land endmembers. In the above
two cases, incorrectly classified pure pixels or neighboring mixed pixels may be extracted
as endmembers, leading to inaccurate estimation of water fractions. Therefore, local end-
member extraction is not effective in all scenarios, and optimal endmembers should be
adaptively extracted for mixed pixels under complex local conditions.

To address these challenges, this research proposes an adaptive unmixing method
based on iterative multi-objective optimization for surface water fraction mapping
(IMOSWFM) using Zhuhai-1 HSI. The main contributions of this work are summarized
from two aspects: (1) A modified normalized difference water fraction index (MNDWFI)
tailored for hyperspectral surface water extraction is designed, which elaborately exploits
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the spectral information of each band in HSIs through an unmixing process, accurately
reflecting water distribution details and facilitating fine extraction of water bodies. (2) An
iterative water fraction estimation framework based on reconstruction error optimization
is proposed, where a multi-objective optimization algorithm is utilized to adaptively
find the global optimal endmember combination for mixed pixels from different regions,
significantly improving water fraction estimation accuracy.

2. Materials and Methods
2.1. Study Area

Nanyi Lake, located in Xuancheng City, Anhui Province (Figure 1), was selected
as the primary study area. It extends between longitudes 118◦50′E and 119◦3′E and
latitudes 31◦1′N and 31◦10′N. As the largest natural freshwater lake in Southern Anhui,
Nanyi Lake plays an important role in regulating the water level of the Shuiyang River,
which is connected to the Yangtze River, and maintaining the stability of the regional
ecosystem [55,56].

Remote Sens. 2024, 16, 4038 FOR PEER REVIEW 4 of 26 
 

 

tailored for hyperspectral surface water extraction is designed, which elaborately exploits 
the spectral information of each band in HSIs through an unmixing process, accurately 
reflecting water distribution details and facilitating fine extraction of water bodies. (2) An 
iterative water fraction estimation framework based on reconstruction error optimization 
is proposed, where a multi-objective optimization algorithm is utilized to adaptively find 
the global optimal endmember combination for mixed pixels from different regions, sig-
nificantly improving water fraction estimation accuracy. 

2. Materials and Methods 
2.1. Study Area 

Nanyi Lake, located in Xuancheng City, Anhui Province (Figure 1), was selected as the 
primary study area. It extends between longitudes 118°50′ E and 119°3′ E and latitudes 31°1′ 
N and 31°10′ N. As the largest natural freshwater lake in Southern Anhui, Nanyi Lake plays 
an important role in regulating the water level of the Shuiyang River, which is connected to 
the Yangtze River, and maintaining the stability of the regional ecosystem [55,56]. 

Three distinct areas around Nanyi Lake, each with diverse surface water types and 
ground features, were meticulously selected for the experiments. The first area lies in the 
southwest, where two slender rivers converge. Small water bodies are distributed 
throughout the eastern land region, and several narrow ditches exist in the west. Surface 
water bodies are characterized by their clarity in this area. The second area, located in the 
northeast, contains a wide river surrounded by lots of block-shaped artificial ponds. The 
turbidity of the river and ponds varies greatly, resulting in noticeable spectral variabilities 
among the pure water pixels. The third area, situated in the southeast, consists of large 
tracts of paddy fields divided into small blocks by narrow ridges, both horizontally and 
vertically. These narrow ridges have similar spectra to the pure water pixels around them, 
posing huge challenges for the precise extraction of pure water pixels and estimation of 
the water fractions. In addition, we carried out experiments on three other areas located 
in different parts of China, Area 4, Area 5, and Area 6, to verify the applicability of 
IMOSWFM to diverse regions, which also contain different types of surface water. The 
locations of all the study areas are illustrated in Figure 1. The divergent characteristics of 
the surface water environments in these six study areas render them excellent candidates 
for evaluating the proposed surface water fraction mapping method. 

 
Figure 1. Locations of study areas and the corresponding Zhuhai-1 OHS false color images consist-
ing of R-band 21, G-band 10, and B-band 7. 

  

Figure 1. Locations of study areas and the corresponding Zhuhai-1 OHS false color images consisting
of R-band 21, G-band 10, and B-band 7.

Three distinct areas around Nanyi Lake, each with diverse surface water types and
ground features, were meticulously selected for the experiments. The first area lies in
the southwest, where two slender rivers converge. Small water bodies are distributed
throughout the eastern land region, and several narrow ditches exist in the west. Surface
water bodies are characterized by their clarity in this area. The second area, located in the
northeast, contains a wide river surrounded by lots of block-shaped artificial ponds. The
turbidity of the river and ponds varies greatly, resulting in noticeable spectral variabilities
among the pure water pixels. The third area, situated in the southeast, consists of large
tracts of paddy fields divided into small blocks by narrow ridges, both horizontally and
vertically. These narrow ridges have similar spectra to the pure water pixels around them,
posing huge challenges for the precise extraction of pure water pixels and estimation of
the water fractions. In addition, we carried out experiments on three other areas located in
different parts of China, Area 4, Area 5, and Area 6, to verify the applicability of IMOSWFM
to diverse regions, which also contain different types of surface water. The locations of all
the study areas are illustrated in Figure 1. The divergent characteristics of the surface water
environments in these six study areas render them excellent candidates for evaluating the
proposed surface water fraction mapping method.
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2.2. Zhuhai-1 OHS Data

The RS data used in this research were acquired by the Zhuhai-1 Orbita hyperspectral
satellites (OHS), as displayed in Figure 1. The Zhuhai-1 hyperspectral satellites are the first
commercial hyperspectral satellites launched and integrated into a network in China. Each
pixel of the Zhuhai-1 OHS image is 10 m × 10 m in size and there are 32 bands ranging
from 0.443 µm to 0.940 µm, with a spectral resolution of 0.25 µm [57]. The even distribution
of spectral bands from visible light to near-infrared as well as the high spatial resolution
render the Zhuhai-1 OHS image an ideal data source for distinguishing surface water
bodies from other similar ground features, which require high discrimination capabilities
in the spectral domain [23]. The details of the Zhuhai-1 OHS images are summarized in
Table 1.

