AFA–Mamba: Adaptive Feature Alignment with Global–Local Mamba for Hyperspectral and LiDAR Data Classification
Abstract
:1. Introduction
- (1)
- We propose a joint HSI-LiDAR classification method called Adaptive Feature Alignment Network with a Global–Local Mamba (AFA-Mamba), which uses a hybrid two-branch CNN architecture to accurately extract 3D spectral–spatial information from HSI data while simultaneously capturing 2D elevation information from LiDAR data.
- (2)
- The proposed Global–Local Mamba module is designed to be both efficient and effective in processing data. It operates by dynamically capturing and analyzing spectral, spatial, and elevation information, allowing the model to adaptively focus on different types of information depending on the context.
- (3)
- We design a novel spectral–spatial–elevation Adaptive Alignment and Fusion module to adaptively recalibrate the differences by learning the discriminative features of the two types of data, thereby effectively mitigating the problems due to feature differences and spatial mismatches between the data sources. It ensures the accuracy and consistency of HSI and LiDAR information in the fusion process.
- (4)
- AFA–Mamba demonstrates superior classification performance compared to several existing SOTA methods. The experimental results across all three datasets consistently validate the outstanding performance of our approach.
2. Methodology
2.1. HSI and LiDAR Data Preprocessing
2.2. Spectral–Spatial–Elevation Feature Extraction Module
2.3. Global–Local Mamba Encoder
2.4. SSE Adaptive Alignment and Fusion Module
2.5. Classification Block
3. Experiment and Analysis
3.1. Dataset Description
3.2. Experimental Setting
3.3. Ablation Study
3.4. Classification Result and Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kahraman, S.; Bacher, R. A comprehensive review of hyperspectral data fusion with lidar and sar data. Annu. Rev. Control 2021, 51, 236–253. [Google Scholar] [CrossRef]
- Zhou, Z.; Zheng, C.; Liu, X.; Tian, Y.; Chen, X.; Chen, X.; Dong, Z. A dynamic effective class balanced approach for remote sensing imagery semantic segmentation of imbalanced data. Remote Sens. 2023, 15, 1768. [Google Scholar] [CrossRef]
- Wang, J.; Hu, J.; Liu, Y.; Hua, Z.; Hao, S.; Yao, Y. El-nas: Efficient lightweight attention cross-domain architecture search for hyperspectral image classification. Remote Sens. 2023, 15, 4688. [Google Scholar] [CrossRef]
- Su, Z.; Wan, G.; Zhang, W.; Guo, N.; Wu, Y.; Liu, J.; Cong, D.; Jia, Y.; Wei, Z. An Integrated Detection and Multi-Object Tracking Pipeline for Satellite Video Analysis of Maritime and Aerial Objects. Remote Sens. 2024, 16, 724. [Google Scholar] [CrossRef]
