Quantitative Analysis of Human Activities and Climatic Change in Grassland Ecosystems in the Qinghai–Tibet Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Processing
2.2.1. Land Cover Data
2.2.2. Meteorological Data
2.2.3. Other Data
2.3. Methods
2.3.1. Calculation of NPP and Significance Evaluation
Collection of Actual NPP
Estimation of Potential NPP
LUCC Change and Corresponding NPP
Subdivision of Grassland NPP and Human Activities NPP
Dynamic Analysis of Grassland Ecosystems
2.3.2. Assessment of the Dominant Factor
2.3.3. Detection of Single and Interacting Factors
Relative Impact Contribution Index (RICI)
Geographical Detector
2.3.4. NPP Prediction
Patch-Generating Land Use Simulation (PLUS) Model
Estimation and Verification of NPP
3. Results and Discussion
3.1. LUCC Change and Corresponding NPP in the Qinghai–Tibet Plateau
3.2. Spatial Distribution and Significance Analysis of Different NPP
3.3. The Impact of Driving Factors on the Change in NPP
3.4. Detection and Analysis of Climate Change Factor and Human Activity Factor of NPP
3.4.1. Analysis of the RICI Index
3.4.2. Analysis of the Single-Factor Detector
3.4.3. Analysis of the Interaction Detector
3.5. NPP Prediction of Qinghai–Tibet Plateau Under Multiple Scenarios
3.5.1. Accuracy Verification of NPP Estimation
3.5.2. Prediction of NPP Under Three Development Scenarios in 2030
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Change Type | Area (km2) | Mean NPP (g C/(m2·yr)) | Total NPP (Gg C) | |
---|---|---|---|---|
Unchanged grassland | Grassland to grassland | 1,103,575.65 | 133.28 | 3,006,176.15 |
Turn out grassland | Grassland to farmland | 10,781.20 | 274.89 | 35,796.78 |
Grassland to forest | 8162.37 | 456.36 | 41,075.05 | |
Grassland to bareland | 45,382.40 | 26.37 | 16,933.87 | |
Grassland to shrub | 1306.29 | 418.05 | 8099.14 | |
Grassland to waters | 3465.61 | 64.97 | 3090.02 | |
Grassland to ice/snow | 568.37 | 46.50 | 460.97 | |
Grassland to wetland | 204.23 | 268.87 | 315.59 | |
Grassland to impervious surface | 324.65 | 151.21 | 469.77 | |
Sum | Turn out grassland | 70,195.11 | 106,241.19 | |
Turn in grassland | Farmland to grassland | 8193.19 | 340.66 | 41,361.14 |
Forest to grassland | 593.42 | 425.49 | 2383.98 | |
Bareland to grassland | 55,314.42 | 26.07 | 19,605.84 | |
Shrub to grassland | 1699.33 | 379.04 | 9228.72 | |
Waters to grassland | 769.23 | 107.23 | 897.32 | |
Ice/snow to grassland | 658.44 | 77.67 | 620.39 | |
Wetland to grassland | 162.80 | 315.94 | 1445.84 | |
Impervious surface to grassland | 1.93 | 33.31 | 0.72 | |
Sum | Turn in grassland | 67,392.76 | 75,543.94 |
References
- Squires, V.R.; Dengler, J.; Hua, L.; Feng, H. Grasslands of the World: Diversity, Management and Conservation; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Wang, S.; Jia, L.; Cai, L.; Wang, Y.; Zhan, T.; Huang, A.; Fan, D. Assessment of Grassland Degradation on the Tibetan Plateau Based on Multi-Source Data. Remote Sens. 2022, 14, 6011. [Google Scholar] [CrossRef]
- Ahlstrom, A.; Xia, J.; Arneth, A.; Luo, Y.; Smith, B. Importance of vegetation dynamics for future terrestrial carbon cycling. Environ. Res. Lett. 2015, 10, 054019. [Google Scholar] [CrossRef]
- Taylor, P.G.; Cleveland, C.C.; Wieder, W.R.; Sullivan, B.W.; Doughty, C.E.; Dobrowski, S.Z.; Townsend, A.R. Temperature and rainfall interact to control carbon cycling in tropical forests. Ecol. Lett. 2017, 20, 779–788. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Lu, H.; Qiao, D. Integrated effects of meteorological factors, edaphic moisture, evapotranspiration, and leaf area index on the net primary productivity of Winter wheat− Summer maize rotation system. Field Crops Res. 2023, 302, 109080. [Google Scholar] [CrossRef]