Table 1. Summary of the Zhuhai-1 OHS and reference images used in the present study.

Study Area Product ID Size of OHS Image Acquisition Date of
OHS Image

Acquisition Date
of Reference Image

Area 1
HEM2_20230227235680_0014_L1B_CMOS3 27 February 2023

27 January 2023
Area 2 300 × 300 pixels 9 January 2023
Area 3 9 January 2023

Area 4 HEM2_20230219224117_0011_L1B_CMOS3 19 February 2023 /
Area 5 HGM2_20230215234218_0004_L1B_CMOS2 500 × 500 pixels 15 February 2023 /
Area 6 HGM2_20230203235828_0008_L1B_CMOS2 3 February 2023 /

2.3. Reference Data

The reference water fraction maps used to evaluate the performance of IMOSWFM and
other compared algorithms were derived from fine spatial resolution (<1 m) RGB images
downloaded from the GEOVIS Earth DataCloud “https://datacloud.geovisearth.com/
(accessed on 11 May 2024)”, acquired on 27 January 2023 (Area 1) and 9 January 2023 (Area
2 and 3). The reference surface water boundaries were manually digitized from the GEOVIS
Earth (Beijing, China) images through visual interpretation. The Zhuhai-1 OHS images
were co-registered with the GEOVIS Earth images using a second order polynomial. For
each area, we selected at least 15 ground control points (GCPs), resulting in root-mean-
square errors (RMSEs) of 0.18, 0.17, and 0.21 pixels, respectively. The reference water
fraction maps were finally generated by calculating the proportion of surface water area in
each OHS pixel, with the same spatial resolution as the OHS image.

2.4. Framework of IMOSWFM

The preprocessing of the Zhuhai-1 OHS image, which consists of layer stacking,
radiometric calibration, and 6S atmospheric correction [58], is automatically carried out by
the “OHS data processing tool” provided by Orbita. At the beginning of IMOSWFM, the
improved multi-objective discrete particle swarm optimization algorithm (IMODPSO) [59]
is utilized to extract endmembers from the original image. Three classes of endmembers
are extracted: water, vegetation, and impervious surface. Then the fraction of water and
other endmembers are estimated by the fully constrained least squares (FCLS) method.

Based on the estimated fraction maps, the MNDWFI is calculated to distinguish pure
water, mixed water–land, and pure land pixels through a double threshold segmentation
method. In the main loop, the water fractions of the mixed pixels are adaptively estimated
through an iterative unmixing process. Firstly, endmembers are specifically extracted
by IMODPSO. Secondly, the mixed pixels are unmixed by FCLS, and the reconstruction
error of each mixed pixel is calculated. The estimated water fractions are assigned to the
corresponding mixed pixels with a reconstruction error less than a predefined threshold
r. The remaining mixed pixels, for which the water fractions are not assigned, will be
unmixed in the next iteration.

IMOSWFM terminates when the number of mixed pixels obtaining water fractions is
less than 1000 in two successive iterations or when the number of remaining mixed pixels

https://datacloud.geovisearth.com/
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to be unmixed is less than 5% of the total number of mixed pixels. Once the termination
condition is met, endmembers are finally extracted by IMODPSO for all remaining mixed
pixels, and their water fractions are estimated.

The framework of IMOSWFM is presented in Figure 2. In the following sections, we
will describe the details of IMOSWFM.
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2.5. Related Work
2.5.1. IMODPSO

IMODPSO simultaneously optimizes two objective functions: the volume inverse
and the reconstruction error, which is the RMSE between the original image and its recon-
structed image [59]. The volume inverse objective function is based on convex geometry
theory, which assumes that endmembers are located at the vertices of the data simplex,
forming a larger volume than that of mixed pixels [60]. Therefore, a larger volume indi-
cates a higher likelihood that the pixels are endmembers. Thus, in IMODPSO, the volume
inverse is employed as one objective function. In addition, the RMSE objective function
is utilized, following the approach of many evolutionary algorithm-based endmember
extraction methods [61,62]. A smaller RMSE indicates a better result of endmember extrac-
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tion. IMODPSO aims to simultaneously minimize both objectives, which can be expressed
as follows:

min : F(x) = ( f1(x), f2(x))

f1(x) =
1

volume(A(x))
=

(P − 1)!∣∣∣∣det
[

1 1 · · · 1
a1 a2 · · · aP

]∣∣∣∣
f2(x) = RMSE(Y, Ŷ) =

1
N

N
∑

i=1

√
1
L
∥yi − ŷi∥

2

(1)

where x denotes an individual of the swarm, representing a combination of endmembers, P
denotes the number of endmembers, L and N denote the number of bands and the number
of pixels in the image, respectively. A(x) is the endmember matrix and ai (i = 1, 2, . . ., P)
is a vector with P-1 dimensions obtained from the original endmember spectral vector by
minimum noise fraction transformation [63]. Y = (y1, y2, . . ., yN) and Ŷ = (ŷ1, ŷ2, ..., ŷN)
represent the original image matrix and the reconstructed image matrix, respectively. The
reconstructed image Ŷ is obtained by the linear spectral mixture model (LSMM) using
the extracted endmember spectra and the estimated abundance maps produced by the
unconstrained least squares (UCLS).

The reason for optimizing both the volume inverse and the RMSE instead of only one
of them lies in the inherent contradiction between the two objective functions. Existing
research [64] has demonstrated that applying the volume inverse is in favor of captur-
ing rare endmembers, but the results are easily influenced by outliers and noises in the
real image. On the contrary, the RMSE is robust against interference from outliers and
noises but possibly neglects some prospective rare endmembers. A tough dilemma in
extracting optimal endmembers arises from the phenomenon that one certain endmember
combination cannot achieve best values for both objectives concurrently [65]. Specifically,
the improvement of one objective function is usually accompanied by the deterioration
of the other, rendering it difficult to determine which objective function to prioritize. In
multi-objective optimization, if m objective functions are for minimization, solution x is
said to dominate y if and only if fi(x) ≤ fi(y) for i = 1, . . ., m and fj(x) < fj(y) for at least one
objective function j [66]. A solution is called a Pareto optimal or nondominated solution if
no other solution dominates it [67]. The goal of multi-objective optimization is identifying a
series of nondominated solutions. By applying multi-objective optimization methodologies,
a better trade-off can be achieved between the two objective functions, leading to more
robust and accurate endmember extraction. This, in turn, greatly benefits the unmixing of
mixed water–land pixels in the subsequent process.

