The Evolution of Powell Basin (Antarctica)
Abstract
:1. Introduction
2. Geological Setting
3. Data and Methodology
3.1. Magnetic Data
3.2. Gravity, Bathymetry, and Sediment Thickness Data
3.3. Oceanic Spreading Modeling
4. Results
4.1. Magnetic Signature of the Powell Basin
4.2. Position of the Extinct Spreading Axis
4.3. Oceanic Spreading Model
5. Discussion
5.1. Oceanic Spreading and the Evolution of the Powell Basin
5.2. Impacts of the Evolution of the Powell Basin
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilson, J.T. Continental Drift. Sci. Am. 1963, 208, 86–103. [Google Scholar] [CrossRef]
- Heirtzler, J.R.; Dickson, G.O.; Herron, E.M.; Pitman, W.C., III; Le Pichon, X. Marine magnetic anomalies, geomagnetic field reversals, and motions of the oceanic floor and continents. J. Geophys. Res. 1968, 73, 2119–2136. [Google Scholar] [CrossRef]
- Meyerhoff, A.A. Continental drift: Implications of paleomagnetic studies, meteorology, physical oceanography and climatology. J. Geol. 1970, 78, 1–51. [Google Scholar] [CrossRef]
- Bohoyo, F.; Galindo-Zaldívar, J.; Maldonado, A.; Schreider, A.A.; Suriñach, E. Basin development subsequent to ridge-trench collision: The Jane Basin, Antarctica. Mar. Geophys. Res. 2002, 23, 413–421. [Google Scholar] [CrossRef]
- Eagles, G.; Jokat, W. Tectonic reconstructions for paleobathymetry in Drake Passage gateway. Tectonophysics 2014, 611, 28–50. [Google Scholar] [CrossRef]
- Ryan, W.B.; Carbotte, S.M.; Coplan, J.O.; O’Hara, S.; Melkonian, A.; Arko, R.; Weissel, R.A.; Ferrini, V.; Goodwillie, A.; Nitsche, F.; et al. Zemsky. Global Multi-Resolution Topography synthesis. Geochem. Geophys. Geosyst. 2009, 10, Q03014. [Google Scholar] [CrossRef]
- Eagles, G.; Livermore, R.A. Opening history of Powell Basin, Antarctic Peninsula. Mar. Geol. 2002, 185, 195–205. [Google Scholar] [CrossRef]
- Galindo-Zaldívar, J.; Bohoyo, F.; Maldonado, A.; Schreider, A.; Surinach, E.; Vázquez, J.T. Propagating rift during the opening of a small oceanic basin: The Protector Basin (Scotia Arc, Antarctica). Earth Planet. Sci. Lett. 2006, 241, 398–412. [Google Scholar] [CrossRef]
- Galindo-Zaldívar, J.; Puga, E.; Bohoyo, F.; González, F.J.; Maldonado, A.; Martos, Y.M.; de Federico Antonio, D. Reprint of “Magmatism, structure and age of dove basin (Antarctica): A key to understanding south scotia arc development”. Glob. Planet. Chang. 2014, 123, 249–268. [Google Scholar] [CrossRef]
- Schreider, A.A.; Sazhneva, A.E.; Kluyev, M.S.; Brekhovskikh, A.L.; Bohoyo, F.; Galindo-Zaldivar, J.; Evsenko, E.I. Kinematic Model of the Development of the Bottom of the Powell Basin (Weddell Sea). In Processes in GeoMedia—Volume V; Springer: Cham, Switzerland, 2022; pp. 197–207. [Google Scholar] [CrossRef]
- Garrett, S.W.; Renner, R.G.B.; Jones, J.A.; McGibbon, K.J. Continental magnetic anomalies and the evolution of the Scotia Arc. Earth Planet. Sci. Lett. 1987, 81, 273–281. [Google Scholar] [CrossRef]
