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Abstract: The joint classification of hyperspectral imagery (HSI) and LiDAR data is an important
task in the field of remote sensing image interpretation. Traditional classification methods, such
as support vector machine (SVM) and random forest (RF), have difficulty capturing the complex
spectral–spatial–elevation correlation information. Recently, important progress has been made in
HSI-LiDAR classification using Convolutional Neural Networks (CNNs) and Transformers. However,
due to the large spatial extent of remote sensing images, the vanilla Transformer and CNNs struggle
to effectively capture global context. Moreover, the weak misalignment between multi-source data
poses challenges for their effective fusion. In this paper, we introduce AFA–Mamba, an Adaptive
Feature Alignment Network with a Global–Local Mamba design that achieves accurate land cover
classification. It contains two main core designs: (1) We first propose a Global–Local Mamba encoder,
which effectively models context through a 2D selective scanning mechanism while introducing local
bias to enhance the spatial features of local objects. (2) We also propose an SSE Adaptive Alignment
and Fusion (A2F) module to adaptively adjust the relative positions between multi-source features.
This module establishes a guided subspace to accurately estimate feature-level offsets, enabling
optimal fusion. As a result, our AFA–Mamba consistently outperforms state-of-the-art multi-source
fusion classification approaches across multiple datasets.

Keywords: hyperspectral image (HSI); light detection and ranging (LiDAR) data; joint classification;
data fusion

1. Introduction

Remote sensing and imaging technologies have developed rapidly in recent years,
as more types of data sources have been applied to the extraction and analysis of geo-
morphological information [1–6]. The joint classification of hyperspectral imagery (HSI)
and LiDAR data has attracted more and more interest from researchers [7]. Hyperspectral
remote sensing is a form of technology that is capable of acquiring fine spectral information,
which contains data in tens or even hundreds of spectral bands for achieving accurate
identification of the ground [8]. LiDAR technology determines the distance and position of
a target object by transmitting laser pulses and measuring their return time, thus obtaining
elevation information from the ground [9–11]. With the increasing improvements of both
forms of imaging technology, HSI-LiDAR joint classification plays an important role in
precision agriculture, mineral development [12], environmental monitoring [13], urban
planning [14], and other fields. By improving the accuracy of land cover and object classifi-
cation, this joint method can enhance decision-making processes in resource management,
disaster prevention, and land-use planning.
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Early remote sensing technologies [15,16] were relatively limited and the type of data
acquired was homogenous. As an important field of remote sensing applications, landscape
classification and recognition are largely restricted in accuracy and efficiency by their data
sources [16]. For example, HSI captures the radiation variations of a target object within
a continuous spectral range and combines them with spatial information to achieve an
accurate response to the physical and chemical properties of the object [17]. However,
in some complex scenarios, different objects in the image may have similar spectral curves,
and the lower spatial resolution of HSI makes it challenging to distinguish structures [18].
In such cases, combining elevation information from LiDAR data can enable the accurate
identification of different land cover categories [19]. Therefore, studying how to effectively
leverage the strengths of both data types for the joint classification of HSI and LiDAR data
is significant for raising the accuracy and efficiency of land cover classification.

In past decades, many researchers have focused on transferring modeling methods
commonly used in machine learning and pattern recognition to remote sensing image
classification tasks [20,21], such as support vector machine (SVM) [22], random forest
(RF) [23], Extreme Learning Machine (ELM) [24], etc. In addition, to better utilize spectral–
spatial information, researchers have designed a series of ingenious classification models.
Hang et al. [25] pioneered a novel approach termed matrix-based spatial spectral feature
representation. Wang et al. [26] introduced an advanced approach known as discriminative
multi-kernel learning, which learns to determine the optimal combination of kernels from
a set of predefined basic kernels by maximizing the divisibility of the reproduced kernels
in Hilbert space. It can greatly improve HSI classification performance without strictly
limiting the selection of basic kernels. However, these traditional methods often require
a certain amount of prior knowledge and complex parameter tuning, which can lead to
suboptimal performance when dealing with complicated samples and strongly non-linear
data [18].

Recently, Deep Neural Networks (DNNs) have emerged as a dominant force, demon-
strating remarkable efficacy in the realm of remote sensing image analysis and process-
ing [8,27–30]. In particular, Convolutional Neural Networks (CNNs), which are able to
accurately distinguish between different feature classes by automatically learning and
extracting the deep features of images, greatly improve the discriminability of remote
sensing target features. Compared with traditional classification methods based on manual
feature extraction, DNNs can handle more complex data as well as adapt to different
shooting angles and scale variations [31]. For example, Paoletti et al. [30] proposed a novel
convolutional residual pyramid network to achieve fast convergence and high accuracy
classification models under complex HSI remote sensing data. Furthermore, Roy et al. [29]
introduced a novel superimposed hybrid architecture comprising both 3D-CNN and 2D-
CNN, which significantly enhanced the fusion of spectral and spatial information. However,
the local receptive field of CNN limits its ability to capture the global information of the
spectrum, resulting in suboptimal classification accuracy. To further enhance the model’s
global feature extraction capability, researchers [32–35] introduced the Vision Transformer
(ViT) for HSI classification, capturing global spectral information and better representing
the relationship between spectral and spatial features. For instance, Mei et al. [35] presented
the Group-Aware Hierarchical Transformer. This novel model underscores both local and
global interactions of spectral–spatial information by introducing a novel grouped pixel
embedding. Although ViT can represent the global dependence of spectra well, its com-
putational quadratic complexity makes it difficult to use for large-scale datasets. Recently,
a new method known as Mamba [36] has been introduced, employing state-space models
(SSMs) to efficiently capture global semantic information with minimal computational over-
head, thus achieving linear complexity operations. Mamba-based methods [37–39] have
shown great potential in remote sensing classification tasks. For example, RS–Mamba [39]
introduced an innovative omnidirectional selective scanning module, which selectively
scans remote sensing images in multiple directions. This enables the extraction of large-
scale spatial features from various orientations. Zhou’s team proposes a novel centralized
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Mamba–Cross-Scan (MCS) mechanism for converting HSI images into sequence data to
enhance feature generation and focusing for fine-grained recognition of feature categories.