The IMODPSO algorithm, proposed by Tong et al. [59], enhances the performance of
the original multi-objective discrete particle swarm optimization (MODPSO) [64] algorithm
by eliminating the predefined random selection probability as well as adopting an archive
strategy. Two user-defined parameters, namely, the number of endmembers and the
maximum number of iterations, need to be input to IMODPSO. At the initializing stage,
IMODPSO randomly initializes the position of each particle. The global best archive (GBA)
is initialized with the nondominated solutions of the initial population. In the main loop
of IMODPSO, firstly, the best local guide gbest of each particle is chosen from the GBA
by utilizing the Sigma method [68]. Secondly, the velocity and position of each particle
are either updated based on self and social experience or randomly updated. Then, the
pbest of each particle is updated, and these eliminated pbest are preserved in an archive.
Subsequently, the GBA is updated by selecting all the nondominated solutions of the
combination set (pbest ∪ A). At last, if the predefined maximum number of iterations is
achieved, the algorithm will terminate and output the GBA; otherwise, the process of
IMODPOS returns to the stage of choosing the gbest for each particle.

2.5.2. Selection of the Optimal Endmember Combination

Given that the output of IMODPSO is a set of nondominated solutions, and each
solution corresponds to a combination of endmembers, it is crucial to reasonably select one
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to achieve robust water fraction estimation results. Due to fact that no single nondominated
solution can simultaneously have better values than all others for both objective functions,
determining the optimal solution is challenging. To find the solution that best trades off the
two objective functions, we first adopt the min-max normalization to map the raw values
of the two objective functions to the range of [0, 1] as listed below:

f1
′(x) =

f1(x)− f1min

f1max − f1min
, f2

′(x) =
f2(x)− f2min

f2max − f2min
(2)

where f 1min and f 1max denote the minimum and maximum values of the first objective
function among the solutions in GBA, respectively. The same definition applies to f 2min and
f 2max. Then, the solution with the minimum sum of the two normalized objective functions
is selected as the optimal solution as follows:

xoptimal = argmin
xi

f1
′(xi) + f2

′(xi) (3)

To describe the strategy of selecting the optimal solution more clearly, the sketch map
of the distribution of the selected optimal solution in the objective space is delineated in
Figure 3. It can be seen that the selected solution is located at the bottom left of the objective
space, which has relatively small values on both the volume inverse and RMSE compared
with other unselected trivial solutions.
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2.6. Adaptive Unmixing Framework for Surface Water Fraction Mapping
2.6.1. Spectral Characteristics of Surface Water

The output of IMODPSO is a combination of endmember spectra consisting of water,
vegetation, and impervious surface. Before estimating the water fraction, it is necessary to
accurately distinguish the water endmember from other land classes. To ascertain spectral
signatures of typical ground features in Zhuhai-1 OHS images, we manually selected a
set of water, vegetation, and impervious surface pixels from the image covering Nanyi
Lake. The corresponding spectra are displayed in Figure 4. Notice that the last four bands
(bands 29 to 32) were removed due to noise. As shown in Figure 4, the reflectance of water
is significantly lower than that of vegetation and impervious surface in the infrared bands,
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consistent with previous studies [26]. Therefore, the spectrum with the lowest average
reflectance in the infrared bands (from bands 20 to 28) is considered the water spectrum.
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Figure 4. Spectra of typical ground features in Zhuhai-1 OHS image.

2.6.2. Extraction of Pure and Mixed Pixels

The abundant spectral information recorded by HSIs facilitates the precise identifi-
cation of diverse ground features. However, most existing research on subpixel surface
water mapping uses multiple-band spectral water indices to distinguish pure and mixed
water pixels, relying on only a few bands of the image [45,48]. Cai et al. [69] proposed a
normalized difference water fraction index (NDWFI) for the spatiotemporal mapping of
surface water based on Landsat images, defined as follows:

NDWFI =
ADark − AOthers
ADark + AOthers

(4)

where ADark denotes the fractional abundance of dark endmembers with a reflectance
of 0 in all bands, and AOthers denotes the sum of the fractional abundance of other land
endmembers. Both ADark and AOthers are obtained by the fully constrained least squares
(FCLS). Actually, NDWFI leverages the low reflectance of surface water to estimate water
fraction by using dark endmembers. However, the water spectra in Figure 4 showcase
non-negligible fluctuations in reflectance from visible to near-infrared bands, significantly
differing from the spectra of dark endmembers. This unveils the intrinsic reflection char-
acteristics of water bodies, making it challenging for the NDWFI of a pure water pixel to
reach 1, since the abundance of dark endmembers estimated by FCLS cannot approach
1, even if no other ground objects are present. Under this condition, the NDWFI values
of pixels in one image may distribute in a narrow range, complicating the segmentation
of pure and mixed pixels. Actually, in real scenes, surface water spectra are influenced
by various factors such as illumination, atmospheric condition, terrain effect, and their
intrinsic characteristics [70]. Spectra of surface water pixels from different RS images or
different regions within a single image can vary significantly. For these water pixels with
evident spectral variability, the estimated abundance of dark endmembers can also vary
greatly, leading to fluctuated NDWFI values across diverse water bodies. For instance, the
NDWFI of some clean water pixels with spectra similar to those of dark pixels can reach 1,
while some turbid water pixels may have a lower NDWFI, such as 0.8. The varying distri-
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bution of NDWFI values among different water pixels poses great challenges to finding
the appropriate threshold without a priori knowledge. For this reason, the NDWFI may
exhibit uncertainty in extracting surface water when applied to RS data under complex
imaging conditions.