- Pang, Y.; Chen, C.; Guo, B.; Qi, D.; Luo, Y. Impacts of Climate Change and Anthropogenic Activities on the Net Primary Productivity of Grassland in the Southeast Tibetan Plateau. Atmosphere 2023, 14, 1217. [Google Scholar] [CrossRef]
- Wei, X.; Yang, J.; Luo, P.; Lin, L.; Lin, K.; Guan, J. Assessment of the variation and influencing factors of vegetation NPP and carbon sink capacity under different natural conditions. Ecol. Indic. 2022, 138, 108834. [Google Scholar] [CrossRef]
- Zheng, K.; Wei, J.; Pei, J.; Cheng, H.; Zhang, X.; Huang, F.; Li, F.; Ye, J. Impacts of climate change and human activities on grassland vegetation variation in the Chinese Loess Plateau. Sci. Total Environ. 2019, 660, 236–244. [Google Scholar] [CrossRef]
- An, R.; Zhang, C.; Sun, M.; Wang, H.; Shen, X.; Wang, B.; Xing, F.; Huang, X.; Fan, M. Monitoring grassland degradation and restoration using a novel climate use efficiency (NCUE) index in the Tibetan Plateau, China. Ecol. Indic. 2021, 131, 108208. [Google Scholar] [CrossRef]
- Mao, C.; Ren, Q.; He, C.; Qi, T. Assessing direct and indirect impacts of human activities on natural habitats in the Qinghai-Tibet Plateau from 2000 to 2020. Ecol. Indic. 2023, 157, 111217. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, S.; Shi, F.; An, Y.; Li, M.; Liu, Y. Spatio-temporal variations and coupling of human activity intensity and ecosystem services based on the four-quadrant model on the Qinghai-Tibet Plateau. Sci. Total Environ. 2020, 743, 140721. [Google Scholar]
- Feng, H.; Kang, P.; Deng, Z.; Zhao, W.; Ming, H.; Zhu, X.; Wang, Z. The impact of climate change and human activities to vegetation carbon sequestration variation in Sichuan and Chongqing. Environ. Res. 2023, 238, 117138. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; de Jong, R.; Schmid, B.; Wulf, H.; Schaepman, M.E. Spatial variation of human influences on grassland biomass on the Qinghai-Tibetan plateau. Sci. Total Environ. 2019, 665, 678–689. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lv, C.; Pan, X.; Liu, Z.; Xia, P.; Zhang, C.; Liu, Z. Spatiotemporal Patterns of Light Pollution on the Tibetan Plateau over Three Decades at Multiple Scales: Implications for Conservation of Natural Habitats. Remote Sens. 2022, 14, 5755. [Google Scholar] [CrossRef]
- Nie, Y.; Zhang, X.; Yang, Y.; Liu, Z.; He, C.; Chen, X.; Lu, T. Assessing the impacts of historical and future land-use/cover change on habitat quality in the urbanizing Lhasa River Basin on the Tibetan Plateau. Ecol. Indic. 2023, 148, 110147. [Google Scholar] [CrossRef]
- Mao, D. Quantitative Assessment in the Impacts of Human Activities on Net Primary Productivity of Wetlands in the Northeast China; University of Chinese Academy of Sciences (Northeast Institute of Geography and Agroecology): Changchun, China, 2014. [Google Scholar]
- Aizizi, Y.; Kasimu, A.; Liang, H.; Zhang, X.; Zhao, Y.; Wei, B. Evaluation of ecological space and ecological quality changes in urban agglomeration on the northern slope of the Tianshan Mountains. Ecol. Indic. 2023, 146, 109896. [Google Scholar] [CrossRef]
- Liu, H.; Mi, Z.; Lin, L.i.; Wang, Y.; Zhang, Z.; Zhang, F.; Wang, H.; Liu, L.; Zhu, B.; Cao, G.; et al. Shifting plant species composition in response to climate change stabilizes grassland primary production. Proc. Natl. Acad. Sci. USA 2018, 115, 4051–4056. [Google Scholar] [CrossRef]
- Dakhil, M.A.; Xiong, Q.L.; Farahatc, E.A.; Zhang, L.; Pan, K.W.; Pandey, B.; Olatunji, O.A.; Tariq, A.; Wu, X.G.; Zhang, A.P.; et al. Past and future climatic indicators for distribution pattern and conservation planning of temperate coniferous forests in southwestern China. Ecol. Indic. 2019, 107, 105559. [Google Scholar] [CrossRef]