Nevertheless, in recent years, single-source data classification has become increasingly
unable to meet the identification needs of complex landform scenarios in terms of data
comprehensiveness, credibility, and prediction accuracy. Benefiting from the powerful
capabilities of deep learning models in feature extraction and fusion, CNN-based and
ViT-based methods show great advantages in the joint classification of HSI and LiDAR
data. Hang’s team [40] introduced a coupled CNN model capable of learning distributed
spectral–spatial features from HSI while simultaneously capturing elevation information
from LiDAR data. This innovative model integrates heterogeneous features through a
parameter sharing strategy, marking a substantial departure from conventional approaches.
Zhang et al. [41] designed an Interleaved Perceptual Convolutional Neural Network (IP-
CNN), which can introduce HSI perception constraints and LiDAR perception constraints
into the integration of multi-source structural information, and achieved satisfactory results
in small sample training. Lu et al. [42] unveiled a revolutionary method called Coupled
Adversarial Learning-based Classification (CALC). Their approach pioneers an adversarial
setup between a dual generator and a discriminator. This mechanism adeptly extracts
similar higher-order semantic information and modality-specific complementary details,
introducing a paradigm shift in classification methodologies. Zhao et al. [43] proposed a
new two-branch approach that combines a CNN and Transformer encoder in a hierarchical
form to achieve effective joint classification of heterogeneous information from multiple
sources. Additionally, Sun and colleagues [44] developed a groundbreaking multi-scale
lightweight fusion network based on this, distinctively free from attention mechanisms.
This novel architecture not only drastically reduces training parameters but also effectively
captures multi-scale depth and high-order features.

Although DNN-based methods have made significant progress in the joint classi-
fication of HSI and LiDAR data, the existing methods still face a series of challenges
when dealing with complex feature environments [45–47]. Initially, given the varied imag-
ing mechanisms of distinct sensors, the model necessitates the separate processing of
diverse source data to ensure the effective representation of specific information. Second,
the application scenarios of HSI and LiDAR sensors are distinct [48], resulting in different
performance focuses for different data types. This requires the training of classification
models to fully consider differences and flexibly capture fine-grained local details and
global information. Finally, for formal variations in different data features, the classification
model also requires a strong adaptive complementary ability to realize the effective fu-
sion and complementarity of spectral–spatial–elevation features, so as to achieve accurate
scene classification.

To tackle the aforementioned challenges, we introduce a comprehensive joint classi-
fication method for HSI and LiDAR data, termed Adaptive Feature Alignment Network
with a Global–Local Mamba. It contains two branches: an HSI branch and a LiDAR feature
processing branch. Specifically, we propose an SSE feature extraction module to process
HSI and LiDAR data separately to mine more spectral–spatial and elevation features. It can
fully extract adaptive feature information while considering data discretization. In addition,
to capture semantic information at multiple scales, we also propose Global–Local Mamba
modules for the two types of data sources to achieve dynamic awareness of spectral–space–
elevation information. Finally, to eliminate the inherent distinction between the expressions
of the two types of data in the upper and lower branches, we design an SSE Adaptive
Alignment and Fusion (A2F) module that alleviates the feature differences and spatial
mismatches between the data sources by learning the discriminative features of the both
types of data to adapt to the calibration differences.

To summarize, the main contributions are as follows:

(1) We propose a joint HSI-LiDAR classification method called Adaptive Feature Align-
ment Network with a Global–Local Mamba (AFA-Mamba), which uses a hybrid two-
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branch CNN architecture to accurately extract 3D spectral–spatial information from
HSI data while simultaneously capturing 2D elevation information from LiDAR data.

(2) The proposed Global–Local Mamba module is designed to be both efficient and
effective in processing data. It operates by dynamically capturing and analyzing
spectral, spatial, and elevation information, allowing the model to adaptively focus on
different types of information depending on the context.

(3) We design a novel spectral–spatial–elevation Adaptive Alignment and Fusion module
to adaptively recalibrate the differences by learning the discriminative features of
the two types of data, thereby effectively mitigating the problems due to feature
differences and spatial mismatches between the data sources. It ensures the accuracy
and consistency of HSI and LiDAR information in the fusion process.

(4) AFA–Mamba demonstrates superior classification performance compared to several
existing SOTA methods. The experimental results across all three datasets consistently
validate the outstanding performance of our approach.

This paper’s subsequent sections are structured as follows: Section 2 offers a compre-
hensive overview of our AFA–Mamba, elucidating its core components and operational
principles. Moving forward, Section 3 meticulously outlines the experimental datasets,
delineates the experimental setup, and conducts a comprehensive analysis of the classifica-
tion outcomes. Lastly, Section 4 succinctly summarizes the study’s conclusions and paves
the way for future research directions.

2. Methodology

Figure 1 illustrates the comprehensive workflow of our proposed AFA–Mamba. It
includes HSI and LiDAR Data Preprocessing, a spectral–spatial–elevation (SSE) Feature
Extraction Module, a Global–Local Mamba, and an SSE Adaptive Alignment and Fusion
(A2F) Module. We introduce the details of each module in the following sections.
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Figure 1. The architecture of our proposed AFA–Mamba. The proposed method consists of two
branches: the upper branch performs fine feature extraction for the spectral–spatial information from
HSI, and the lower branch performs correlation feature extraction for the elevation information from
LiDAR. Finally, the feature level of the multi-source information is calibrated by the A2F module to
realize the high-precision classification of the landform categories.

2.1. HSI and LiDAR Data Preprocessing

This module is provided with HSI data, denoted as XH ∈ Rm×n×l , and LiDAR data,
denoted as XL ∈ Rm×n, covering the same area of the Earth’s surface, where m and n
represent the spatial dimensions, and l represents the number of spectral bands in the HSI
data. The HSI data typically contain numerous spectral bands capable of conveying more
valuable information, with each pixel being representable by a one-hot category vector.
However, the large size of spectral data leads to expensive computational costs. Therefore,
we extracted the first k principal components from HSI through PCA to reduce the number
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of the spectral band from l to k while keeping its spatial dimensions unchanged, which is
defined as Xpca

H ∈ Rm×n×k.
Next, for Xpca

H ∈ Rm×n×k and XL ∈ Rm×n, we employed a window with a patch
size of s × s, performed 3D and 2D patch extraction, and obtained the 3D small patches
XP

H ∈ Rs×s×k and 2D small patches XP
L ∈ Rs×s, respectively. We determined the identity

of each patch by its central pixel. For edge pixels that may not meet the window size, we
performed a padding operation on these pixels and defined the width as (s − 1)/2. Lastly,
we filtered out the pixel blocks with label 0, and then partitioned the remaining samples
into training and test sets.

2.2. Spectral–Spatial–Elevation Feature Extraction Module

By exploiting the distinct advantage of CNNs in context modeling and feature ex-
traction, they excel in managing vast remote sensing datasets. CNNs efficiently capture
spectral–spatial correlations in HSI data and comprehensively extract elevation details from
LiDAR data. Hence, our approach employs a 3D-CNN to extract intricate spectral–spatial
features from high-dimensional 3D patches, enabling precise local modeling. Concurrently,
we utilize a separate 2D-CNN to focus specifically on extracting elevation features from
LiDAR data.