To address this, we propose a modified normalized difference water fraction index
named the MNDWFI to fully exploit the spectral information of HSIs and enhance surface
water features. The MNDWFI is defined as follows:

MNDWFI =
AWater − AOthers
AWater + AOthers

(5)

where AWater denotes the fractional abundance of water endmembers, adaptively estimated
with endmembers extracted from the image. The MNDWFI better reflects the water content
since the dark endmember is replaced by the water endmember, which is dynamically
extracted and represents the common spectral signatures of water bodies in one certain
image. Therefore, the proposed MNDWFI stably distributes between −1 and 1, with larger
values indicating a higher water fraction. Based on the MNDWFI, pixels can be divided into
pure water, mixed water–land, and pure land pixels using the double threshold method
as shown in Figure 5. The land threshold t1 is automatically determined by the Otsu
segmentation algorithm [71], while the water threshold t2 is manually selected based on
the maximum local change rate at the junction between the valley and the right peak of
the histogram. The MNDWFI of pure water pixels falls within the range of (t2, 1], and the
MNDWFI of mixed water–land pixels falls within the range of [t1, t2].
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2.6.3. Iterative Water Fraction Estimation for the Mixed Pixels

IMOSWFM applies an iterative framework to adaptively estimate the water fraction of
mixed pixels in different regions. The pivotal motivation behind this iterative framework is
to address the problem of inaccurate endmembers extraction arising from local endmember
extraction methods. The local endmember extraction methods assume that mixed water–
land pixels are usually located in the transitions from water to land. Pure land or water
pixels (i.e., endmembers) lie around these mixed water–land pixels. However, large errors
exist in the linear SMA (LSMA) results, partly because some endmembers are misclassified
during the process of endmember selection [45]. If the segmentation results are inaccurate,
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land pixels may be mistakenly extracted as water endmembers. Similarly, water pixels may
be extracted as land endmembers. Mixed water–land pixels classified as pure pixels also
have the chance to be extracted as endmembers. These misclassifications can cause certain
errors in the LSMA results. The constituents of land pixels are complicated. A pure land
pixel may contain diverse ground features. Thus, these pure land pixels are not entirely
pure from a more detailed perspective. Land endmembers extracted from these mixed land
pixels can have negative impacts on the abundance estimation results.

Therefore, optimal endmembers may not be successfully extracted from only a local
extent. Expanding the searching space can sometimes help to find the potential optimal
endmember combination. Meanwhile, endmembers should not be extracted under the
strict restrictions of existing classification results, since errors are inevitably generated
during the classification process. To solve these issues, an iterative unmixing framework
is adopted in IMOSWFM to automatically find the global optimal endmembers from the
whole image for each mixed pixel by minimizing the volume inverse and the reconstruction
error, leveraging the powerful global search capability of multi-objective optimization
algorithms, which helps improve the water fraction estimation results.

As displayed in Figure 6, the process begins with the IMODPSO algorithm extracting
an initial set of endmembers, which consists of water, vegetation, and impervious surface.
Abundance maps of these endmembers are then estimated by FCLS. Next, the MNDWFI
map of the original image is calculated by Equation (5). The pixels of the whole image are
classified into pure water pixels, mixed water–land pixels, and pure land pixels using the
double threshold method described in Section 2.6.2. The water fractions for pure water
pixels and pure land pixels are set to 1 and 0, respectively, and these pixels are subsequently
removed from the original image.
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Following this, endmembers are extracted specifically for the mixed water–land pixels
by IMODPSO. In this step, the objective function RMSE, as defined in Equation (1), is
calculated only from the mixed pixels. Abundances for the extracted endmembers of these
pixels are estimated by FCLS, and the spectra of reconstructed pixels are generated by the
LSMM. Pixels with an RMSE value less than a user-defined threshold r are considered
accurately unmixed, and their water fractions are determined.

Once the water fractions of the mixed pixels are determined, these pixels are removed
from the current image and do not participate in the next iteration of water fractions. Note
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that the searching space of IMODPSO remains the whole image, while the calculation of the
objective function RMSE adaptively changes based on the remaining mixed pixels. With
each iteration, the number of remaining mixed pixels gradually decreases.

When less than 1000 pixels are removed in two successive iterations, or the number
of remaining pixels is less than 5% of the total number of the mixed pixels, all remaining
pixels will be unmixed in the final iteration regardless of their RMSE values. This approach
ensures the completion of the water fraction map.

2.6.4. Restart Mechanism

Due to the stochastic property of particle swarm optimization, IMODPSO may occa-
sionally fail to extract the endmember for ground features in some iterations. For example,
it might extract two vegetation spectra and one impervious surface spectrum, or two water
spectra and one vegetation spectrum. This can lead to inaccurate water fraction estimation,
especially if the water spectrum is not extracted or if multiple water spectra are extracted.

To tackle this problem, a restart mechanism is adopted to avoid producing invalid end-
member combinations. At each iteration, the endmember spectrum extracted by IMODPSO
with the lowest average reflectance in the infrared bands is initially considered the water
spectrum, as depicted in Section 2.6.1. The remaining two spectra are classified as land
spectra. Then, the NDWI of the three endmembers are calculated. If the NDWI of the water
spectrum is negative, or if one of the land spectra has a positive NDWI, indicating either no
successful extraction of water spectrum or the extraction of more than one water spectrum,
this endmember combination is deemed invalid, and IMODPSO is executed again.

If IMODPSO fails to obtain a valid endmember combination after three independent
runs in a single iteration, the endmembers will be inherited from the last iteration. Specif-
ically, if the final water spectrum has a negative NDWI, it will be replaced by the water
spectrum extracted in the last iteration. If one of the land spectra has a positive NDWI, both
of the two land spectra will be replaced by the land spectra extracted in the last iteration.