- Zhang, G.; Fang, W.; Zheng, Y.; Wang, R. SDBAD-Net: A spatial dual-branch attention dehazing network based on meta-former paradigm. IEEE Trans. Circuits Syst. Video Technol. 2023, 34, 60–70. [Google Scholar] [CrossRef]
- Fang, W.; Zhang, G.; Zheng, Y.; Chen, Y. Multi-Task Learning for UAV Aerial Object Detection in Foggy Weather Condition. Remote Sens. 2023, 15, 4617. [Google Scholar] [CrossRef]
- Kuras, A.; Brell, M.; Rizzi, J.; Burud, I. Hyperspectral and lidar data applied to the urban land cover machine learning and neural-network-based classification: A review. Remote Sens. 2021, 13, 3393. [Google Scholar] [CrossRef]
- Audebert, N.; Le Saux, B.; Lefèvre, S. Deep learning for classification of hyperspectral data: A comparative review. IEEE Geosci. Remote Sens. Mag. 2019, 7, 159–173. [Google Scholar] [CrossRef]
- Li, N.; Ho, C.P.; Wang, I.T.; Pitchappa, P.; Fu, Y.H.; Zhu, Y.; Lee, L.Y.T. Spectral imaging and spectral LIDAR systems: Moving toward compact nanophotonics-based sensing. Nanophotonics 2021, 10, 1437–1467. [Google Scholar] [CrossRef]
- Khodadadzadeh, M.; Li, J.; Prasad, S.; Plaza, A. Fusion of hyperspectral and LiDAR remote sensing data using multiple feature learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2971–2983. [Google Scholar] [CrossRef]
- Ghamisi, P.; Benediktsson, J.A.; Phinn, S. Land-cover classification using both hyperspectral and LiDAR data. Int. J. Image Data Fusion 2015, 6, 189–215. [Google Scholar] [CrossRef]
- Murphy, R.J.; Taylor, Z.; Schneider, S.; Nieto, J. Mapping clay minerals in an open-pit mine using hyperspectral and LiDAR data. Eur. J. Remote Sens. 2015, 48, 511–526. [Google Scholar] [CrossRef]
- Voss, M.; Sugumaran, R. Seasonal effect on tree species classification in an urban environment using hyperspectral data, LiDAR, and an object-oriented approach. Sensors 2008, 8, 3020–3036. [Google Scholar] [CrossRef]
- Liu, L.; Coops, N.C.; Aven, N.W.; Pang, Y. Mapping urban tree species using integrated airborne hyperspectral and LiDAR remote sensing data. Remote Sens. Environ. 2017, 200, 170–182. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef]
- Gómez-Chova, L.; Tuia, D.; Moser, G.; Camps-Valls, G. Multimodal classification of remote sensing images: A review and future directions. Proc. IEEE 2015, 103, 1560–1584. [Google Scholar] [CrossRef]
- Li, S.; Song, W.; Fang, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Deep learning for hyperspectral image classification: An overview. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6690–6709. [Google Scholar] [CrossRef]