As illustrated in Figure 1, for the HSI data Xpca
H ∈ Rm×n×k, we first used Conv3-D to

extract discriminative spectral–spatial features from the HSI data, and convert the spatial
dimensions of the generated feature cube into a two-dimensional vector. Subsequently,
we utilized Conv2-D to mitigate the redundancy inherent in both spectral and spatial
information. Unlike HSI data processing, we employed two Conv2-D convolutions to
extract the surface elevation information for the LiDAR data XL ∈ Rm×n, whose dimensions
and convolution kernel size are 16@3 × 3 and 64@3 × 3, respectively. To speed up the
training process and increase non-linear learning capabilities, we added layer normalization
and ReLU activation functions after each convolution layer.

2.3. Global–Local Mamba Encoder

In hyperspectral classification tasks, remote sensing images are typically captured by
satellites from a top-down perspective, resulting in large spatial features with arbitrary
orientations. Therefore, the global context modeling of remote sensing images is crucial for
classification tasks. However, relying solely on global features is often insufficient for iden-
tifying ground vegetation, as it usually requires local representation enhancement to handle
small regions with severe boundary adhesion. Although state-space models (SSMs) have
shown promise in long-sequence modeling, they face challenges in effectively combining
local invariants and global context in visual data. To address this, we propose Global–Local
Mamba, which introduces local bias to enhance the spatial features of local objects.

State-space models (SSMs) are a type of continuous system that map one one-dimensional
function or sequence to another through specific implicit latent states. In other words, it
is a model that uses latent states to transform and model sequential data. Given a one-
dimensional sequence x(t) ∈ R, which is projected through a hidden state h(t) ∈ Rm to
form a new one-dimensional sequence y(t) ∈ R, the entire system can be represented
as follows:

h
′
(t) = Ah(t) + Bx(t),

y(t) = Ch(t) + Dx(t).
(1)

where A is the state matrix, which defines how the current hidden state affects its own
rate of change. B and C are the input matrix and output matrix, respectively. D is the
feed-through (or direct transmission) matrix.

In practice, the continuous system described above should be discretized under the
zero-order hold assumption, converting the matrices A and B into their discrete forms for
a time scale ∆ ∈ R+:
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A = exp(∆A),

B = (∆A)−1(exp(∆A)− I) · ∆B.
(2)

where ∆ is the step size. Therefore, the discretized version of SSMs can be expressed as:

ht = Aht−1 + Bxt, yt = Cht + Dxt. (3)

However, the current system remains static when handling different inputs. To over-
come this limitation, Mamba introduces a selective state-space model that allows pa-
rameters to adapt based on the input, enhancing selective information processing across
sequences. This parameter selection mechanism can be expressed as:

B = fB(xt), C = fC(xt), ∆ = θA(P + fA(xt). (4)

Here, fB(xt), fC(xt), and fA(xt) are linear functions that expand features to the dimension
of the hidden state. Since SSMs are tailored for long sequences, they have limitations in
capturing detailed local information. In addition, VMamba [25] and Vim, propose specific
position-aware scanning strategies to preserve the structure of 2D images. However,
these directed sequences overlook the visual information within the pixel neighborhood.
We explore a Global–Local Mamba Encoder, where global perception is received before
focusing on details, thereby compensating for the lack of local information.

As shown in Figure 2, our Global–Local Mamba Encoder adopts the linear and state-
space model flow, inspired by the usage of similar structures in Transformers and Mamba.
Furthermore, we introduce a component, eg(Lp), to enhance local bias and correct the
causal relationships between neighborhood data, thereby improving the original SSM by
maintaining local 2D dependencies:

ht = Aht−1 + Bxt,

yt = Cht + Dxt + eg(Lp).
(5)

where eg(Lp) operates independently of the hidden state space.
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Figure 2. Illustration of Global–Local Mamba Encoder. DWConv denotes Depth-Wise Convolution
and SiLU denotes the Sigmoid Linear Unit function. Also, A is the state matrix, B is the input matrix,
C is the output matrix, and D is the feed-through matrix. We introduce a selective state-space model
with the premise of allowing the spatial features of localized objects to be enhanced by adjusting
parameters according to the inputs. This enhances selective information processing across sequences.

2.4. SSE Adaptive Alignment and Fusion Module

Efficiently fusing multi-source remote sensing data stands as a pivotal factor in sig-
nificantly enhancing remote sensing classification performance. However, the fusion of
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discriminative features from different sources remains a major challenge due to the inherent
feature variation and spatial misalignment. To this end, we propose a spectral–spatial–
elevation (SSE) Adaptive Alignment and Fusion (A2F) module to adaptively adjust the
relative positions between multi-source features. It achieves optimal fusion by building a
guided subspace to accurately estimate the feature-level offset.

Figure 3 illustrates the detailed workflow of the SSE A2F module. Specifically, we
extract modality-invariant features and modality-specific features from both the HSI and
elevation feature. To mitigate misalignment in the multi-source feature space, we use the
modality-invariant features to predict spatial offsets in the multi-source data. These pre-
dicted offsets then adaptively adjust the spatial positions of the modality-specific features
to achieve optimal feature alignment.
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Figure 3. Illustration of SSE A2F Module. F in the figure denotes the individual feature representations
of the intermediate processes of the network. The module consists of two sets of upper and lower
feature inputs: spectral–spatial features and elevation features. The module can adaptively adjust
the relative positions between multi-source features, and achieve optimal fusion by constructing a
bootstrap subspace to accurately estimate feature-level offsets.

For each input of the spectral–spatial–elevation features Fhsi ∈ RH×W×C and
Flidar ∈ RH×W×C, we fuse their modality-invariant features to form a guided subspace
C = [Chsi,Clidar]. Then, through channel attention projection to this guided subspace, we
amplify the information-rich bands while reducing the influence of irrelevant bands.

C = Concat(Fhsi,Flidar), Ĉ = Cm([Chsi,Clidar]; θc). (6)

where Cm is the channel attention operation. θc denotes the assigning of a separate parame-
ter to each feature.

To learn the spatial shift between modalities from the guided subspace as a strong prior
for subsequent alignment and fusion, we use deformable convolutions to achieve implicit
offset compensation. Taking into account the varying contributions of each spectral and
sub-band region to classification, we first introduce a modulation scalar ∆tk learned from Ĉ,
which dynamically aggregates information from the surrounding area of the corresponding
position p. As depicted in Figure 3, given the center-sampled value x(p) in the modality-
specific feature Fhsi

s or F lidar
s and the modulation scalar ∆tk, the corresponding value y(p)

in the aligned feature Flidar
hsi can be derived as follows:
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y(p) =
K

∑
k=1

wk · x(p + pk + ∆pk) · ∆tk (7)

where K, pk, and wk represent the number of kernel weights, and the fixed offset of the k-th
position, respectively. Finally, the two aligned features Flidar

hsi and Fhsi
lidar are fused and sent to

the classification head.