2.7. Performance Metrics

Quantitative evaluations were carried out on the accuracy of both the classification of
pure water and the estimation of water fractions. The overall accuracy (OA) and kappa
coefficient were calculated to assess the classification results. To calculate OA and kappa
coefficient, the estimated and reference water fraction maps were transformed into binary
images in which values of pure water pixels remained 1 and values of the pure land
and mixed pixels were set to 0. Further, the root-mean-square error (RMSE) and the
systematic error (SE) were adopted to quantify the accuracy of estimated water fractions.
The two evaluation metrics are listed as follows:

RMSE =

√
1
N

(
N
∑

i=1
( fi(re f )− fi(esti))2

)
SE =

1
N

N
∑

i=1
( fi(re f )− fi(esti))

(6)

where fi(ref ) and fi(esti) denote the reference water fraction and the estimated water fraction
of the ith pixel, respectively. N denotes the number of pixels in the image.

3. Results
3.1. Comparison Algorithms and Parameter Settings

Several SMA-based algorithms for surface water fraction estimation, namely the
automatic subpixel water mapping method (ASWM) [48], subpixel surface water mapping
method based on morphological dilation and erosion (DESWM) [50], and the spatial–
spectral extraction method (SSEM) [51], are chosen as methods to compare to validate
the effectiveness of IMOSWFM. All of the compared algorithms utilize the traditional
multi-band water index, exploiting only a few bands to extract pure water, and most of
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them extract local endmembers to unmix mixed water–land pixels. For IMOSWFM, the
user-defined RMSE threshold r is set to 0.01 while the maximum number of iterations for
IMODPSO is configured to 100 for all areas.

3.2. Qualitative Evaluation of Accuracy

The surface water fraction maps obtained by IMOSWFM and other compared methods
are displayed in Figure 7. It can be discerned that the water fraction maps obtained by
IMOSWFM were closest to the reference maps both in overall representation and detailed
accuracy. Firstly, IMOSWFM achieved more accurate identification of pure and mixed
water pixels. The three compared methods mistakenly classified a large number of mixed
or pure land pixels located at the edge of water bodies as pure water, especially in Area 2
and Area 3. This discrepancy stems from the limited ability of the NDWI to capture the
spectral characteristics of surface water by only using the green and infrared band, since
ASWM, DESEW, and SSEM extract pure and mixed pixels based on the histograms of the
NDWI. In contrast, the MNDWFI fully exploits the abundant spectral information provided
by HSIs through an unmixing process. This theoretical advantage enables IMOSWFM to
accomplish various surface water extraction tasks that demand high spectral discrimination
capabilities. Secondly, it is noteworthy that a considerable amount of small water bodies
was not detected by DESWE and SSEM in Area 1 and Area 2 compared with ASWM
and IMOSWFM, indicating that the automatic threshold selection methods adopted by
DESWE and SSEM are not sufficiently adaptable to different scenes. From the zoomed-in
figures of three selected regions in Figure 7, IMOSWFM captured the detailed variations
in surface water fractions better than other algorithms. Ridges between adjacent paddy
fields were accurately recognized and manifested as mixed pixels with low water fractions
by IMOSWFM, particularly in Region 2 and Region 3. The compared methods failed to
identify such nuanced characteristics. The water fraction maps estimated by IMOSWFM
well matched the reference maps, clearly showing the transitions from water to non-water
regions. DESWE excessively blurred the boundaries between water and non-water pixels
because DESWE utilized both morphological dilation and erosion to detect the mixed pixels
(Region 1 and Region 2). Consequently, pure water or non-water pixels near the boundaries
may have been erroneously divided into mixed pixels. SSEM performed the worst among
all the methods. ASWM outperformed DESWE and SSEM. However, the results of ASWM
were inferior to IMOSWFM due to the incorrect extraction of pure and mixed pixels.

The surface water fraction maps of Area 4, Area 5, and Area 6 located in different parts
of China estimated by IMOSWFM and the three comparison methods with the Zhuhai-1
OHS images are illustrated in Figure 8. Note that no reference water fraction map was
generated for the three areas. It can be seen from Figure 8 that IMOSWFM outperformed
other methods visually both in pure water extraction and water fraction estimation. In
Area 4, the three compared methods erroneously extracted large amounts of impervious
surface pixels as surface water pixels. Conversely, some water pixels within the paddy fields
were not extracted, resulting in numerous cavities inside the water bodies. In comparison,
IMOSWFM was able to extract the paddy fields completely and distinguish the boundaries
between adjacent water blocks as shown in Region 4. Also, few urban pixels were classified
as water pixels by IMOSWFM. In terms of Area 5, the main streams can be accurately
extracted by all the methods. However, the three compared methods failed to extract small
water bodies in urban regions. Specifically, IMOSWFM successfully extracted the narrow
tributary located in the west of Area 5, which was disregarded by other methods. It is
noteworthy that some shadows were extracted as water bodies by IMOSWFM, particularly
in the low-albedo urban regions situated in the northwest of this area. The water fraction
maps estimated by the four methods of Area 6 were similar. However, from the zoomed-in
figures of Region 6, we can observe that IMOSWFM best delineated the geometric shapes of
the paddy fields with clearly visible boundaries. In general, benefiting from the capability
of the MNDWFI to fully exploit the spectral information provided by HSIs, IMOSWFM
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can well capture the details of water distribution and obtain robust surface water mapping
results when applied to different HSIs.
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To further elucidate why ASWM, DESWE, and SSEM produced poor water fraction
mapping results in Area 4, we compared the NDWI (Figure 9b) and MNDWFI (Figure 9c)
maps of Area 4 and analyzed the spectra of four representative pixels (Figure 9d). As
displayed in Figure 9b, the NDWI map of Area 4 shows noticeable contrast between
the paddy fields and their surrounding cropland. However, there are fewer differences
between the NDWI values of the paddy fields and the urban areas, making it a challenge to
appropriately distinguish between the two land types through a global NDWI threshold.
Compared with the NDWI, the MNDWFI greatly enhances the contrast between surface
water and other kinds of ground features (Figure 9c). Surface water bodies appear as bright
tones in the MNDWFI map, with their internal boundary details clearly visible. Figure 9d
presents the spectra of four typical pixels in which P1 and P4 are impervious and located
in the northern and southeastern parts of Area 4, respectively. P2 and P3 are both surface
water pixels. Notably, P2 is located in a slender river, which was accurately classified as
pure water by the three traditional methods, while P3 is located within the paddy fields at
the center of Area 4, which was misclassified as land by the three traditional methods. From
Figure 9d, spectra of the two water pixels, P2 and P3, are not consistent with traditional
water spectra. Their reflectance of NIR (band 20) is unexpectedly higher than that of the
green band (band 10), resulting in negative NDWI values, similar to those observed for P1