- Kumar, B.; Dikshit, O.; Gupta, A.; Singh, M.K. Feature extraction for hyperspectral image classification: A review. Int. J. Remote Sens. 2020, 41, 6248–6287. [Google Scholar] [CrossRef]
- Ghamisi, P.; Höfle, B.; Zhu, X.X. Hyperspectral and LiDAR data fusion using extinction profiles and deep convolutional neural network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 10, 3011–3024. [Google Scholar] [CrossRef]
- Ham, J.; Chen, Y.; Crawford, M.M.; Ghosh, J. Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 492–501. [Google Scholar] [CrossRef]
- Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [Google Scholar] [CrossRef]
- Pal, M.; Mather, P.M. Support vector machines for classification in remote sensing. Int. J. Remote Sens. 2005, 26, 1007–1011. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Huang, F.; Lu, J.; Tao, J.; Li, L.; Tan, X.; Liu, P. Research on optimization methods of ELM classification algorithm for hyperspectral remote sensing images. IEEE Access 2019, 7, 108070–108089. [Google Scholar] [CrossRef]
- Hang, R.; Liu, Q.; Song, H.; Sun, Y. Matrix-based discriminant subspace ensemble for hyperspectral image spatial–spectral feature fusion. IEEE Trans. Geosci. Remote Sens. 2015, 54, 783–794. [Google Scholar] [CrossRef]
- Wang, Q.; Gu, Y.; Tuia, D. Discriminative multiple kernel learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3912–3927. [Google Scholar] [CrossRef]
- Tejasree, G.; Agilandeeswari, L. An extensive review of hyperspectral image classification and prediction: Techniques and challenges. Multimed. Tools Appl. 2024, 83, 80941–81038. [Google Scholar] [CrossRef]
- Ahmad, M.; Shabbir, S.; Roy, S.K.; Hong, D.; Wu, X.; Yao, J.; Khan, A.M.; Mazzara, M.; Distefano, S.; Chanussot, J. Hyperspectral image classification—Traditional to deep models: A survey for future prospects. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 15, 968–999. [Google Scholar] [CrossRef]
- Roy, S.K.; Krishna, G.; Dubey, S.R.; Chaudhuri, B.B. HybridSN: Exploring 3-D–2-D CNN Feature Hierarchy for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2020, 17, 277–281. [Google Scholar] [CrossRef]
- Paoletti, M.E.; Haut, J.M.; Fernandez-Beltran, R.; Plaza, J.; Plaza, A.J.; Pla, F. Deep pyramidal residual networks for spectral–spatial hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2018, 57, 740–754. [Google Scholar] [CrossRef]
- Paoletti, M.E.; Haut, J.M.; Plaza, J.; Plaza, A. Deep learning classifiers for hyperspectral imaging: A review. ISPRS J. Photogramm. Remote Sens. 2019, 158, 279–317. [Google Scholar] [CrossRef]