- Qian, D.; Fan, B.; Lan, Y.; Si, M.; Li, Q.; Guo, X. Ecosystem Service Relationships, Drivers, and Regulation Strategies in a Degraded Alpine Shrub Meadow on the Northeastern Qinghai-Tibetan Plateau. Diversity 2023, 15, 596. [Google Scholar] [CrossRef]
- Piao, S.L.; Wang, X.H.; Ciais, P.; Zhu, B.; Wang, T.A.O.; Liu, J.I.E. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Glob. Chang. Biol 2011, 17, 3228–3239. [Google Scholar] [CrossRef]
- Jorda-Capdevila, D.; Gampe, D.; Huber García, V.; Ludwig, R.; Sabater, S.; Vergoñós, L.; Acuña, V. Impact and mitigation of global change on freshwater-related ecosystem services in Southern Europe. Sci. Total Environ. 2019, 651, 895–908. [Google Scholar] [CrossRef]
- Gibbs, H.K.; Salmon, J.M. Mapping the world’s degraded lands. Appl. Geogr. 2015, 57, 12–21. [Google Scholar] [CrossRef]
- Kleinherenbrink, M.; Lindenbergh, R.C.; Ditmar, P.G. Monitoring of lake level changes on the Tibetan Plateau and Tian Shan by retracking Cryosat SARIn waveforms. J. Hydrol. 2015, 521, 119–131. [Google Scholar] [CrossRef]
- Xu, H.-J.; Wang, X.-P.; Zhang, X.-X. Alpine grasslands response to climatic factors and anthropogenic activities on the Tibetan Plateau from 2000 to 2012. Ecol. Eng. 2016, 92, 251–259. [Google Scholar] [CrossRef]
- Gao, Y.; Zhou, X.; Wang, Q.; Wang, C.; Zhan, Z.; Chen, L.; Yan, J.; Qu, R. Vegetation net primary productivity and its response to climate change during 2001–2008 in the Tibetan Plateau. Sci. Total Environ. 2013, 444, 356–362. [Google Scholar] [CrossRef]
- Xiong, Q.; Xiao, Y.; Halmy, M.W.A.; Dakhil, M.A.; Liang, P.; Liu, C.; Zhang, L.; Pandey, B.; Pan, K.; El Kafraway, S.B.; et al. Monitoring the impact of climate change and human activities on grassland vegetation dynamics in the northeastern Qinghai-Tibet Plateau of China during 2000–2015. J. Arid Land 2019, 11, 637–651. [Google Scholar] [CrossRef]
- Yang, X.; Xiong, Q.; Pan, K. What is left for our next generation? Integrating ecosystem services into regional policy planning in the Three Gorges Reservoir Area of China. Sustainability 2019, 11, 3. [Google Scholar]
- Zhao, X.; Hu, H.; Shen, H.; Zhou, D.; Zhou, L.; Myneni, R.B.; Fang, J. Satellite-indicated long-term vegetation changes and their drivers on the Mongolian Plateau. Landsc. Ecol. 2015, 30, 1599–1611. [Google Scholar] [CrossRef]
- Xiong, Q.; Xiao, Y.; Liang, P.; Li, L.; Zhang, L.; Li, T.; Pan, K.; Liu, C. Trends in climate change and human interventions indicate grassland productivity on the Qinghai–Tibetan Plateau from 1980 to 2015. Ecol. Indic. 2021, 129, 108010. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Chen, Y.; Huang, S.; Liang, B. Spatiotemporal variation and prediction of NPP in Beijing-Tianjin-Hebei region by coupling PLUS and CASA models. Ecol. Inform. 2024, 81, 102620. [Google Scholar] [CrossRef]
- Breidenbach, A.; Schleuss, P.-M.; Liu, S.; Schneider, D.; Dippold, M.A.; de la Haye, T.; Miehe, G.; Heitkamp, F.; Seeber, E.; Mason-Jones, K.; et al. Microbial functional changes mark irreversible course of Tibetan grassland degradation. Nat. Commun. 2022, 13, 2681. [Google Scholar] [CrossRef]
- Wang, S.; Dai, E.; Jia, L.; Wang, Y.; Huang, A.; Liao, L.; Cai, L.; Fan, D. Assessment of multiple factors and interactions affecting grassland degradation on the Tibetan Plateau. Ecol. Indic. 2023, 154, 110509. [Google Scholar] [CrossRef]
- Du, Y. Prefecture-Level Adminstrative Units Boundary of Qinghai-Tibet Plateau (2015); National Tibetan Plateau/Third Pole Environment Data Center: Beijing, China, 2019. [Google Scholar]
- Yao, T. Tackling on environmental changes in Tibetan Plateau with focus on water, ecosystem and adaptation. Sci. Bull. 2019, 64, 417. [Google Scholar] [CrossRef] [PubMed]