Remote Sens. 2024, 16, 4038 15 of 25

and P4. P3 even has a smaller NDWI than P1. As a result, it was not extracted by the three
traditional surface water fraction mapping methods. The spectral anomalies of surface
water in Area 4 possibly stem from the inappropriate atmospheric correction [19] or the
eutrophication of water bodies [22], which can lead to underestimation of reflectance in the
visible bands or an increase in reflectance of the NIR bands. Despite the presence of spectral
anomalies, it is obvious that water and impervious surfaces each possess distinguishable
spectral characteristics in terms of both spectral curve shape and physical reflectance
magnitude. Nevertheless, the NDWI, which is calculated from only two bands, cannot
fully make use of this useful spectral information. In contrast, the MNDWFI takes each
band of HSIs into consideration through spectral unmixing and adaptively extracts water
endmembers from HSIs with varying spectral features, which demonstrates the more robust
capability of hyperspectral surface water extraction, regardless of spectral variability.
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3.3. Quantitative Evaluation of Accuracy

Table 2 displays the OA and kappa coefficient of IMOSWFM and the compared meth-
ods. IMOSWFM obtained the highest overall accuracy in each area, indicating the effective-
ness of the MNDWFI in extracting pure water pixels. In Area 1 and Area 2, IMOSWFM had
higher OA values, mainly due to the precise extraction of small water bodies which widely
existed in the two areas. The greatest enhancement in overall accuracy by IMOSWFM was
observed in Area 3, surpassing the second ranked ASWM by 6.57%. The reason is that
the three compared methods failed to extract the narrow ridges distributed horizontally
and vertically between the large tracts of paddy fields in Area 3. Most of the pixels located
at these ridges were mistakenly classified as pure water by the three compared methods
while IMOSWFM divided them into mixed pixels, as shown in Figure 7. In terms of the
kappa coefficient, IMOSWFM notably outperformed other methods in Area 2 and Area 3.
ASWM had the highest kappa coefficient in Area 1. Nevertheless, the kappa coefficient
obtained by IMOSWFM was close to ASWM and was higher than DESWE and SSEM.

Table 2. OA and kappa coefficient of IMOSWFM and the compared methods in Area 1, Area 2, and
Area 3 with the Zhuhai-1 OHS images.

Overall Accuracy Kappa Coefficient

Area 1 Area 2 Area 3 Area 1 Area 2 Area 3

ASWM 89.03% 91.49% 83.16% 0.6163 0.7741 0.6579
DESWE 89.28% 91.22% 82.90% 0.5931 0.7572 0.6438
SSEM 88.55% 90.74% 79.49% 0.5968 0.7450 0.5970

IMOSWFM 91.74% 93.12% 89.73% 0.6026 0.8080 0.7632
The bold entities represent the optimal values.

To quantitatively evaluate the surface water extraction accuracy of the four methods
in Area 4, Area 5, and Area 6, we manually delineate the pure water pixels in the three
small zoomed-in regions displayed in Figure 8 through visual interpretation using the
original 10 m Zhuhai-1 OHS HSIs due to the lack of ground truth water fraction maps.
The corresponding OA and kappa coefficient of IMOSWFM and the compared methods
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are presented in Table 3. As shown in Table 3, IMOSWFM obtained the highest OA and
kappa in all regions. In Region 4, IMOSWFM increased the OA by over 30% and increased
the kappa by more than 0.6 compared with the other three methods. The reason behind
the extremely low OA and kappa generated by ASWM, DESWE, and SSEM is rooted in
the fact that they can hardly distinguish surface water and impervious pixels, consistent
with the results displayed in Figure 8. Although the water maps of the four methods in
Region 5 were visually similar, IMOSWFM still produced the highest OA and kappa in
Region 5, indicating more accurate spatial positioning of river edges. With regard to Region
6, IMOSWFM also achieved the highest OA of 89.84% and kappa of 0.7919, followed by
ASWM with an OA of 86.48% and kappa of 0.7217, which demonstrated the outstanding
performance of IMOSWFM in the detection of nuanced variations in water fractions, as
shown in Figure 8.

Table 3. OA and kappa coefficient of IMOSWFM and the compared methods in Region 4, Region 5,
and Region 6 with the Zhuhai-1 OHS images.

Overall Accuracy Kappa Coefficient

Region 4 Region 5 Region 6 Region 4 Region 5 Region 6

ASWM 55.18% 91.06% 86.48% 0.1164 0.7738 0.7217
DESWE 51.64% 90.84% 83.91% 0.0843 0.7677 0.6795
SSEM 57.79% 95.11% 85.44% 0.1642 0.8814 0.6935

IMOSWFM 91.09% 96.61% 89.84% 0.8214 0.9191 0.7919
The bold entities represent the optimal values.

The RMSE and SE of IMOSWFM and the compared methods are shown in Table 4.
IMOSWFM produced the minimum RMSE in all areas, revealing that the water fractions
estimated by IMOSWFM were most consistent with the reference water fraction maps. The
SE value represents the general deviation trend between estimated and reference water
fractions, where a positive SE means overesitmation and vice versa. We can see from the
SE results that all of the methods overestimated the water fractions in Area 3 and most
of the methods underestimated the water fractions in Area 2. The minimum SE values
were obtained by IMOSWFM in Area 1 and Area 3. In Area 2, DESWE had the smallest SE
value. However, the SE of IMOSWFM in Area 2 was much smaller than ASWM and SSEM,
though comparable to DESWE, demonstrating the robust performance of the proposed
iterative multi-objective optimization framework for surface water fraction estimation.