- Hong, D.; Han, Z.; Yao, J.; Gao, L.; Zhang, B.; Plaza, A.; Chanussot, J. SpectralFormer: Rethinking hyperspectral image classification with transformers. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–15. [Google Scholar] [CrossRef]
- Zou, J.; He, W.; Zhang, H. Lessformer: Local-enhanced spectral-spatial transformer for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Yuan, D.; Yu, D.; Qian, Y.; Xu, Y.; Liu, Y. S2Former: Parallel Spectral–Spatial Transformer for Hyperspectral Image Classification. Electronics 2023, 12, 3937. [Google Scholar] [CrossRef]
- Mei, S.; Song, C.; Ma, M.; Xu, F. Hyperspectral image classification using group-aware hierarchical transformer. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Gu, A.; Dao, T. Mamba: Linear-time sequence modeling with selective state spaces. arXiv 2023, arXiv:2312.00752. [Google Scholar]
- Li, Y.; Luo, Y.; Zhang, L.; Wang, Z.; Du, B. MambaHSI: Spatial–Spectral Mamba for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–16. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, X.; Pun, M.O. RS3Mamba: Visual State Space Model for Remote Sensing Image Semantic Segmentation. IEEE Geosci. Remote Sens. Lett. 2024, 21. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, H.; Zhang, X.; Xiao, P.; Bai, L.; Ouyang, W. Rs-mamba for large remote sensing image dense prediction. arXiv 2024, arXiv:2404.02668. [Google Scholar] [CrossRef]
- Hang, R.; Li, Z.; Ghamisi, P.; Hong, D.; Xia, G.; Liu, Q. Classification of hyperspectral and LiDAR data using coupled CNNs. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4939–4950. [Google Scholar] [CrossRef]
- Zhang, M.; Li, W.; Tao, R.; Li, H.; Du, Q. Information fusion for classification of hyperspectral and LiDAR data using IP-CNN. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–12. [Google Scholar] [CrossRef]
- Lu, T.; Ding, K.; Fu, W.; Li, S.; Guo, A. Coupled adversarial learning for fusion classification of hyperspectral and LiDAR data. Inf. Fusion 2023, 93, 118–131. [Google Scholar] [CrossRef]
- Zhao, G.; Ye, Q.; Sun, L.; Wu, Z.; Pan, C.; Jeon, B. Joint classification of hyperspectral and LiDAR data using a hierarchical CNN and transformer. IEEE Trans. Geosci. Remote Sens. 2022, 61, 1–16. [Google Scholar] [CrossRef]
- Sun, L.; Wang, X.; Zheng, Y.; Wu, Z.; Fu, L. Multiscale 3-D–2-D Mixed CNN and Lightweight Attention-Free Transformer for Hyperspectral and LiDAR Classification. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–16. [Google Scholar] [CrossRef]
- Mäyrä, J.; Keski-Saari, S.; Kivinen, S.; Tanhuanpää, T.; Hurskainen, P.; Kullberg, P.; Poikolainen, L.; Viinikka, A.; Tuominen, S.; Kumpula, T.; et al. Tree species classification from airborne hyperspectral and LiDAR data using 3D convolutional neural networks. Remote Sens. Environ. 2021, 256, 112322. [Google Scholar] [CrossRef]