- Yao, T.; Xue, Y.; Chen, D.; Chen, F.; Thompson, L.; Cui, P.; Koike, T.; Lau, W.K.-M.; Lettenmaier, D.; Mosbrugger, V.; et al. Recent third pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multidisciplinary approach with observations, modeling, and analysis. Bull. Am. Meteorol. Soc. 2019, 100, 423–444. [Google Scholar] [CrossRef]
- Zhang, Y.; Qi, W.; Zhou, C.; Ding, M.; Liu, L.; Gao, J.; Bai, W.; Wang, Z.; Zheng, D. Spatial and temporal variability in the net primary production of alpine grassland on the Tibetan Plateau since 1982. J. Geogr. Sci. 2014, 24, 269–287. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, C. Quantifying grass coverage trends to identify the hot plots of grassland degradation in the Tibetan Plateau during 2000–2019. Int. J. Environ. Res. Public Health 2021, 18, 416. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Lu, Z.; Chen, P.; Yang, Y.; Zhang, S.; Zhang, C.; Zhu, H. Exploring quantification and analyzing driving force for spatial and temporal differentiation characteristics of vegetation net primary productivity in Shandong Province, China. Ecol. Indic. 2023, 153, 110471. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Q.; Wang, Z.; Yang, Y.; Li, J. Impact of human activities and climate change on the grassland dynamics under different regime policies in the Mongolian Plateau. Sci. Total Environ. 2020, 698, 134304. [Google Scholar] [CrossRef]
- Lieth, H. Modeling the primary productivity of the world. Nat. Resour. 1975, 8, 237–263. [Google Scholar]
- Li, D.; Wang, Z. Quantitative analysis of the impact of climate change and human activities on vegetation NPP in Shaanxi Province. Ecol. Environ. Sci. 2022, 31, 1071–1079. [Google Scholar]
- Wessels, K.J.; Prince, S.D.; Malherbe, J.; Small, J.; Frost, P.E.; VanZyl, D. Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. J. Arid Environ. 2007, 68, 271–297. [Google Scholar]
- Wang, J.; Zhang, T.; Fu, B. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Christakos, G.; Liao, Y.; Zhang, T.; Gu, X.; Zheng, X. Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Ding, H.; Hao, X. Spatiotemporal change and drivers analysis of desertification in the arid region of northwest China based on Geographic Detector. Environ. Chall. 2021, 4, 100082. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Wu, C.; Chen, B.; Huang, X.; Wei, Y.H.D. Effect of land-use change and optimization on the ecosystem service values of Jiangsu Province, China. Ecol. Indic. 2020, 117, 106507. [Google Scholar] [CrossRef]
- Feinstein, A.R.; Cicchetti, D.V. High agreement but low kappa: I. The problems of two paradoxes. J. Clin. Epidemiol. 1990, 43, 543–549. [Google Scholar] [CrossRef]
- Lin, W.; Sun, Y.; Nijhuis, S.; Wang, Z. Scenario-based flood risk assessment for urbanizing deltas using future land-use simulation (FLUS): Guangzhou Metropolitan Area as a case study. Sci. Total Environ. 2020, 739, 139899. [Google Scholar] [CrossRef]
- Zhu, W.; Pan, Y.; Zhang, J. Remote sensing simulation of net primary productivity of terrestrial vegetation in China. J. Plant Ecol. 2007, 31, 413–424. [Google Scholar]
- Ding, Z.; Zheng, H.; Li, H.; Yu, P.; Man, W.; Liu, M.; Tang, X.; Liu, Y. Afforestation-driven increases in terrestrial gross primary productivity are partly offset by urban expansion in Southwest China. Ecol. Indic. 2021, 127, 107641. [Google Scholar] [CrossRef]
- Asefa, M.; Cao, M.; He, Y.; Mekonnen, E.; Song, X.; Yang, J. Ethiopian vegetation types, climate and topography. Plant Divers. 2020, 42, 302–311. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, M.; Dulamsuren, C.; Jäschke, Y.; Wesche, K. Grasslands of China and Mongolia: Spatial extent, land use and conservation. In Grasslands of the World: Diversity, Management and Conservation; CRC Press: Boca Raton, FL, USA, 2018; pp. 170–198. [Google Scholar]