Table 4. RMSE and SE of IMOSWFM and the compared methods in Area 1, Area 2, and Area 3 with
the Zhuhai-1 OHS images.

RMSE SE

Area 1 Area 2 Area 3 Area 1 Area 2 Area 3

ASWM 0.2700 0.2433 0.2648 0.0461 0.0314 0.0875
DESWE 0.2662 0.2572 0.2782 0.0108 −0.0049 0.0639
SSEM 0.2946 0.2858 0.3144 −0.0165 −0.0341 0.1184

IMOSWFM 0.2506 0.2403 0.2265 −0.0023 −0.0083 0.0516
The bold entities represent the optimal values.

4. Discussion
4.1. Comparison Among NDWI, NDWFI, and MNDWFI

To further verify the effectiveness of MNDWFI in the extraction of pure water pixels,
here we visually compare the histograms of the NDWI, NDWFI, and MNDWFI and calcu-
late the corresponding OA and kappa coefficient of classification on the three areas around
Nanyi Lake. The histograms of the three water indices are illustrated in Figure 10. In
general, all of the water indices exhibit the characteristics of bimodal distribution where the
two peaks from left to right represent land and water pixels, respectively. The advantages
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of the MNDWFI mainly embody two aspects: (1) Wider span of values. The values of the
MNDWFI have a wider span (from −1 to 1) than the NDWI (from −0.8 to 0.6) and NDWFI
(from −1 to 0.7), rendering a longer transition between the two peaks, thus facilitating
the precise division of pure and mixed pixels. The range of the NDWI displayed in the
results is not between −1 and 1 because only when one pixel has a reflectance of 0 in the
NIR band can its NDWI reach 1. Similarly, the NDWI of one pixel can achieve −1 only
when it has a reflectance of 0 in the green band. However, the reflectance of pixels of major
land cover types in the green and NIR bands is usually not 0 [28,72]. Even for pure water
pixels, they have very low reflectance in the NIR band. Therefore, the range of the NDWI
can be narrower in real images; (2) More concentrated distribution of pure water pixels.
The MNDWFI values of large amounts of pure water pixels distribute around 1, which
provides more evident characteristics of numerical distribution for extracting pure water.
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Table 5 shows the OA and kappa coefficient of the NDWI, NDWFI, and MNDWFI
across the three areas around Nanyi Lake. The threshold of pure water and land pixels
was determined from the histogram by manually selecting the value with the maximum
local change rate at the junction between the valley and the right peak. From Table 3
it can be observed that the MNDWFI consistently demonstrated superior performance
in extracting pure water compared to the NDWI and NDWFI. The NDWI produced the
minimum overall accuracy and kappa coefficients in the three areas since it only exploited
few bands of the hyperspectral images. The NDWFI and MNDWFI improved the accuracy
of the NDWI by leveraging the full spectral information available in hyperspectral images.
Moreover, the MNDWFI further enhanced the classification accuracy of the NDWFI by
using the spectrum of water endmembers instead of dark endmembers, which increased
the separability between pure water and other pixels, as visually depicted in Figure 10. The
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outstanding capability of the MNDWFI in pure water extraction makes it a recommended
choice for arduous surface water mapping tasks.

Table 5. Comparison of OA and kappa coefficient of NDWI, NDWFI, and MNDWFI on the three
areas around Nanyi Lake.

Overall Accuracy Kappa Coefficient

Area 1 Area 2 Area 3 Area 1 Area 2 Area 3

NDWI 89.35% 90.51% 81.99% 0.5923 0.7502 0.6245
NDWFI 91.53% 92.72% 89.64% 0.6533 0.7988 0.7613

MNDWFI 91.74% 93.12% 89.73% 0.6026 0.8080 0.7632
The bold entities represent the optimal values.

4.2. Ablation Experiments

To further verify the performance of each component of IMOSWFM, we carried out
several ablation experiments. Specifically, four different combinations of components
were considered in this experiment: (1) IMOSWFM. This was the proposed complete al-
gorithm in this paper. (2) IMOSWFMNDWFI. In this combination, the NDWFI was used,
instead of the MNDWFI, to extract pure water pixels, and the iterative unmixing frame-
work was used to adaptively estimate water fractions. (3) IMOSWFMnon-iterative. This
combination used the MNDWFI to extract pure water pixels, but removed the iterative un-
mixing framework. Water fractions of all the mixed pixels were estimated in one iteration.
(4) IMOSWFMNDWFI_non-iterative. This combination used the NDWFI to extract pure water
pixels, and meanwhile removed the iterative unmixing framework. The RMSE and SE of
the four combinations on the three areas are illustrated in Figure 11. In terms of RMSE,
Figure 11a shows that IMOSWFM and IMOSWFMnon-iterative produced smaller RMSE val-
ues than IMOSWFMNDWFI and IMOSWFMNDWFI_non-iterative in all three areas, respectively,
indicating the effectiveness of the MNDWFI in accurately segmenting water bodies. The
performance of IMOSWFM deteriorated when the iterative unmixing framework was
not adopted, since IMOSWFMnon-iterative had lager RMSE values than IMOSWFM and
IMOSWFMNDWFI_non-iterative had larger RMSE values than IMOSWFMNDWFI. Therefore,
the effectiveness of our proposed iterative unmixing framework can be verified. Within
the realm of SE, Figure 11b shows that the SE values generally became larger when the
MNDWFI was not used or the iterative unmixing framework was not applied in Area 1 and
Area 2. In Area 3, IMOSWFM had the maximum SE. However, given that SE represents the
general deviation trend between estimated and reference water fractions, a small SE does
not necessarily indicate a high accuracy of water fraction estimation. From Figure 11a we
can see that IMOSWFM had the minimum RMSE in Area 3. Thus, the indispensability of
each component of IMOSWFM can be proved.
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4.3. Convergence Analysis