- Maslanyj, M.P.; Garrett, S.W.; Johnson, A.C.; Renner, R.G.; Smith, A.M. Aeromagnetic Anomaly Map of Western Antarctica (Weddell Sea Sector); Scale 1:2 500,000; British Antarctic Survey: Cambridge, UK, 1991; BAS GEOMAP Ser, Sheet 2. [Google Scholar]
- Martos, Y.M.; Catalán, M.; Galindo-Zaldívar, J.; Maldonado, A.; Bohoyo, F. Insights about the structure and evolution of the Scotia Arc from a new magnetic data compilation. Glob. Planet. Chang. 2014, 123, 239–248. [Google Scholar] [CrossRef]
- King, E.C.; Barker, P.F. The margins of the south Orkney microcontinent. J. Geol. Soc. 1988, 145, 317–331. [Google Scholar] [CrossRef]
- Galindo-Zaldívar, J.; Balanyá, J.C.; Bohoyo, F.; Jabaloy, A.; Maldonado, A.; Martınez-Martınez, J.M.; Suriñach, E. Active crustal fragmentation along the Scotia–Antarctic plate boundary east of the South Orkney Microcontinent (Antarctica). Earth Planet. Sci. Lett. 2002, 204, 33–46. [Google Scholar] [CrossRef]
- Lindeque, A.; Martos, Y.M.; Gohl, K.; Maldonado, A. Deep-sea pre-glacial to glacial sedimentation in the Weddell Sea and southern Scotia Sea from a cross-basin seismic transect. Mar. Geol. 2013, 336, 61–83. [Google Scholar] [CrossRef]
- Pérez, L.F.; Hernández-Molina, F.J.; Lodolo, E.; Bohoyo, F.; Galindo-Zaldívar, J.; Maldonado, A. Oceanographic and climatic consequences of the tectonic evolution of the southern scotia sea basins, Antarctica. Earth-Sci. Rev. 2019, 198, 102922. [Google Scholar] [CrossRef]
- Martos, Y.M.; Galindo-Zaldívar, J.; Catalán, M.; Bohoyo, F.; Maldonado, A. Asthenospheric Pacific–Atlantic flow barriers and the west Scotia ridge extinction. Geophys. Res. Lett. 2014, 41, 1–7. [Google Scholar] [CrossRef]
- Martos, Y.M.; Catalán, M.; Galindo-Zaldívar, J. Curie depth, heat flux and thermal subsidence studies reveal the Pacific mantle outflow through the Scotia Sea. J. Geophys. Res. Solid Earth 2019, 124, 10735–10751. [Google Scholar] [CrossRef]
- Catalán, M.; Negrete-Aranda, R.; Martos, Y.M.; Neumann, F.; Santamaría, A.; Fuentes, K. On the intriguing subject of the low amplitudes of magnetic anomalies at the Powell Basin. Front. Earth Sci. 2023, 11, 1199332. [Google Scholar] [CrossRef]
- Martos, Y.M.; Catalán, M. The Drake Passage asthenospheric and oceanic gateway. Earth-Sci. Rev. 2024, 252, 104731. [Google Scholar] [CrossRef]
- Dalziel, I.W.D. The Scotia arc: An international geological laboratory. Episodes 1984, 7, 7–13. [Google Scholar] [CrossRef]
- Maldonado, A.; Balanyá, J.C.; Barnolas, A.; Galindo-Zaldivar, J.; Hernández, J.; Jabaloy, A.; Livermore, R.; Martínez-Martínez, J.M.; Rodríguez-Fernández, J.; De Galdeano, C.S.; et al. Tectonics of an extinct ridge-transform intersection, Drake Passage (Antarctica). Mar. Geophys. Res. 2000, 21, 43–67. [Google Scholar] [CrossRef]
- Eagles, G.; Gohl, K.; Larter, R.D. High-resolution animated tectonic reconstruction of the south Pacific and West Antarctic margin. Geochem. Geophys. Geosystems 2004, 5, Q07002. [Google Scholar] [CrossRef]