- Wang, Y.; Zhou, L.; Yang, G.; Guo, R.; Xia, C.; Liu, Y. Performance and obstacle tracking to natural forest resource protection project: A rangers’ case of Qilian mountain, China. Int. J. Environ. Res. Public Health 2020, 17, 5672. [Google Scholar] [CrossRef]
- Li, Z.; Sun, X.; Huang, Z.; Zhang, X.; Wang, Z.; Li, S.; Zheng, W.; Zhai, B. Changes in nutrient balance, environmental efects, and green development afer returning farmland to forests: A case study in Ningxia, China. Sci. Total Environ. 2020, 735, 139370. [Google Scholar] [CrossRef]
- Duan, Q.; Luo, L.; Zhao, W.; Zhuang, Y.; Liu, F. Mapping and evaluating human pressure changes in the Qilian mountains. Remote Sens. 2021, 13, 2400. [Google Scholar] [CrossRef]
- Harris, R.B.; Samberg, L.H.; Yeh, E.T.; Smith, A.T.; Wenying, W.; Junbang, W. Rangeland responses to pastoralists’ grazing management on a Tibetan steppe grassland, Qinghai Province, China. Rangel. J. 2016, 38, 1–15. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, G.; Mu, X.; Lan, Z.; Jiao, J.; An, S.; Wu, Y.; Miping, P. Integrated assessments of land degradation on the Qinghai-Tibet plateau. Ecol. Indic. 2023, 147, 109945. [Google Scholar] [CrossRef]
- Yang, J.; Xie, B.; Zhang, D. Spatial–temporal evolution of ESV and its response to land use change in the Yellow River Basin, China. Sci. Rep. 2022, 12, 13103. [Google Scholar] [CrossRef]
- Xu, R.; Shi, P.; Gao, M.; Wang, Y.; Wang, G.; Su, B.; Huang, J.; Lin, Q.; Jiang, T. Projected land use changes in the Qinghai-Tibet Plateau at the carbon peak and carbon neutrality targets. Sci. China Earth Sci. 2023, 66, 1383–1398. [Google Scholar] [CrossRef]
- Hao, J.; Zhi, L.; Li, X.; Dong, S.; Li, W. Temporal and spatial evolution characteristics and relationships of land use pattern and ecosystem services in Qinghai-Tibet Plateau, China. Chin. J. Appl. Ecol. 2023, 34, 11. [Google Scholar]
- Wang, X.; Piao, S.; Ciais, P.; Friedlingstein, P.; Myneni, R.B.; Cox, P.; Heimann, M.; Miller, J.; Peng, S.; Wang, T.; et al. A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature 2014, 506, 212–215. [Google Scholar] [CrossRef]
- Sha, Z.; Xie, Y.; Tan, X.; Bai, Y.; Li, J.; Liu, X. Assessing the impacts of human activities and climate variations on grassland productivity by partial least squares structural equation modeling (PLS-SEM). J. Arid Land 2017, 9, 473–488. [Google Scholar] [CrossRef]
- Chen, T.; Tang, G.; Yuan, Y.; Guo, H.; Xu, Z.; Jiang, G.; Chen, X. Unraveling the relative impacts of climate change and human activities on grassland productivity in Central Asia over last three decades. Sci. Total Environ. 2020, 743, 140649. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Ding, Q.; Meng, B.; Lv, Y.; Liu, C.; Zhang, X.; Sun, Y.; Li, M.; Yi, S. The relative contributions of climate and grazing on the dynamics of grassland NPP and PUE on the qinghai-Tibet plateau. Remote Sens. 2021, 13, 3424. [Google Scholar] [CrossRef]
- Guo, J.; Zhai, L.; Sang, H.; Cheng, S.; Li, H. Effects of hydrothermal factors and human activities on the vegetation coverage of the Qinghai-Tibet Plateau. Sci. Rep. 2023, 13, 12488. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, Y.; Qin, Y.; Lu, X.; Cao, J. The spatiotemporal pattern of grassland NPP in Inner Mongolia was more sensitive to moisture and human activities than that in the Qinghai-Tibetan Plateau. Glob. Ecol. Conserv. 2023, 48, e02709. [Google Scholar] [CrossRef]