2.5. Classification Block

Following the SSE A2F module processing, the output is passed through a multi-layer
perceptron (MLP) layer for the final classification. This MLP comprises two linear layers
featuring Gaussian Error Linear Units (GELUs). Notably, the last linear layer integrates a
softmax function to derive conclusive labels for classification.

3. Experiment and Analysis

In this section, we elaborate on the various configurations and results of our exper-
iments. First, we give the specific dataset, experimental configurations, and evaluation
indicators for fair comparison. Then, we conduct quantitative experiments on three rep-
resentative multi-modal datasets to demonstrate the advanced performance of our AFA–
Mamba. In addition, comprehensive ablation studies are performed to explain the role of
each component in the proposed AFA–Mamba. Finally, the quantitative and visual results
demonstrate the superior performance of our AFA–Mamba over existing SOTA methods in
remote sensing classification tasks.

3.1. Dataset Description

Following the previous methods [28,42], we select three datasets that are widely
utilized for remote sensing classification tasks: MUUFL Gulfport, Trento, and the Augsburg
datasets, which contain include two types of data (HSI and LiDAR). Table 1 reports the
details of all datasets used, including the number of samples and the land cover ground
truth categories.

(1) MUUFL Gulfport Dataset: Gathered at the University of Southern Mississippi
Gulf Park campus, this dataset utilizes a reflective optical system spectrometer sensor for
imaging. The dataset integrates both hyperspectral imaging (HSI) and LiDAR data. The HSI
data feature 72 spectral bands spanning from 0.38 to 1.05 µm. Additionally, the LiDAR
data are composed of two rasters that function at a wavelength of 1.06 µm. The MUUFL
Gulfport dataset has a pixel size of 325 × 220 and covers 11 distinct land cover categories.
Due to the significant noise present in the first and last 8 spectral bands, we deleted these
bands during training to improve data quality. Figure 4 presents a visual representation of
the MUFFL dataset, including pseudo-color composite images (HSI data), grayscale images
(LiDAR data), and depictions of the various land cover categories within the dataset.

(2) Trento Dataset: This dataset originates from the rural area surrounding Trento,
a city in southern Italy, and includes six distinct scenes. The hyperspectral imaging data
and LiDAR data were acquired using the AISA Eagle system’s hyperspectral imaging Eagle
sensor and the Optech ALTM 3100EA sensor, respectively. Both sensors provide a spatial
resolution of 1 m, with a pixel size of 600 × 166. The HSI data includes 63 spectral channels
spanning from 402.89 nm to 989.09 nm, offering a spectral resolution between 0.42 µm and
0.99 µm. The LiDAR data are composed of a single raster. Figure 5 displays the image
types for the HSI and LiDAR data and the ground truth land cover categories.

(3) Augsburg Dataset: The Augsburg dataset captures land cover in the German city
of Augsburg by integrating data from hyperspectral imaging and LiDAR sources. Both
data sources use 30 m spatial resolution. The HSI data contain 180 spectral bands with
wavelengths ranging from 0.4 µm (UV and visible) to 2.5 µm (NIR). The LiDAR data consist
of a single raster layer, both captured at a wavelength of 1.06 µm. As shown in Figure 6, it
has a pixel size of 332 × 485 and consists of seven different categories.
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Figure 4. Visual representation of the MUUFL Gulfport dataset. (a) False-color map. (b) Grayscale
image for the LiDAR. (c) Ground truth map of various land cover categories.
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Figure 5. Visual representation of the Trento dataset. (a) False-color map. (b) Grayscale image for the
LiDAR. (c) Ground truth map of various land cover categories.

(a) (b) (c)

Forest

Residential Area

Industrial Area

Low Plants

Allotment

Commercial Area

Water

Figure 6. Visual representation of the Augsburg dataset. (a) False-color map. (b) Grayscale image for
the LiDAR. (c) Ground truth map of various land cover categories.

Table 1. Training and test samples in MUUFL Gulfport, Trento, and Augsburg.

ID
MUUFL Gulfport Trento Augsburg

Land Cover Class Training Test Land Cover Class Training Test Land Cover Class Training Test

C01 Trees Mostly 1163 22,083 Apple Trees 21 4013 Forest 676 12,831
C02 Grass 214 4056 Buildings 15 2888 Residential Area 1517 28,812
C03 Mixed Ground Surface 345 6537 Ground 3 476 Industrial Area 193 3658
C04 Dirt and Sand 92 1734 Woods 46 9077 Low Plants 1343 25,514
C05 Road 335 6352 Vineyard 53 10,448 Allotment 29 546
C06 Water 24 442 Roads 16 3158 Commercial Area 83 1562
C07 Buildings Shadow 112 2121 Water 77 1453
C08 Buildings 312 5928
C09 Sidewalk 70 1315
C10 Yellow Curb 10 173
C11 Cloth Panels 14 255

Total 2691 50,990 Total 154 30,060 Total 3918 74,376
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3.2. Experimental Setting

(1) Evaluation Metrics: To assess the performance of our proposed AFA–Mamba, we
utilized four commonly used evaluation metrics for a fair comparison: average accuracy
(AA), overall accuracy (OA), Kappa coefficient (k), and per-class accuracy. We want the
score of each metric to be as high as possible, which means the classification accuracy of
our model is more accurate. To ensure fair comparisons, all experiments were conducted
using separate training and test sets.

(2) Environment Configuration: We implemented our AFA–Mamba by PyTorch 2.2.0.
Training was conducted using the Adam optimizer with the parameters β1 = 0.9 and
β2 = 0.999. The model trained for 100 epochs, with a batch size of 64 and an initial learning
rate of 1 × 10−3. The training process utilized an NVIDIA Geforce RTX 4070ti 16 GB GPU.
Regarding the traditional method among the comparison methods, we completed the
experiment on the MATLAB platform.

Parameter Setting Adjustment: (1) Patch Size: For joint HSI and LiDAR data classi-
fication methods, choosing an appropriate patch size means that the model can consider
more neighborhood pixels with limited computational cost, which may better capture the
spatial distribution, band changes, and elevation information characteristics of ground
objects. In the dataset presented above, we fixed all parameter settings except patch size.
In addition, in order to select the appropriate patch size, we evaluated the accuracy ef-
fect of the patch sizes in the set {7, 9, 11, 13, 15, 17} in sequence. As shown in Figure 7,
an excessively large patch size will cause the method, especially the scalar fusion module,
to have more complex inputs, resulting in a reduced network fitting effect and thus reduced
accuracy. A patch size that is too small will result in insufficient data context information,
thereby affecting global information retention and resulting in insufficient accuracy. It can
be seen from this experiment that a patch size of 11 is the most appropriate.