- Dalziel, I.W.D. Antarctica and supercontinental evolution: Clues and puzzles. Earth Environ. Sci. Trans. R. Soc. Edinb. 2013, 104, 3–16. [Google Scholar] [CrossRef]
- Maldonado, A.; Bohoyo, F.; Galindo-Zaldívar, J.; Hernandéz-Molina, F.J.; Lobo, F.J.; Lodolo, E.; Martos, Y.M.; Pérez, L.F.; Schreider, A.; Somoza, L. A modelo f oceanic development by ridge jumping opening of the Scotia Sea. Glob. Planet. Chang. 2014, 123, 152–173. [Google Scholar] [CrossRef]
- Eagles, G.; Livermore, R.; Morris, P. Small basins in the Scotia Sea: The Eocene Drake Passage gateway. Earth Planet. Sci. Lett. 2006, 242, 343–353. [Google Scholar] [CrossRef]
- Brown, B.; Gaina, C.; Müller, D. Circum-Antarctic palaeobathymetry: Illustrated examples from Cenozoic to recent times. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 231, 158–168. [Google Scholar] [CrossRef]
- Livermore, R.; Hillenbrand, C.D.; Meredith, M.; Eagles, G. Drake Passage and Cenozoic climate: An open and shut case? Geochem. Geophys. Geosyst. 2007, 8, Q01005. [Google Scholar] [CrossRef]
- Lagabrielle, Y.; Goddeeris, Y.; Donnadieu, Y.; Malavieille, J.; Suarez, M. The tectonic history of Drake Passage and its possible impacts on global climate. Earth Planet. Sci. Lett. 2009, 279, 197–211. [Google Scholar] [CrossRef]
- Bohoyo, F.; Galindo-Zaldívar, J.; Jabaloy, A.; Maldonado, A.; RodríguezFernández, J.; Schreider, A. Extensional deformation and development of deep basins associated with the sinistral transcurrent fault zone of the Scotia-Antarctic plate boundary. Geol. Soc. Spec. Publ. 2007, 290, 203–217. [Google Scholar] [CrossRef]
- King, E.C.; Leitchenkov, G.; Galindo-Zaldivar, J.; Maldonado, A.; Lodolo, E. “Crustal Structure and Sedimentation in Powell Basin”. In Geology and Seismic Stratigraphy of the Antarctic Margin, Part 2. Antarct. Res. Ser. 1997, 71, 75–93. [Google Scholar]
- Catalán, M.; Martos, Y.M.; Galindo Zaldivar, J.; Pérez, L.F.; Bohoyo, F. Unveiling Powell Basin’s tectonic domains and understanding its abnormal magnetic anomaly signature. Is heat the key? Front. Earth Sci. 2020, 8, 580675. [Google Scholar] [CrossRef]
- Coren, F.; Ceccone, G.; Lodolo, E.; Zanolla, C.; Zitellini, N.; Bonazzi, C. Morphology, seismic structure and tectonic development of the Powell basin, Antarctica. J. Geol. Soc. 1997, 154, 849–862. [Google Scholar] [CrossRef]
- Rodriguez-Fernandez, J.; Balanya, J.C.; Galindo-Zaldivar, J.; Maldonado, A. Tectonic evolution of a restricted ocean basin: The Powell Basin (northeastern antarctic Peninsula). Geodinámica Acta 1994, 10, 159–174. [Google Scholar] [CrossRef]
- Coren, F.; Lodolo, E.; Ceccone, G. Age constraints for the evolution of the northern Powell basin (Antarctica). Boll. Geofis. Teor. Applicata. 2000, 41, 193–205. [Google Scholar]
- Lawver, L.A.; Williams, T.; Sloan, B. Seismic stratigraphy and heat flow of Powell Basin. Terra Antart. 1994, 1, 309–310. [Google Scholar]