- Mohla, S.; Pande, S.; Banerjee, B.; Chaudhuri, S. Fusatnet: Dual attention based spectrospatial multimodal fusion network for hyperspectral and lidar classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 92–93. [Google Scholar]
- Wang, X.; Feng, Y.; Song, R.; Mu, Z.; Song, C. Multi-attentive hierarchical dense fusion net for fusion classification of hyperspectral and LiDAR data. Inf. Fusion 2022, 82, 1–18. [Google Scholar] [CrossRef]
- Dong, W.; Zhang, T.; Qu, J.; Xiao, S.; Zhang, T.; Li, Y. Multibranch feature fusion network with self-and cross-guided attention for hyperspectral and LiDAR classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Zhao, W.; Du, S. Spectral–spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4544–4554. [Google Scholar] [CrossRef]
- Zhou, W.; Kamata, S.I.; Wang, H.; Wong, M.S.; Hou, H.C. Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification. Neurocomputing 2024, 613, 128751. [Google Scholar] [CrossRef]
- Liao, D.; Wang, Q.; Lai, T.; Huang, H. Joint Classification of Hyperspectral and LiDAR Data Based on Mamba. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–15. [Google Scholar] [CrossRef]
ID | MUUFL Gulfport | Trento | Augsburg | ||||||
---|---|---|---|---|---|---|---|---|---|
Land Cover Class | Training | Test | Land Cover Class | Training | Test | Land Cover Class | Training | Test | |
C01 | Trees Mostly | 1163 | 22,083 | Apple Trees | 21 | 4013 | Forest | 676 | 12,831 |
C02 | Grass | 214 | 4056 | Buildings | 15 | 2888 | Residential Area | 1517 | 28,812 |
C03 | Mixed Ground Surface | 345 | 6537 | Ground | 3 | 476 | Industrial Area | 193 | 3658 |
C04 | Dirt and Sand | 92 | 1734 | Woods | 46 | 9077 | Low Plants | 1343 | 25,514 |
C05 | Road | 335 | 6352 | Vineyard | 53 | 10,448 | Allotment | 29 | 546 |
C06 | Water | 24 | 442 | Roads | 16 | 3158 | Commercial Area | 83 | 1562 |
C07 | Buildings Shadow | 112 | 2121 | Water | 77 | 1453 | |||
C08 | Buildings | 312 | 5928 | ||||||
C09 | Sidewalk | 70 | 1315 | ||||||
C10 | Yellow Curb | 10 | 173 | ||||||
C11 | Cloth Panels | 14 | 255 | ||||||
Total | 2691 | 50,990 | Total | 154 | 30,060 | Total | 3918 | 74,376 |
Cases | Component | Indicators | ||||||
---|---|---|---|---|---|---|---|---|
PCA | SSE-FE | HSI-GL-Mamba | LiDAR-GL-Mamba | F | OA (%) | AA (%) | ||
1 | × | ✓ | ✓ | ✓ | ✓ | 89.87 | 79.41 | 87.62 |
2 | ✓ | CNN | ✓ | ✓ | ✓ | 91.25 | 81.24 | 89.35 |
3 | ✓ | ✓ | × | ✓ | ✓ | 90.49 | 80.12 | 88.14 |
4 | ✓ | ✓ | × | ✓ | ✓ | 90.48 | 80.54 | 87.02 |
5 | ✓ | ✓ | ✓ | × | ✓ | 90.05 | 81.28 | 88.53 |