- Di Pasquale, G.; Saracino, A.; Bosso, L.; Russo, D.; Moroni, A.; Bonanomi, G.; Allevato, E. Coastal Pine-Oak Glacial Refugia in the Mediterranean Basin: A Biogeographic Approach Based on Charcoal Analysis and Spatial Modelling. Forests 2020, 11, 673. [Google Scholar] [CrossRef]
- Huang, K.; Zhang, Y.; Zhu, J.; Liu, Y.; Zu, J.; Zhang, J. The influences of climate change and human activities on vegetation dynamics in the Qinghai-Tibet Plateau. Remote Sens. 2016, 8, 876. [Google Scholar] [CrossRef]
- Luo, L.; Ma, W.; Zhuang, Y.; Zhang, Y.; Yi, S.; Xu, J.; Long, Y.; Ma, D.; Zhang, Z. The impacts of climate change and human activities on alpine vegetation and permafrost in the Qinghai-Tibet Engineering Corridor. Ecol. Indic. 2018, 93, 24–25. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, L.; Fensholt, R.; Wang, K.; Vitkovskaya, I.; Tian, F. Climate contributions to vegetation variations in central Asian Drylands: Pre-and post-USSR collapse. Remote Sens. 2015, 7, 2449–2470. [Google Scholar] [CrossRef]
- Gang, C.; Zhou, W.; Chen, Y.; Wang, Z.; Sun, Z.; Li, J.; Qi, J.; Odeh, Q. Quantitative assessment of the contributions of climate change and human activities on global grassland degradation. Environ. Earth Sci. 2014, 72, 4273–4282. [Google Scholar] [CrossRef]
- Mowll, W.; Blumenthal, D.M.; Cherwin, K.; Smith, A.; Symstad, A.J.; Vermeire, L.T.; Collins, S.L.; Smith, M.D.; Knapp, A.K. Climatic controls of aboveground net primary production in semi-arid grasslands along a latitudinal gradient portend low sensitivity to warming. Oecologia 2015, 177, 959–969. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, X.; Luo, D.; He, Y.; Chen, F.; Zhang, B.; Qin, Q. Spatiotemporal pattern of vegetation ecology quality and its response to climate change between 2000–2017 in China. Sustainability 2021, 13, 1419. [Google Scholar] [CrossRef]
- Malek, Ž.; Verburg, P.H.; Geijzendorffer, I.R.; Bondeau, A.; Cramer, W. Global change effects on land management in the Mediterranean region. Glob. Environ. Chang. 2018, 50, 238–254. [Google Scholar] [CrossRef]
- Jin, X.; Jiang, P.; Ma, D.; Li, M. Land system evolution of Qinghai-Tibetan Plateau under various development strategies. Appl. Geogr. 2019, 104, 1–9. [Google Scholar] [CrossRef]
- Pan, Y.; Wu, J.; Zhang, Y.; Zhang, X.; Yu, C. Simultaneous enhancement of ecosystem services and poverty reduction through adjustments to subsidy policies relating to grassland use in Tibet, China. Ecosyst. Serv. 2021, 48, 101254. [Google Scholar] [CrossRef]
- Song, C.; Huang, B.; Richards, K.; Ke, L.; Hien Phan, V. Accelerated lake expansion on the Tibetan Plateau in the 2000s: Induced by glacial melting or other processes? Water Resour. Res. 2014, 50, 3170–3186. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Li, S.; Qin, D. Vulnerability of the Tibetan Pastoral Systems to Climate and Global Change. Ecol. Soc. 2014, 19, 8. [Google Scholar] [CrossRef]
- Yan, Z.; Wu, N.; Yeshi, D.; Ru, J. A review of rangeland privatization and its implications in the Tibetan Plateau, China. Nomadic Peoples 2005, 9, 31–51. [Google Scholar]
- Furqat, T.; Sanjar, B. The role of nomadic peoples in the development of ustrushona urban development. Asian J. Multidimens. Res. 2020, 9, 140–145. [Google Scholar] [CrossRef]
- Kumar, N.; Dogra, P.K.; Kumari, V.S.A.; Thakur, A. Enhancing Profitability of Nomadic Gaddi Goat Production System for Augmenting Farmer’s Income; The Indian Society of Animal Production and Management: Ludhiana, Indian, 2020. [Google Scholar]
- Anees, M.M.; Mann, D.; Sharma, M.; Banzhaf, E.; Joshi, P.K. Assessment of Urban Dynamics to Understand Spatiotemporal Differentiation at Various Scales Using Remote Sensing and Geospatial Tools. Remote Sens. 2020, 12, 1306. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, J.; Shao, Q. Characteristic analysis of land cover change in nature reserve of Three River’s Source Regions. Sci. Geogr. Sin. 2010, 30, 415–420. [Google Scholar]