- Hernández-Molina, F.J.; Bohoyo, F.; Naveira Garabato, A.; Galindo-Zaldívar, J.; Lobo, F.J.; Maldonado, A.; Rodríguez-Fernández, J.; Somoza, L.; Stow, D.A.V.; Vázquez, J.T. The Scan Basin evolution: Oceanographic consequences of the deep connection between the Weddell and Scotia Seas (Antarctica). In 10th International Symposium on Antarctic Earth Sciences; SCAR, Ed.; U.S. Geological Survey and The National Academies: Santa Barbara, CA, USA, 2007; Volume EA086, SCAR; pp. 379–407. [Google Scholar]
- Hillenbrand, C.D.; Camerlenghi, A.; Cowan, E.A.; Hernández-Molina, F.J.; Lucchi, R.G.; Rebesco, M.; Uenzelmann-Neben, G. The present and past bottom-current flow regime around the sediment drifts on the continental rise west of the Antarctic Peninsula. Mar. Geol. 2008, 255, 55–63. [Google Scholar] [CrossRef]
- Naveira Garabato, A.C.; Heywood, K.J.; Stevens, D.P. Modification and pathways of Southern Ocean Deep Waters in the Scotia Sea. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2002, 49, 681–705. [Google Scholar] [CrossRef]
- Maldonado, A.; Bohoyo, F.; Galindo-Zaldívar, J.; Hernández-Molina, J.; Jabaloy, A.; Lobo, F.J.; Vázquez, J.T. Ocean basins near the Scotia–Antarctic plate boundary: Influence of tectonics and paleoceanography on the Cenozoic deposits. Mar. Geophys. Res. 2006, 27, 83–107. [Google Scholar] [CrossRef]
- Pérez, L.F.; Martos, Y.M.; García, M.; Weber, M.E.; Raymo, M.E.; Williams, T.; Zheng, X. Miocene to present oceanographic variability in the Scotia Sea and Antarctic ice sheets dynamics: Insight from revised seismic-stratigraphy following IODP Expedition 382. Earth Planet. Sci. Lett. 2021, 553, 116657. [Google Scholar] [CrossRef]
- Maldonado, A.; Zitellini, N.; Leitchenkov, G.; Balanyá, J.C.; Coren, F.; Galindo-Zaldıvar, J.; Vinnikovskaya, O. Small ocean basin development along the Scotia–Antarctica plate boundary and in the northern Weddell Sea. Tectonophysics 1998, 296, 371–402. [Google Scholar] [CrossRef]
- Lawver, L.A.; Gahagan, L.M. Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2003, 198, 11–37. [Google Scholar] [CrossRef]
- Dalziel, I.W.D.; Lawver, L.A.; Pearce, J.A.; Barker, P.F.; Hastie, A.R.; Barfod, D.N.; Davis, M.B. A potential barrier to deep Antarctic circumpolar flow until the late Miocene? Geology 2013, 41, 947–950. [Google Scholar] [CrossRef]
- Barker, P.F.; Lawver, L.A.; Larter, R.D. Heat-flow determinations of basement age in small oceanic basins of the southern central Scotia Sea. Geol. Soc. Lond. Spec. Publ. 2013, 381, 139–150. [Google Scholar] [CrossRef]
- Pérez, L.F.; Lodolo, E.; Maldonado, A.; Hernández-Molina, F.J.; Bohoyo, F.; Galindo-Zaldívar, J.; Burca, M. Tectonic development, sedimentation and paleoceanography of the Scan Basin (southern Scotia Sea, Antarctica). Glob. Planet. Chang. 2014, 123, 344–358. [Google Scholar] [CrossRef]
- Pérez, L.F.; Maldonado, A.; Hernández-Molina, F.J.; Lodolo, E.; Bohoyo, F.; Galindo-Zaldívar, J. Tectonic and oceanographic control of sedimentary patterns in a small oceanic basin: Dove Basin (Scotia Sea, Antarctica). Basin Res. 2017, 29, 255–276. [Google Scholar] [CrossRef]