(a) (b) (c)
Figure 7. Effect of patch size on the OA, AA, and Kappa coefficient. (a) MUUFL Gulfport. (b) Trento.
(c) Augsburg. It can be seen that our method shows different sensitivities to the patch size on different
datasets, thus better tuning the hyperparameters of the model to the optimum.

Although HSI data contain hundreds of continuous spectral bands and provide rich
ground object information, due to their wide range of spectral imaging and high response
characteristics, many redundant bands are often retained in the image, which can easily
cause dimensional disaster. Therefore, we utilized PCA to retain the most important
spectral data to achieve a balance between spectral expression ability and computational
efficiency. As shown in Figure 8, too small a number of retained spectra will result in a large
loss of spectral information, and low-resolution spatial data and elevation information
cannot support sufficient classification accuracy. However, an excessively large number
of retained spectra will introduce a certain amount of redundant noise, accompanied by
high computational costs, resulting in a decrease in classification accuracy. We selected the
number of retained spectral bands from the set {5, 10, 15, 20, 25, 30, 35, 40} for accuracy effect
evaluation. When we retained the main 30 bands of HSI data, they could be effectively
combined with LiDAR data to improve classification accuracy.
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(a) (b) (c)
Figure 8. Effect of reducing spectral dimensionality on the OA, AA, and Kappa coefficient. (a) MUUFL
Gulfport. (b) Trento. (c) Augsburg. It can be seen that our method shows different sensitivities to
reductions on different datasets, thus better tuning the hyperparameters of the model to the optimum.

Learning rate: The learning rate controls the magnitude of the weight updates during
model training, influencing how quickly or slowly the model learns. A higher learning
rate can lead to oscillations during training, potentially hindering the model’s ability to
converge consistently. On the contrary, a lower learning rate will slow down the training
process, leading to increased training time and higher computational cost. Therefore, in the
hyperspectral image classification task, an appropriate learning rate helps to stabilize the
fitting effect of the training process, thus affecting the final classification performance. We
selected the learning rate from the set {1 ×10−5, 5 × 10−5, 1 × 10−4, 5 × 10−4, 1 × 10−3,
5 × 10−3} for accuracy effect evaluation. As shown in Figure 9, it can be seen from this
experiment that for the MUUFL Gulfport and Augsburg datasets, setting the learning rate
to 5 × 10−4 and the Trento dataset to 1 × 10−3 can achieve better classification results.

(a) (b) (c)
Figure 9. Effect of learning rate on the OA, AA, and Kappa coefficient. (a) MUUFL Gulfport.
(b) Trento. (c) Augsburg. It can be seen that our method shows different sensitivities to the learning
rate on different datasets, thus better tuning the hyperparameters of the model to the optimum.

3.3. Ablation Study

To assess the impact of each component within AFA–Mamba, a series of experiments
was conducted using the MUFFL dataset. The sample setup is shown in Table 1. The
experiments included PCA, the spectral–spatial–elevation feature extraction module (SSE-
FE), the HSI-Global–Local Mamba module (HSI-GL–Mamba), the LiDAR–Global–Local
Mamba module (LiDAR-GL–Mamba), and the Adaptive Alignment and Fusion Module
(A2F) analysis. Table 2 reports the classification performance resulting from combining
different modules.

No PCA was used in Case 1, and the raw spectra of the data were directly fed into the
model. Due to the massive amount of invalid band information brought in, the accuracy of
the model degraded severely. The OA, AA, and K accuracies all degraded by more than 3%.
This illustrates the importance of filtering bands for de-redundancy in hyperspectral tasks.

Case 2 replaced the SSE-FE module with a regular 2D-CNN, which coarsely extracted
spectral–spatial–elevation information. The OA, AA, and K accuracies were somewhat
affected, decreasing by 1.86%, 1.57%, and 1.55. This illustrates the improvement of our
designed feature enhancement extraction module with respect to a single CNN.
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Table 2. Ablation experimental results. The results show that each module of our method works and
is consistent with the motivation for the experiment.

Cases

Component Indicators

PCA SSE-FE
HSI-
GL-

Mamba

LiDAR-
GL-

Mamba
A2F OA (%) AA (%) k ∗ 100

1 × ✓ ✓ ✓ ✓ 89.87 79.41 87.62
2 ✓ CNN ✓ ✓ ✓ 91.25 81.24 89.35
3 ✓ ✓ × ✓ ✓ 90.49 80.12 88.14
4 ✓ ✓ × ✓ ✓ 90.48 80.54 87.02
5 ✓ ✓ ✓ × ✓ 90.05 81.28 88.53
6 ✓ ✓ ✓ ✓ × 91.23 80.36 88.15

7 ✓ ✓ Original
Mamba ✓ ✓ 91.52 81.62 89.32

8 ✓ ✓ ✓ Original
Mamba ✓ 90.73 80.54 88.95

9 ✓ ✓ ✓ ✓ ✓ 93.11 82.81 90.90

Case 3 removed the SSE-FE module and directly used the most basic patch for the
features of two different types of data. We can observe that the model extraction ability
dropped significantly, which is reflected in three important indicators, among which the
OA, AA, and K accuracy all dropped by more than 2%. This illustrates the importance of
the SSE-FE module in improving classification accuracy.

Case 4 and Case 5 eliminated the HSI-GL–Mamba and LiDAR-GL–Mamba modules,
respectively, which are of great significance in our feature retention. Both modules can
differentiate between global and local information based on the feature map. Here, there
is only one serial convolutional branch for replacement, which does not allow for the
efficient extraction of more comprehensive features from HSI and LiDAR data. Therefore,
the accuracy of the three classifications dropped significantly. This demonstrates that the
HSI-GL–Mamba and LiDAR-GL–Mamba modules explore deep spectral–spatial–elevation
semantic information, facilitating the effective integration and interaction of features across
multiple branches.

Case 6 removed the A2F module and adds the spectral–spatial and elevation features
directly into the classifier. It is obvious that although the Mamba structure is able to obtain
sufficiently rich features, due to the inherent differences and spatial offsets in the two
features, direct addition cannot effectively fuse the discriminative features of these features,
thus leading to a decrease in classification accuracy. In Case 7, the A2F module we proposed
was able to eliminate this challenge, thus achieving the optimal classification accuracy and
greatly improving the three classification indicators.

Cases 7 and 8 replace the GL–Mamba of the upper-branch HSI and the GL–Mamba
of the lower-branch LiDAR with the original Mamba. It is evident that while the original
Mamba structure can capture global contextual information, it lacks the local bias necessary
to refine spatial details. As a result, the classification accuracy suffers, as the model is unable
to fully exploit the fine-grained spatial and spectral variations present in both data sources.