- Xue, H.; Chen, Y.; Dong, G.; Li, J. Quantitative analysis of spatiotemporal changes and driving forces of vegetation net primary productivity (NPP) in the Qimeng region of Inner Mongolia. Ecol. Indic. 2023, 154, 110610. [Google Scholar] [CrossRef]
- Yang, D.; Wang, F. The Application and Research of Mathematical Model in Ecology 30; China Ocean Press: Beijing, China, 2015; Volume 211. [Google Scholar]
- Potter, C.; Klooster, S.; Genovese, V. Net primary production of terrestrial ecosystems from 2000 to 2009. Clim. Chang. 2012, 115, 365–378. [Google Scholar] [CrossRef]
- Alkama, R.; Forzieri, G.; Duveiller, G.; Grassi, G.; Liang, S.; Cescatti, A. Vegetation-based climate mitigation in a warmer and greener World. Nat. Commun. 2022, 13, 606. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, R.; Bento, V.A.; Leng, S.; Qi, J.; Zeng, J.; Wang, Q. The effect of drought on vegetation gross primary productivity under different vegetation types across China from 2001 to 2020. Remote Sens. 2022, 14, 4658. [Google Scholar] [CrossRef]
- Zheng, H.; Miao, C.; Li, X.; Kong, D.; Gou, J.; Wu, J.; Zhang, S. Effects of vegetation changes and multiple environmental factors on evapotranspiration across China over the past 34 years. Earth’s Future 2022, 10, e2021EF002564. [Google Scholar] [CrossRef]
- Yan, H.; Zhan, J.; Jiang, Q.O.; Yuan, Y.; Li, Z. Multilevel modeling of NPP change and impacts of water resources in the Lower Heihe River Basin. Phys. Chem. Earth 2015, 79, 29–39. [Google Scholar] [CrossRef]
- Alijani, Z.; Hosseinali, F.; Biswas, A. Spatio-temporal evolution of agricultural land use change drivers: A case study from Chalous region, Iran. J. Environ. Manag. 2020, 262, 110326. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, X.; Wang, X. Spatial-temporal NDVI variation of different alpine grassland classes and groups in Northern Tibet from 2000 to 2013. Mt. Res. Dev. 2015, 35, 254–263. [Google Scholar] [CrossRef]
- Rahman, M.N.; Azim, S.A.; Jannat, F.A.; Rony, M.R.H.; Ahmad, B.; Sarkar, M.A.R. Quantification of rainfall, temperature, and reference evapotranspiration trend and their interrelationship in sub-climatic zones of Bangladesh. Heliyon 2023, 9, e19559. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Hao, J.; Zhang, G.; Fang, H.; Wang, Y.; Lu, H. Runoff variations affected by climate change and human activities in Yarlung Zangbo River, southeastern Tibetan Plateau. Catena 2023, 230, 107184. [Google Scholar] [CrossRef]
- Li, H.; He, Y.; Zhang, L.; Cao, S.; Sun, Q. Spatiotemporal changes of Gross Primary Production in the Yellow River Basin of China under the influence of climate-driven and human-activity. Glob. Ecol. Conserv. 2023, 46, e02550. [Google Scholar] [CrossRef]
- Wang, G.; Peng, W.; Zhang, L.; Zhang, J. Quantifying the impacts of natural and human factors on changes in NPP using an optimal parameters-based geographical detector. Ecol. Indic. 2023, 155, 111018. [Google Scholar] [CrossRef]
- Fang, C.; Li, G.; Bao, C.; Wang, Z.; Qi, W.; Ma, H.; Sun, S.; Fan, Y.; Chen, W. How many people can the Qinghai-Tibet Plateau hold, and how large cities can be built in recent hundred years? Sci. Total Environ. 2024, 927, 172404. [Google Scholar] [CrossRef]
- Cao, S.; Chen, L.; Shankman, D.; Wang, C.; Wang, X.; Zhang, H. Excessive reliance on afforestation in China’s arid and semi-arid regions: Lessons in ecological restoration. Earth-Sci. Rev. 2011, 104, 240–245. [Google Scholar] [CrossRef]