6 | ✓ | ✓ | ✓ | ✓ | × | 91.23 | 80.36 | 88.15 |
7 | ✓ | ✓ | Original Mamba | ✓ | ✓ | 91.52 | 81.62 | 89.32 |
8 | ✓ | ✓ | ✓ | Original Mamba | ✓ | 90.73 | 80.54 | 88.95 |
9 | ✓ | ✓ | ✓ | ✓ | ✓ | 93.11 | 82.81 | 90.90 |
No. | Only HSI Input | HSI and LiDAR Input | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RF [20] | SVM [21] | 2D-CNN [49] | HybridSN [29] | GAHT [35] | MiM [50] | CoupledCNN [40] | CALC [42] | HCTnet [43] | M2FNet [44] | HLMamba [51] | Ours | |
1 | 96.54 ± 1.13 | 97.64 ± 1.07 | 97.15 ± 0.32 | 97.07 ± 0.3 | 96.21 ± 0.74 | 95.75 ± 1.22 | 97.23 ± 0.52 | 97.46 ± 1.03 | 97.13 ± 0.67 | 96.95 ± 0.41 | 97.12 ± 0.55 | 96.94 ± 0.31 |
2 | 79.11 ± 4.30 | 87.39 ± 3.04 | 84.61 ± 1.28 | 81.91 ± 7.99 | 84.15 ± 5.42 | 85.96 ± 1.32 | 82.21 ± 4.00 | 88.41 ± 3.19 | 86.31 ± 1.60 | 86.12 ± 2.54 | 86.40 ± 3.12 | 87.43 ± 4.3 |
3 | 83.76 ± 3.14 | 86.14 ± 4.83 | 86.63 ± 3.36 | 83.61 ± 4.03 | 85.32 ± 3.87 | 88.23 ± 1.2 | 87.64 ± 2.73 | 84.82 ± 5.44 | 89.40 ± 1.51 | 88.86 ± 1.81 | 88.39 ± 1.72 | 91.68 ± 1.16 |
4 | 89.36 ± 2.72 | 93.64 ± 2.01 | 94.92 ± 0.87 | 92.39 ± 6.93 | 89.52 ± 4.55 | 91.65 ± 3.09 | 92.90 ± 2.68 | 89.39 ± 3.48 | 90.40 ± 1.52 | 89.85 ± 1.64 | 91.59 ± 1.62 | 91.42 ± 2.76 |
5 | 85.99 ± 4.11 | 90.39 ± 2.39 | 90.78 ± 0.97 | 90.74 ± 1.03 | 86.95 ± 3.36 | 91.16 ± 0.67 | 93.93 ± 1.45 | 93.03 ± 1.98 | 93.62 ± 1.03 | 94.01 ± 0.70 | 92.02 ± 0.67 | 94.45 ± 1.06 |
6 | 89.37 ± 4.77 | 95.42 ± 2.86 | 95.44 ± 3.61 | 84.47 ± 7.03 | 94.40 ± 3.03 | 96.44 ± 0.31 | 94.57 ± 2.87 | 90.16 ± 3.86 | 83.62 ± 5.34 | 93.28 ± 1.75 | 96.24 ± 1.03 | 91.9 ± 3.24 |
7 | 80.31 ± 3.69 | 83.18 ± 2.30 | 81.88 ± 2.17 | 78.41 ± 4.29 | 75.55 ± 7.75 | 81.09 ± 2.15 | 88.77 ± 1.06 | 83.61 ± 4.23 | 86.04 ± 1.99 | 84.89 ± 2.76 | 85.82 ± 0.93 | 86.36 ± 1.99 |
8 | 95.70 ± 2.09 | 96.86 ± 1.18 | 96.39 ± 0.92 | 95.82 ± 1.45 | 93.81 ± 2.86 | 95.8 ± 0.51 | 96.21 ± 1.43 | 96.60 ± 0.95 | 96.68 ± 0.47 | 97.14 ± 0.53 | 95.72 ± 0.37 | 96.58 ± 0.79 |
9 | 28.39 ± 4.11 | 40.75 ± 5.58 | 54.18 ± 5.44 | 48.30 ± 7.19 | 36.06 ± 7.04 | 48.19 ± 5.47 | 45.31 ± 6.11 | 50.78 ± 9.34 | 52.11 ± 4.16 | 57.64 ± 3.08 | 48.55 ± 2.82 | 53.44 ± 4.87 |
10 | 5.53 ± 2.84 | 13.43 ± 7.18 | 23.60 ± 5.94 | 26.63 ± 5.65 | 11.22 ± 5.41 | 20.56 ± 1.91 | 16.18 ± 3.78 | 11.56 ± 8.38 | 20.00 ± 2.02 | 24.57 ± 4.70 | 26.25 ± 4.58 | 27.11 ± 5.54 |
11 | 70.00 ± 8.30 | 80.47 ± 7.53 | 86.71 ± 4.74 | 92.59 ± 4.18 | 61.84 ± 7.68 | 64.62 ± 6.62 | 88.08 ± 6.92 | 72.39 ± 11.3 | 76.20 ± 2.84 | 69.37 ± 5.69 | 61.31 ± 2.3 | 93.57 ± 1.77 |
OA(%) | 88.92 ± 0.79 | 91.76 ± 0.51 | 91.79 ± 0.45 | 90.27 ± 1.08 | 89.11 ± 0.88 | 91.63 ± 0.22 | 92.09 ± 0.61 | 91.94 ± 0.65 | 92.45 ± 0.28 | 92.53 ± 0.19 | 92.01 ± 0.27 | 93.11 ± 0.39 |