3.4. Classification Result and Analysis

To demonstrate the superiority of our proposed AFA–Mamba compared to other
advanced methods, we carefully selected some representative and excellent classification
methods and divided them into two categories: the HSI-based classification methods,
including RF [20], SVM [21], 2D-CNN [49], HybridSN [29], GAHT [35], and MiM [50], and
the joint HSI and LiDAR data fusion classification methods, including CoupledCNN [40],
CALC [42], HCTnet [43], M2FNet [44], and HLMamba [51]. For a fair comparison, the de-
fault parameters of all methods followed the corresponding references, and the training set
partitioning and other parameters were consistent with the configuration described above.
We repeated the experiment ten times to obtain its mean and variance.
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(1) Quantitative Results and Analysis:
Tables 3–5 report the quantitative comparison results of our AFA–Mamba against

other advanced methods across the three datasets. We conducted each experiment 10 times
and calculated the average and standard deviation of the results to ensure the reliability
and fairness of the comparison. In the table, the best results are highlighted in bold red.
Our method consistently achieved the highest classification performance across all datasets
for the OA, AA, and Kappa metrics.

For example, Table 3 provides the detailed results of each comparison method along-
side our proposed AFA–Mamba using the MUUFL Gulfport dataset. Our method achieves
the highest performance in all aspects. In contrast to traditional approaches like RF and
SVM, deep learning methods can learn a wider range of features to improve classification
accuracy. The 2D-CNN, HyBridSN, GAHT, and MiM methods based on HSI data classifi-
cation extract effective features in HSI data, but their OA results are 1.32%, 2.84%, 4.00%,
and 1.48% lower than our AFA–Mamba, respectively. The main reason for this is that their
limited receptive fields ignore global features. Moreover, our method outperforms joint
HSI and LiDAR data classification approaches in key metrics such as OA, AA, and k. It also
demonstrates competitive performance in the average accuracy of each class. Specifically,
our AFA–Mamba surpasses CoupledCNN, CALC, HCTnet, M2FNet, and HLMamba in
AA by 2.53%, 4.79%, 3.58%, 2.57%, and 1.1%, respectively. This is attributed to the multiple
receptive fields of the local–global branch of our method and the efficient spectral–elevation
feature correction fusion strategy. Tables 4 and 5 report the results of all compared methods
on the Trento and Augsburg datasets. We can draw similar conclusions as above from the
two tables. Obviously, our proposed method still maintains an advanced level in all aspects.

The Trento dataset has a small number of categories and an uneven distribution of
sample numbers. Therefore, the OA and Kappa of each method achieved high accuracy,
while AA had greater room for improvement. It can be observed from Table 4 that the
joint classification methods of HSI and LiDAR data achieved good results, especially
HCTnet and M2FNet. The dual Transformer encoder branch used by HCTnet better
combines the characteristics of the two types of remote sensing data. However, due to
its more complex fusion mode, it is prone to under-fitting in the Trento dataset with a
small number of samples. As for our proposed AFA–Mamba, the MFR module can better
retain the detailed information of the data even in scenarios where the number of samples
is insufficient. Therefore, our OA and Kappa are 0.56% and 0.75% higher than HCTnet,
respectively. In addition, M2FNet benefits from its multi-scale feature extraction and retains
more spectral–spatial–elevation information, and the Global–Local Mamba modules we
proposed fully enhance the awareness of global–local information, so it is ultimately better
than M2FNet and achieved OA, AA, and Kappa values that are 0.77%, 0.19%, and 1.03%
higher, respectively.
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Table 3. Classification accuracy of comparison experiment in MUUFL Gulfport using various methods. Nos. 1 to 11 are the classification accuracies for each
landform category.

No.

Only HSI Input HSI and LiDAR Input

RF [20] SVM [21] 2D-CNN
[49]

HybridSN
[29] GAHT [35] MiM [50] CoupledCNN

[40] CALC [42] HCTnet
[43]

M2FNet
[44]

HLMamba
[51]

Ours

1 96.54 ± 1.13 97.64 ± 1.07 97.15 ± 0.32 97.07 ± 0.3 96.21 ± 0.74 95.75 ± 1.22 97.23 ± 0.52 97.46 ± 1.03 97.13 ± 0.67 96.95 ± 0.41 97.12 ± 0.55 96.94 ± 0.31
2 79.11 ± 4.30 87.39 ± 3.04 84.61 ± 1.28 81.91 ± 7.99 84.15 ± 5.42 85.96 ± 1.32 82.21 ± 4.00 88.41 ± 3.19 86.31 ± 1.60 86.12 ± 2.54 86.40 ± 3.12 87.43 ± 4.3
3 83.76 ± 3.14 86.14 ± 4.83 86.63 ± 3.36 83.61 ± 4.03 85.32 ± 3.87 88.23 ± 1.2 87.64 ± 2.73 84.82 ± 5.44 89.40 ± 1.51 88.86 ± 1.81 88.39 ± 1.72 91.68 ± 1.16
4 89.36 ± 2.72 93.64 ± 2.01 94.92 ± 0.87 92.39 ± 6.93 89.52 ± 4.55 91.65 ± 3.09 92.90 ± 2.68 89.39 ± 3.48 90.40 ± 1.52 89.85 ± 1.64 91.59 ± 1.62 91.42 ± 2.76
5 85.99 ± 4.11 90.39 ± 2.39 90.78 ± 0.97 90.74 ± 1.03 86.95 ± 3.36 91.16 ± 0.67 93.93 ± 1.45 93.03 ± 1.98 93.62 ± 1.03 94.01 ± 0.70 92.02 ± 0.67 94.45 ± 1.06
6 89.37 ± 4.77 95.42 ± 2.86 95.44 ± 3.61 84.47 ± 7.03 94.40 ± 3.03 96.44 ± 0.31 94.57 ± 2.87 90.16 ± 3.86 83.62 ± 5.34 93.28 ± 1.75 96.24 ± 1.03 91.9 ± 3.24
7 80.31 ± 3.69 83.18 ± 2.30 81.88 ± 2.17 78.41 ± 4.29 75.55 ± 7.75 81.09 ± 2.15 88.77 ± 1.06 83.61 ± 4.23 86.04 ± 1.99 84.89 ± 2.76 85.82 ± 0.93 86.36 ± 1.99
8 95.70 ± 2.09 96.86 ± 1.18 96.39 ± 0.92 95.82 ± 1.45 93.81 ± 2.86 95.8 ± 0.51 96.21 ± 1.43 96.60 ± 0.95 96.68 ± 0.47 97.14 ± 0.53 95.72 ± 0.37 96.58 ± 0.79
9 28.39 ± 4.11 40.75 ± 5.58 54.18 ± 5.44 48.30 ± 7.19 36.06 ± 7.04 48.19 ± 5.47 45.31 ± 6.11 50.78 ± 9.34 52.11 ± 4.16 57.64 ± 3.08 48.55 ± 2.82 53.44 ± 4.87
10 5.53 ± 2.84 13.43 ± 7.18 23.60 ± 5.94 26.63 ± 5.65 11.22 ± 5.41 20.56 ± 1.91 16.18 ± 3.78 11.56 ± 8.38 20.00 ± 2.02 24.57 ± 4.70 26.25 ± 4.58 27.11 ± 5.54
11 70.00 ± 8.30 80.47 ± 7.53 86.71 ± 4.74 92.59 ± 4.18 61.84 ± 7.68 64.62 ± 6.62 88.08 ± 6.92 72.39 ± 11.3 76.20 ± 2.84 69.37 ± 5.69 61.31 ± 2.3 93.57 ± 1.77