- Feng, X.; Li, Y.; Li, P.; Ding, Y.; Wang, Y. Study on the regulatory behaviors of grazing households to maintain grassland–livestock balance under the Grassland Ecological Compensation Policy. Chin. J. Grassl. 2019, 41, 132–142. [Google Scholar]
- Zhou, Y.; Zhang, X.; Yu, H.; Liu, Q.; Xu, L. Land use-driven changes in ecosystem service values and simulation of future scenarios: A case study of the Qinghai–Tibet Plateau. Sustainability 2021, 13, 4079. [Google Scholar] [CrossRef]
Grassland Condition | Method (Slope Comparison) | Roles of Factors About Climate and Human Activities |
---|---|---|
Restoration (AS > 0) | |CS| > |HS| | Climate-caused (CDR) |
|CS| < |HS| | Human activities-caused (HDR) | |
Degradation (AS < 0) | |CS| > |HS| | Climate-caused (CDD) |
|CS| < |HS| | Human activities-caused (HDD) |
Influence | 2000 | 2010 | 2020 | |||
---|---|---|---|---|---|---|
Factor | p Value | q Value | p Value | q Value | p Value | q Value |
ET | 0.000 | 0.696 | 0.000 | 0.670 | 0.000 | 0.674 |
ATP | 0.000 | 0.676 | 0.000 | 0.669 | 0.000 | 0.683 |
RICI | 0.000 | 0.714 | 0.000 | 0.670 | 0.000 | 0.626 |
VPD | 0.000 | 0.250 | 0.000 | 0.426 | 0.000 | 0.321 |
AAT | 0.000 | 0.623 | 0.000 | 0.604 | 0.000 | 0.630 |
SR | 0.000 | 0.610 | 0.000 | 0.562 | 0.000 | 0.493 |
ET | 0.000 | 0.569 | 0.000 | 0.480 | 0.000 | 0.564 |
ATP | 0.000 | 0.568 | 0.000 | 0.479 | 0.000 | 0.543 |
LNPP-RICI | 0.000 | 0.746 | 0.000 | 0.695 | 0.000 | 0.683 |
VPD | 0.000 | 0.324 | 0.000 | 0.256 | 0.000 | 0.352 |
AAT | 0.000 | 0.476 | 0.000 | 0.354 | 0.000 | 0.519 |
SR | 0.000 | 0.515 | 0.000 | 0.401 | 0.000 | 0.555 |
ET | 0.000 | 0.442 | 0.000 | 0.496 | 0.000 | 0.472 |
ATP | 0.000 | 0.426 | 0.000 | 0.484 | 0.000 | 0.486 |
MNPP-RICI | 0.000 | 0.519 | 0.000 | 0.549 | 0.000 | 0.456 |
VPD | 0.000 | 0.085 | 0.000 | 0.235 | 0.000 | 0.069 |
AAT | 0.000 | 0.246 | 0.000 | 0.222 | 0.000 | 0.315 |
SR | 0.000 | 0.505 | 0.000 | 0.469 | 0.000 | 0.444 |
LUCC NPP (Gg C) | ND | Growth Rate | ED | Growth Rate | EP | Growth Rate |
---|---|---|---|---|---|---|
Farmland | 13,305.2 | −58.2% | 13,240.0 | −58.4% | 12,013.8 | −62.3% |
Forest | 157,466.8 | 4.3% | 157,582.6 | 4.4% | 159,362.7 | 5.6% |
Shrub | 1750.5 | −42.0% | 1751.1 | −42.0% | 1750.9 | −42.0% |
Grassland | 146,941.6 | −9.9% | 146,933.7 | −9.9% | 146,950.6 | −9.9% |
Waters | 1428.1 | 32.5% | 1434.4 | 33.1% | 1580.1 | 46.6% |
Ice/snow | 2047.5 | 404.7% | 2039.6 | 402.7% | 2044.4 | 403.9% |
Bareland | 14,513.4 | 190.0% | 14,525.7 | 190.2% | 14,279.3 | 185.3% |
Impervious surface | 425.7 | −46.0% | 399.8 | −49.3% | 399.2 | −49.4% |
Wetland | 89.5 | −13.0% | 90.5 | −12.1% | 108.1 | 5.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, C.; Han, L.; Xia, T.; Xu, Q.; Zhang, D.; Sun, G.; Feng, Z. Quantitative Analysis of Human Activities and Climatic Change in Grassland Ecosystems in the Qinghai–Tibet Plateau. Remote Sens. 2024, 16, 4054. https://doi.org/10.3390/rs16214054
Ren C, Han L, Xia T, Xu Q, Zhang D, Sun G, Feng Z. Quantitative Analysis of Human Activities and Climatic Change in Grassland Ecosystems in the Qinghai–Tibet Plateau. Remote Sensing. 2024; 16(21):4054. https://doi.org/10.3390/rs16214054
Chicago/Turabian StyleRen, Chen, Liusheng Han, Tanlong Xia, Qian Xu, Dafu Zhang, Guangwei Sun, and Zhaohui Feng. 2024. "Quantitative Analysis of Human Activities and Climatic Change in Grassland Ecosystems in the Qinghai–Tibet Plateau" Remote Sensing 16, no. 21: 4054. https://doi.org/10.3390/rs16214054
APA StyleRen, C., Han, L., Xia, T., Xu, Q., Zhang, D., Sun, G., & Feng, Z. (2024). Quantitative Analysis of Human Activities and Climatic Change in Grassland Ecosystems in the Qinghai–Tibet Plateau. Remote Sensing, 16(21), 4054. https://doi.org/10.3390/rs16214054