- Livermore, R.; Eagles, G.; Morris, P.; Maldonado, A. Shackleton Fracture Zone: No barrier to early circumpolar ocean circulation. Geology 2004, 32, 797–800. [Google Scholar] [CrossRef]
- Martos, Y.M.; Maldonado, A.; Lobo, F.J.; Hernández-Molina, F.J.; Pérez, L.F. Tectonics and palaeoceanographic evolution recorded by contourite features in southern Drake Passage (Antarctica). Mar. Geol. 2013, 343, 76–91. [Google Scholar] [CrossRef]
- Quesnel, Y.; Catalán, M.; Ishihara, T. A new global marine magnetic anomaly data set. J. Geophys. Res. 2009, 114, B04106–B04111. [Google Scholar] [CrossRef]
- Lesur, V.; Hamoudi, M.; Choi, Y.; Dyment, J.; Thébault, E. Building the second version of the world digital magnetic anomaly map (WDMAM). Earth Planets Space 2016, 68, 27. [Google Scholar] [CrossRef]
- Alken, P.; Thébault, E.; Beggan, C.D.; Amit, H.; Aubert, J.; Baerenzung, J. International geomagnetic reference field: The thirteenth generation. Earth Planets Space 2021, 73, 49. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, C.; Yan, F.; Lv, C.; Liu, Y. Leveling airborne geophysical data using a unidirectional variational model. Geosci. Instrum. Methods Data Syst. 2022, 11, 183–194. [Google Scholar] [CrossRef]
- Sandwell, D.T.; Müller, R.D.; Smith, W.H.F.; García, E.; Francis, R. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 2014, 346, 65–67. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.J.; Sandwell, D.T.; Smith, W.H.F.; Braud, J.; Binder, B.; Depner, J. Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Mar. Geod. 2009, 32, 355–371. [Google Scholar] [CrossRef]
- Mendel, V.; Munschy, M.; Sauter, D. MODMAG: A MATLAB program to model marine magnetic anomalies. Comput. Geosci. 2005, 31, 589–597. [Google Scholar] [CrossRef]
- Ogg, J.G. Geomagnetic Time Scales; Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 159–192. [Google Scholar]
- Raymond, C.A.; Labrecque, J.L. Magnetization of the oceanic crust-thermoremanent magnetization of chemical remanent magnetization? J. Geophys. Res. 1987, 92, 8077–8088. [Google Scholar] [CrossRef]
- Choe, H.; Dyment, J. Fading magnetic anomalies, thermal structure and earthquakes in the Japan trench. Geology 2019, 48, 278–282. [Google Scholar] [CrossRef]
- Schouten, H.; Tivey, M.A.; Fornari, D.J.; Cochran, J.R. Central anomaly magnetization high: Constraints on the volcanic construction and architecture of seismic layer 2A at a fast-spreading mid-ocean ridge, the EPR at 9°30′–50′N. Earth Planet Sci. Lett. 1999, 169, 37–50. [Google Scholar] [CrossRef]
- Tivey, M.A.; Johnson, H.P. Variations in oceanic crustal structure and implications for the fine-scale magnetic anomaly signal. Geophys. Res. Lett. 1993, 20, 1879–1882. [Google Scholar] [CrossRef]
- Garrett, S.W. Interpretation of reconnaissance gravity and aeromagnetic surveys of the Antarctic Peninsula. J. Geophys. Res. 1990, 95, 6759–6777. [Google Scholar] [CrossRef]
- Barker, P.F. Evolution of the Scotia Sea region: Relevance to broad-band seismology. Terra Antart. 2001, 8, 67–70. [Google Scholar]