AA(%) | 73.09 ± 1.02 | 78.66 ± 1.33 | 81.12 ± 0.83 | 79.19 ± 1.96 | 74.05 ± 1.29 | 78.25 ± 0.89 | 80.28 ± 1.91 | 78.02 ± 1.87 | 79.23 ± 0.85 | 80.24 ± 0.80 | 79.04 ± 0.66 | 82.81 ± 1.31 |
k × 100 | 85.27 ± 1.04 | 89.05 ± 0.70 | 89.10 ± 0.61 | 87.13 ± 1.43 | 85.59 ± 1.11 | 88.91 ± 0.29 | 89.52 ± 0.81 | 89.30 ± 0.86 | 90.00 ± 0.36 | 90.12 ± 0.25 | 89.42 ± 0.35 | 90.90 ± 0.52 |
No. | Only HSI Input | HSI and LiDAR Input | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RF [20] | SVM [21] | 2D-CNN [49] | HybridSN [29] | GAHT [35] | MiM [50] | CoupledCNN [40] | CALC [42] | HCTnet [43] | M2FNet [44] | HLMamba [51] | Ours | |
1 | 94.62 ± 4.91 | 96.28 ± 4.61 | 97.41 ± 1.87 | 96.33 ± 5.09 | 98.69 ± 0.79 | 90.96 ± 4.84 | 97.91 ± 3.45 | 98.56 ± 1.30 | 99.30 ± 0.81 | 99.08 ± 0.82 | 98.95 ± 0.78 | 99.43 ± 0.40 |
2 | 82.93 ± 12.81 | 92.68 ± 3.33 | 85.49 ± 3.74 | 76.90 ± 7.43 | 79.42 ± 6.69 | 48.14 ± 11.14 | 94.17 ± 1.46 | 94.49 ± 2.80 | 98.10 ± 2.18 | 90.54 ± 5.53 | 84.29 ± 4.99 | 94.29 ± 2.20 |
3 | 6.02 ± 10.70 | 9.08 ± 5.07 | 39.56 ± 13.64 | 45.35 ± 16.13 | 31.97 ± 7.16 | 54.38 ± 9.24 | 18.30 ± 8.51 | 51.41 ± 23.48 | 63.57 ± 18.91 | 65.8 ± 12.73 | 34.3 ± 10.73 | 58.42 ± 15.5 |
4 | 99.90 ± 0.10 | 99.88 ± 0.18 | 99.85 ± 0.20 | 99.86 ± 0.26 | 99.93 ± 0.05 | 99.82 ± 0.19 | 98.77 ± 0.80 | 99.99 ± 0.02 | 100.00 ± 0.00 | 99.97 ± 0.04 | 99.96 ± 0.05 | 99.99 ± 0.02 |
5 | 99.69 ± 0.63 | 100.00 ± 0.00 | 99.81 ± 0.19 | 94.96 ± 3.27 | 99.99 ± 0.02 | 95.35 ± 2.5 | 99.91 ± 0.10 | 99.96 ± 0.08 | 99.76 ± 0.32 | 99.96 ± 0.07 | 99.57 ± 0.22 | 99.99 ± 0.01 |
6 | 78.31 ± 5.50 | 81.83 ± 4.12 | 83.76 ± 2.30 | 71.88 ± 4.81 | 92.73 ± 3.19 | 93.28 ± 3.45 | 98.20 ± 0.52 | 88.22 ± 3.64 | 89.75 ± 2.98 | 94.07 ± 2.25 | 85.66 ± 4.98 | 98.43 ± 0.44 |
OA(%) | 93.74 ± 1.03 | 95.41 ± 0.75 | 95.48 ± 0.65 | 91.67 ± 1.71 | 95.98 ± 0.50 | 90.71 ± 1.25 | 97.27 ± 0.53 | 97.25 ± 0.56 | 97.99 ± 0.27 | 97.78 ± 0.61 | 95.64 ± 0.58 | 98.55 ± 0.35 |
AA(%) | 76.91 ± 2.78 | 79.96 ± 1.11 | 84.31 ± 2.55 | 80.88 ± 3.25 | 83.79 ± 1.64 | 80.32 ± 2.70 | 84.54 ± 1.21 | 88.77 ± 3.76 | 91.75 ± 3.07 | 91.57 ± 2.29 | 83.79 ± 2.23 | 91.76 ± 2.68 |
k × 100 | 91.57 ± 1.41 | 93.83 ± 1.03 | 93.94 ± 0.87 | 88.86 ± 2.31 | 94.61 ± 0.68 | 87.61 ± 1.66 | 96.35 ± 0.72 | 96.32 ± 0.76 | 97.31 ± 0.36 | 97.03 ± 0.82 | 94.16 ± 0.78 | 98.06 ± 0.47 |
No. | Only HSI Input | HSI and LiDAR Input | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RF [20] | SVM [21] | 2D-CNN [49] | HybridSN [29] | GAHT [35] | MiM [50] | CoupledCNN [40] | CALC [42] | HCTnet [43] | M2FNet [44] | HLMamba [51] | Ours | |