OA(%) 88.92 ± 0.79 91.76 ± 0.51 91.79 ± 0.45 90.27 ± 1.08 89.11 ± 0.88 91.63 ± 0.22 92.09 ± 0.61 91.94 ± 0.65 92.45 ± 0.28 92.53 ± 0.19 92.01 ± 0.27 93.11 ± 0.39
AA(%) 73.09 ± 1.02 78.66 ± 1.33 81.12 ± 0.83 79.19 ± 1.96 74.05 ± 1.29 78.25 ± 0.89 80.28 ± 1.91 78.02 ± 1.87 79.23 ± 0.85 80.24 ± 0.80 79.04 ± 0.66 82.81 ± 1.31
k × 100 85.27 ± 1.04 89.05 ± 0.70 89.10 ± 0.61 87.13 ± 1.43 85.59 ± 1.11 88.91 ± 0.29 89.52 ± 0.81 89.30 ± 0.86 90.00 ± 0.36 90.12 ± 0.25 89.42 ± 0.35 90.90 ± 0.52

Table 4. Classification accuracy of comparison experiment in Trento using various methods. Nos. 1 to 6 are the classification accuracies for each landform category.

No.

Only HSI Input HSI and LiDAR Input

RF [20] SVM [21] 2D-CNN
[49]

HybridSN
[29] GAHT [35] MiM [50] CoupledCNN

[40] CALC [42] HCTnet
[43]

M2FNet
[44]

HLMamba
[51]

Ours

1 94.62 ± 4.91 96.28 ± 4.61 97.41 ± 1.87 96.33 ± 5.09 98.69 ± 0.79 90.96 ± 4.84 97.91 ± 3.45 98.56 ± 1.30 99.30 ± 0.81 99.08 ± 0.82 98.95 ± 0.78 99.43 ± 0.40
2 82.93 ± 12.81 92.68 ± 3.33 85.49 ± 3.74 76.90 ± 7.43 79.42 ± 6.69 48.14 ± 11.14 94.17 ± 1.46 94.49 ± 2.80 98.10 ± 2.18 90.54 ± 5.53 84.29 ± 4.99 94.29 ± 2.20
3 6.02 ± 10.70 9.08 ± 5.07 39.56 ± 13.64 45.35 ± 16.13 31.97 ± 7.16 54.38 ± 9.24 18.30 ± 8.51 51.41 ± 23.48 63.57 ± 18.91 65.8 ± 12.73 34.3 ± 10.73 58.42 ± 15.5
4 99.90 ± 0.10 99.88 ± 0.18 99.85 ± 0.20 99.86 ± 0.26 99.93 ± 0.05 99.82 ± 0.19 98.77 ± 0.80 99.99 ± 0.02 100.00 ± 0.00 99.97 ± 0.04 99.96 ± 0.05 99.99 ± 0.02
5 99.69 ± 0.63 100.00 ± 0.00 99.81 ± 0.19 94.96 ± 3.27 99.99 ± 0.02 95.35 ± 2.5 99.91 ± 0.10 99.96 ± 0.08 99.76 ± 0.32 99.96 ± 0.07 99.57 ± 0.22 99.99 ± 0.01
6 78.31 ± 5.50 81.83 ± 4.12 83.76 ± 2.30 71.88 ± 4.81 92.73 ± 3.19 93.28 ± 3.45 98.20 ± 0.52 88.22 ± 3.64 89.75 ± 2.98 94.07 ± 2.25 85.66 ± 4.98 98.43 ± 0.44

OA(%) 93.74 ± 1.03 95.41 ± 0.75 95.48 ± 0.65 91.67 ± 1.71 95.98 ± 0.50 90.71 ± 1.25 97.27 ± 0.53 97.25 ± 0.56 97.99 ± 0.27 97.78 ± 0.61 95.64 ± 0.58 98.55 ± 0.35
AA(%) 76.91 ± 2.78 79.96 ± 1.11 84.31 ± 2.55 80.88 ± 3.25 83.79 ± 1.64 80.32 ± 2.70 84.54 ± 1.21 88.77 ± 3.76 91.75 ± 3.07 91.57 ± 2.29 83.79 ± 2.23 91.76 ± 2.68
k × 100 91.57 ± 1.41 93.83 ± 1.03 93.94 ± 0.87 88.86 ± 2.31 94.61 ± 0.68 87.61 ± 1.66 96.35 ± 0.72 96.32 ± 0.76 97.31 ± 0.36 97.03 ± 0.82 94.16 ± 0.78 98.06 ± 0.47
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Table 5. Classification accuracy of comparison experiment in Augsburg using various methods. Nos. 1 to 7 are the classification accuracies for each landform category.

No.

Only HSI Input HSI and LiDAR Input

RF [20] SVM [21] 2D-CNN
[49]

HybridSN
[29] GAHT [35] MiM [50] CoupledCNN

[40] CALC [42] HCTnet
[43]

M2FNet
[44]

HLMamba
[51]