- Eagles, G.; Livermore, R.A.; Fairhead, J.D.; Morris, P. Tectonic evolution of the west Scotia Sea. J. Geophys. Res. Solid Earth 2005, 110, B02401. [Google Scholar] [CrossRef]
- Lodolo, E.; Civile, D.; Vuan, A.; Tassone, A.; Geletti, R. The Scotia–Antarctica plate boundary from 35 W to 45 W. Earth Planet. Sci. Lett. 2010, 293, 200–215. [Google Scholar] [CrossRef]
- Barker, P.F.; Barber, P.L.; King, E.C. An early Miocene ridge crest-trench collision on the South Scotia Ridge near 36°W. Tectonophysics 1984, 102, 315–332. [Google Scholar] [CrossRef]
West Ridge Part | East Ridge Part | ||||||||
---|---|---|---|---|---|---|---|---|---|
Profile | Anomaly | Distance (km) | Δ Distance (km) | Spreading Rate (km/myr) | Anomaly | Distance (km) | Δ Distance (km) | Spreading Rate (km/myr) | Asymmetry (%) |
L1 | A1 | 11 | 11 | 4.2 | A1 | 15 | 15 | 5.5 | 13 |
A2 | 26 | 15 | 8.3 | A2 | 38 | 23 | 10.8 | 25 | |
A3 | 40 | 14 | 11.4 | A3 | 48 | 10 | 12.9 | 15 | |
A4 | 55 | 15 | 14.8 | A4 | 71 | 23 | 19 | 42 | |
L8 | A1 | 8 | 8 | 3.3 | A1 | 5 | 5 | 2.1 | 12 |
A2 | 18 | 10 | 6.8 | A2 | 15 | 10 | 5.5 | 13 | |
A3 | 39 | 21 | 11.8 | A3 | 36 | 21 | 11.2 | 6 | |
A4 | 55 | 16 | 15.2 | A4 | 50 | 14 | 14.2 | 10 | |
L2 | A1 | 10 | 10 | 4 | A1 | 5 | 5 | 2.1 | 19 |
A2 | 23 | 13 | 7.9 | A2 | 14 | 9 | 5.3 | 26 | |
A3 | 45 | 22 | 12.8 | A3 | 30 | 16 | 9.6 | 32 | |
A4 | 55 | 10 | 15.2 | A4 | 48 | 18 | 12.9 | 23 | |
L3 | A1 | 9 | 9 | 4 | A1 | 8 | 8 | 3.6 | 4 |
A2 | 28 | 19 | 9.5 | A2 | 19 | 11 | 7.5 | 20 | |
A3 | 46 | 18 | 13.6 | A3 | 32 | 13 | 10.3 | 33 | |
A4 | 55 | 9 | 15.4 | A4 | 48 | 16 | 14.2 | 12 | |
L4 | A1 | 10 | 10 | 4 | A1 | 8 | 8 | 3.3 | 7 |
A2 | 27 | 17 | 7.9 | A2 | 22 | 14 | 6.6 | 13 | |
A3 | 52 | 25 | 14.3 | A3 | 34 | 12 | 9.7 | 46 | |
L5 | A1 | 13 | 13 | 4.4 | A1 | 12 | 12 | 4.2 | 2 |
L6 | A1 | 12 | 12 | 4.3 | A1 | 12 | 12 | 4.3 | 0 |
A2 | 40 | 28 | 10.8 | A2 | 40 | 29 | 10.8 | 0 | |
L7 | A1 | 12 | 12 | 4.1 | A1 | 13 | 13 | 4.3 | 2 |
A2 | 38 | 26 | 10.2 | A2 | 38 | 38 | 10.2 | 0 |
Profile | Nº Anomalies | Oceanic Anomalies | Profile Length (KM) |
---|---|---|---|
L1 | 11 | 8 | 200 |
L8 | 11 | 9 | 180 |
L2 | 12 | 9 | 203 |
L3 | 13 | 9 | 212 |
L4 | 10 | 8 | 202 |
L5 | 8 | 6 | 190 |
L6 | 7 | 5 | 179 |
L7 | 8 | 5 | 160 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santamaría Barragán, A.; Catalán, M.; Martos, Y.M. The Evolution of Powell Basin (Antarctica). Remote Sens. 2024, 16, 4053. https://doi.org/10.3390/rs16214053
Santamaría Barragán A, Catalán M, Martos YM. The Evolution of Powell Basin (Antarctica). Remote Sensing. 2024; 16(21):4053. https://doi.org/10.3390/rs16214053
Chicago/Turabian StyleSantamaría Barragán, Alberto, Manuel Catalán, and Yasmina M. Martos. 2024. "The Evolution of Powell Basin (Antarctica)" Remote Sensing 16, no. 21: 4053. https://doi.org/10.3390/rs16214053
APA StyleSantamaría Barragán, A., Catalán, M., & Martos, Y. M. (2024). The Evolution of Powell Basin (Antarctica). Remote Sensing, 16(21), 4053. https://doi.org/10.3390/rs16214053