1 | 98.58 ± 0.41 | 98.89 ± 0.32 | 99.15 ± 0.18 | 98.88 ± 0.67 | 97.76 ± 0.52 | 99.24 ± 0.2 | 99.40 ± 0.21 | 98.76 ± 0.30 | 99.09 ± 0.17 | 98.23 ± 0.72 | 99.1 ± 0.22 | 99.16 ± 0.21 |
2 | 96.52 ± 3.12 | 97.86 ± 1.51 | 97.75 ± 0.36 | 97.29 ± 0.76 | 98.13 ± 0.62 | 98.18 ± 0.25 | 99.17 ± 0.20 | 99.34 ± 0.12 | 98.80 ± 0.26 | 98.37 ± 0.32 | 98.22 ± 0.52 | 98.83 ± 0.36 |
3 | 77.82 ± 5.20 | 82.22 ± 3.44 | 80.18 ± 2.86 | 76.87 ± 4.22 | 85.70 ± 3.21 | 80.8 ± 1.42 | 82.25 ± 4.99 | 91.69 ± 3.16 | 91.02 ± 2.63 | 91.93 ± 2.04 | 83.15 ± 4.0 | 89.38 ± 2.6 |
4 | 98.77 ± 0.21 | 99.02 ± 0.35 | 99.16 ± 0.10 | 98.94 ± 0.19 | 97.57 ± 0.48 | 99.05 ± 0.07 | 98.98 ± 0.21 | 99.08 ± 0.17 | 98.60 ± 0.26 | 98.43 ± 0.56 | 98.8 ± 0.88 | 98.92 ± 0.26 |
5 | 41.93 ± 14.77 | 61.47 ± 9.84 | 69.41 ± 5.14 | 67.53 ± 4.44 | 65.46 ± 10.06 | 69.87 ± 5.52 | 78.99 ± 7.96 | 85.35 ± 3.15 | 81.92 ± 5.59 | 80.95 ± 5.01 | 78.17 ± 3.83 | 83.86 ± 2.96 |
6 | 22.25 ± 5.65 | 32.39 ± 4.92 | 48.68 ± 5.70 | 40.33 ± 4.76 | 67.74 ± 5.92 | 51.02 ± 5.47 | 55.43 ± 6.88 | 58.67 ± 9.48 | 68.07 ± 4.11 | 71.54 ± 3.23 | 59.42 ± 4.46 | 76.2 ± 4.67 |
7 | 57.71 ± 3.36 | 60.30 ± 2.27 | 65.87 ± 1.24 | 64.21 ± 2.38 | 60.10 ± 4.20 | 67.12 ± 3.30 | 64.84 ± 2.56 | 63.78 ± 1.69 | 68.31 ± 2.62 | 68.29 ± 3.22 | 68.62 ± 1.51 | 66.81 ± 3.53 |
OA(%) | 94.01 ± 1.07 | 95.29 ± 0.63 | 95.75 ± 0.11 | 95.07 ± 0.45 | 95.64 ± 0.30 | 96.00 ± 0.13 | 96.57 ± 0.28 | 97.12 ± 0.15 | 97.03 ± 0.20 | 96.77 ± 0.31 | 96.29 ± 0.58 | 97.24 ± 0.14 |
AA(%) | 70.51 ± 2.25 | 76.02 ± 1.83 | 80.03 ± 1.18 | 77.72 ± 0.95 | 81.78 ± 2.02 | 80.76 ± 0.61 | 82.72 ± 0.85 | 85.24 ± 1.29 | 86.54 ± 1.26 | 86.82 ± 1.07 | 83.64 ± 0.64 | 87.60 ± 0.93 |
k × 100 | 91.40 ± 1.46 | 93.24 ± 0.87 | 93.91 ± 0.16 | 92.93 ± 0.63 | 93.75 ± 0.43 | 94.26 ± 0.18 | 95.08 ± 0.40 | 95.87 ± 0.23 | 95.75 ± 0.29 | 95.37 ± 0.45 | 94.69 ± 0.81 | 96.05 ± 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Huang, S. AFA–Mamba: Adaptive Feature Alignment with Global–Local Mamba for Hyperspectral and LiDAR Data Classification. Remote Sens. 2024, 16, 4050. https://doi.org/10.3390/rs16214050
Li S, Huang S. AFA–Mamba: Adaptive Feature Alignment with Global–Local Mamba for Hyperspectral and LiDAR Data Classification. Remote Sensing. 2024; 16(21):4050. https://doi.org/10.3390/rs16214050
Chicago/Turabian StyleLi, Sai, and Shuo Huang. 2024. "AFA–Mamba: Adaptive Feature Alignment with Global–Local Mamba for Hyperspectral and LiDAR Data Classification" Remote Sensing 16, no. 21: 4050. https://doi.org/10.3390/rs16214050
APA StyleLi, S., & Huang, S. (2024). AFA–Mamba: Adaptive Feature Alignment with Global–Local Mamba for Hyperspectral and LiDAR Data Classification. Remote Sensing, 16(21), 4050. https://doi.org/10.3390/rs16214050