Ours

1 98.58 ± 0.41 98.89 ± 0.32 99.15 ± 0.18 98.88 ± 0.67 97.76 ± 0.52 99.24 ± 0.2 99.40 ± 0.21 98.76 ± 0.30 99.09 ± 0.17 98.23 ± 0.72 99.1 ± 0.22 99.16 ± 0.21
2 96.52 ± 3.12 97.86 ± 1.51 97.75 ± 0.36 97.29 ± 0.76 98.13 ± 0.62 98.18 ± 0.25 99.17 ± 0.20 99.34 ± 0.12 98.80 ± 0.26 98.37 ± 0.32 98.22 ± 0.52 98.83 ± 0.36
3 77.82 ± 5.20 82.22 ± 3.44 80.18 ± 2.86 76.87 ± 4.22 85.70 ± 3.21 80.8 ± 1.42 82.25 ± 4.99 91.69 ± 3.16 91.02 ± 2.63 91.93 ± 2.04 83.15 ± 4.0 89.38 ± 2.6
4 98.77 ± 0.21 99.02 ± 0.35 99.16 ± 0.10 98.94 ± 0.19 97.57 ± 0.48 99.05 ± 0.07 98.98 ± 0.21 99.08 ± 0.17 98.60 ± 0.26 98.43 ± 0.56 98.8 ± 0.88 98.92 ± 0.26
5 41.93 ± 14.77 61.47 ± 9.84 69.41 ± 5.14 67.53 ± 4.44 65.46 ± 10.06 69.87 ± 5.52 78.99 ± 7.96 85.35 ± 3.15 81.92 ± 5.59 80.95 ± 5.01 78.17 ± 3.83 83.86 ± 2.96
6 22.25 ± 5.65 32.39 ± 4.92 48.68 ± 5.70 40.33 ± 4.76 67.74 ± 5.92 51.02 ± 5.47 55.43 ± 6.88 58.67 ± 9.48 68.07 ± 4.11 71.54 ± 3.23 59.42 ± 4.46 76.2 ± 4.67
7 57.71 ± 3.36 60.30 ± 2.27 65.87 ± 1.24 64.21 ± 2.38 60.10 ± 4.20 67.12 ± 3.30 64.84 ± 2.56 63.78 ± 1.69 68.31 ± 2.62 68.29 ± 3.22 68.62 ± 1.51 66.81 ± 3.53

OA(%) 94.01 ± 1.07 95.29 ± 0.63 95.75 ± 0.11 95.07 ± 0.45 95.64 ± 0.30 96.00 ± 0.13 96.57 ± 0.28 97.12 ± 0.15 97.03 ± 0.20 96.77 ± 0.31 96.29 ± 0.58 97.24 ± 0.14
AA(%) 70.51 ± 2.25 76.02 ± 1.83 80.03 ± 1.18 77.72 ± 0.95 81.78 ± 2.02 80.76 ± 0.61 82.72 ± 0.85 85.24 ± 1.29 86.54 ± 1.26 86.82 ± 1.07 83.64 ± 0.64 87.60 ± 0.93
k × 100 91.40 ± 1.46 93.24 ± 0.87 93.91 ± 0.16 92.93 ± 0.63 93.75 ± 0.43 94.26 ± 0.18 95.08 ± 0.40 95.87 ± 0.23 95.75 ± 0.29 95.37 ± 0.45 94.69 ± 0.81 96.05 ± 0.20
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The Augsburg dataset has a high spatial resolution and complex ground object infor-
mation, which places higher requirements on the model’s local–global information balance
capability. In addition, due to the addition of LiDAR data elevation information, the joint
classification method has additional advantages over the single-source data classification
methods. Specifically, as shown in Table 5, CALC uses dual adversarial networks to conduct
adversarial training on ground object space and achieves high OA accuracy. This is due to
the fact that the adversarial strategy is conducive to the effective combination of space and
elevation information. However, our proposed SFCF module achieves effective correction
of the fused data by introducing additional offsets, which enhances the coupling degree
of spatial–elevation information. Therefore, it is still 0.12%, 1.36%, and 0.18% higher than
the CALC method in terms of OA, AA, and Kappa, respectively. Similarly, compared with
other methods, the efficient and stable fusion caused by the offset correction of our method
can also be proven to be more robust. In summary, by comparing with current classic and
advanced methods in three different types of datasets, it is proved that our AFA–Mamba
has efficient joint classification performance.

(2) Visual Evaluation and Analysis: Figures 10–12 show that the visualization re-
sults of various methods can be used for qualitative comparison. From the results, we
can significantly observe the classification differences between different methods. It is
worth mentioning that our AFA–Mamba can generate more accurate noise-free feature
classification maps.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 10. Maps depicting the classification of MUUFL Gulfport using various methods. (a) RF.
(b) SVM. (c) 2D-CNN. (d) HybridSN. (e) GAHT. (f) MiM. (g) CoupledCNN. (h) CALC. (i) HCTnet.
(j) M2FNet. (k) HLMamba. (l) AFA–Mamba.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure 11. Maps depicting the classification of Trento using various methods. (a) RF. (b) SVM.
(c) 2D-CNN. (d) HybridSN. (e) GAHT. (f) MiM. (g) CoupledCNN. (h) CALC. (i) HCTnet. (j) M2FNet.
(k) HLMamba. (l) AFA–Mamba.

Specifically, the classification method that only uses HSI data has unclear boundaries
and introduces more noise. The multi-source data joint classification method significantly
reduces this phenomenon, but performs poorly in some ground areas. On the other
hand, the classification results obtained by our method have clear boundaries and high
classification accuracy. For example, the visualization results of the MUUFL Gulfport
dataset are presented in Figure 10, and it can be easily seen that most methods have blur
and a lot of noise when distinguishing small and dense areas of multiple categories, while
the classification map of our AFA–Mamba is closer to the real ground truth.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 12. Maps depicting the classification of Augsburg using various methods. (a) RF. (b) SVM.
(c) 2D-CNN. (d) HybridSN. (e) GAHT. (f) MiM. (g) CoupledCNN. (h) CALC. (i) HCTnet. (j) M2FNet.
(k) HLMamba. (l) AFA–Mamba.

Figure 11 illustrates the visualization results of the comparative method in the Terno
dataset. This dataset has larger ground objects and fewer categories than the MUUFL
Gulfport dataset, so it is easier to classify. We can clearly see that most comparison methods
still have the problem of introducing a large amount of noise, while our method still
preserves high-precision classification effects. In addition, the classification results of the
Augsburg dataset with higher resolution are depicted in Figure 12; our AFA–Mamba still
maintains the optimal classification performance in denser scenes with more categories.

4. Conclusions

In this paper, we propose a novel and efficient Adaptive Feature Alignment Network
with a Global–Local Mamba (AFA–Mamba) to achieve the efficient fusion of spectral–spatial
and elevation features, greatly improving the accuracy of remote sensing classification
tasks. Specifically, we propose a novel SSE feature extraction module to explore deep
spectral–spatial–elevation semantic information through multi-branch feature extraction.
In addition, Global–Local Mamba modules are proposed to enhance ground objects that
are sensitive to spectral and elevation information. In order to eliminate the representation
differences and spatial misalignment of multi-source features, we propose the SSE Adaptive
Alignment and Fusion (A2F) module to effectively learn the discriminative features of
heterogeneous data and achieve the adaptive calibration of spatial differences. Extensive
experiments demonstrate the advancement and robustness of our method.
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