To analyze the convergence of IMOSWFM, convergence curves of the two objective
functions optimized by IMODPSO in Area 1 of one certain run are illustrated in Figure 12.
Five iterations were finally conducted in this run. As the evaluation times increased,
the values of both objective functions decreased rapidly in the early stage and gradually
converged to a small value at the end of optimization, unveiling the efficient convergence
of IMOSWFM, thus ensuring reliable endmember combinations for accurately estimating
water fractions. Figure 13 complements this analysis by depicting the number of remaining
mixed pixels at different iterations. It can be discerned that the number of remaining mixed
pixels reduced constantly as the iteration increased, since the mixed water–land pixels,
which were accurately unmixed, were removed from the original image at the end of each
iteration. There was a sharp decline after the first iteration because the pure water and
non-water pixels were also removed from the original image in the first iteration in addition
to the accurately unmixed mixed pixels. After four iterations, the number of remaining
mixed pixels had been reduced to a small value which met the termination condition, and
the algorithm finally stopped.
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Figure 12. Convergence curves of objective function values at different iterations. First row: conver-
gence curves of the volume inverse; Second row: convergence curves of RMSE; (a–e) represent the
corresponding iteration number from 1 to 5.
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Figure 13. Variation in the number of remaining mixed pixels as iteration increases.

4.4. Error Analysis

Although IMOSWFM outperformed other methods in the three areas, it is undeniable
that differences still existed between the water fraction maps generated by IMOSWFM
and the reference maps. As shown in Figure 7, the main source of errors stems from
the extraction of pure water and mixed water–land pixels. Firstly, quantities of land
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pixels located at the boundaries of adjacent water bodies were mistakenly divided into
mixed pixels. Secondly, a lot of small water bodies were not extracted by IMOSWFM.
The reason is that only one set of thresholds was utilized to segment the whole image.
IMOSWFM adopts a histogram-based double threshold segmentation method on the
assumption that pure water and land pixels can be expressed by the two distinct peaks
in the histogram of the MNDWFI. However, due to the variation in illumination and
atmospheric conditions, the scales of the MNDWFI in different regions change dramatically,
resulting in a wide overlapping range between the pure and mixed pixels in the histogram.
Specifically, we observed that pure land pixels bordered by a large water area generally
have higher MNDWFI values than the pure water pixels located in some isolated small
water bodies. If the land threshold t1 is set high enough to distinguish the former, the
latter will not be successfully extracted since the MNDWFI values of these pixels are lower
than t1. On the contrary, if the land threshold t1 is set low enough to extract the latter, the
former will not be properly divided into land pixels since the MNDWFI values of these
pixels are higher than t1. The same principle applies to the water threshold t2. Therefore,
errors occurred inevitably when pure water pixels were extracted globally by the double
threshold segmentation method in IMOSWFM. A local thresholding method which applies
a varying threshold for different regions of the image may be an effective way to address
this problem [73–75].

Residual errors also exist in the estimation of water fractions. IMOSWFM adopts an
iterative framework to adaptively unmix mixed water–land pixels. In each iteration, only
the mixed pixels with RMSE smaller than the user-defined threshold r obtained the water
fractions. A smaller RMSE usually means a better unmixing result [61,76,77]. Theoretically,
setting a smaller r can lead to more accurate water fraction estimation results for mixed
pixels in each iteration, as the RMSE of all these pixels would be smaller than r. However,
the improvement of accuracy comes at the expense of efficiency. An r too small can lead
to an extremely high computational time because few pixels are able to be successfully
unmixed in each iteration. Therefore, it is of vital importance to find an appropriate r which
can trade off both the efficiency and accuracy. Another issue arises from the determination
of the number of endmembers. IMOSWFM assumes that each mixed pixel consists of
three types of endmembers, including water, vegetation, and impervious surface. This
assumption may not apply to some pixels containing complex ground features, which
gives rise to the residual errors between the estimated and reference water fraction maps.
Multitasking optimization can be used in IMOSWFM to simultaneously optimize solutions
containing different numbers of endmembers and adaptively search the optimal number
for different mixed pixels [78].

5. Conclusions

In this research, we introduced IMOSWFM, an adaptive unmixing method based
on iterative multi-objective optimization for surface water fraction mapping from hyper-
spectral images. In IMOSWFM, a modified normalized difference water fraction index,
named the MNDWFI, was proposed to exploit each spectral band of HSIs for the accurate
extraction of pure water. Also, an iterative unmixing framework was designed to obtain a
more precise water fraction map where optimal endmembers were adaptively extracted
for different mixed water–land pixels, leveraging the robust global search ability of multi-
objective evolutionary algorithms. Experiments on the three Zhuhai-1 HSIs demonstrated
the effectiveness of IMOSWFM in surface water fraction mapping. From the obtained
water fraction maps, IMOSWFM was able to preserve the details of water fraction variation
and obtain robust water fraction estimation results in diverse image scenes regardless of
spectral variability. Specifically, IMOSWFM had the highest OA of 91.74%, 93.12%, and
89.73%, and the lowest root-mean-square errors of 0.2506, 0.2403, and 0.2265 in the three
primary study areas, indicating the exceptional capability of IMOSWFM in both pure water
extraction and water fraction estimation. In our future work, we will strive to solve the
problem of determining multiple thresholds for pure water extraction and automatically
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estimating the number of endmembers. As discussed in Section 4.4, a single threshold for
the segmentation of pure water may result in errors because the scales of the water index
vary greatly. A novel pure water extraction method needs to be proposed to find optimal
thresholds for pixels from different regions. Moreover, to further improve the accuracy of
water fraction estimation, it is also important to dynamically find the optimal number of
endmembers in each iteration. An advanced spectral mixture model can also be considered
in the unmixing process to deal with the complex interactions between multiple constituent
components within the mixed pixels.
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