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Abstract: Advanced statistics can enable the detailed characterization of ground deformation time
series, which is a fundamental step for thoroughly understanding the phenomena of land subsidence
and their main drivers. This study presents a novel methodological approach based on pre-existing
open-access statistical tools to exploit satellite differential interferometric synthetic aperture radar
(DInSAR) data to investigate land subsidence processes, using European Ground Motion Service
(EGMS) Sentinel-1 DInSAR 2018−2022 datasets. The workflow involves the implementation of
Persistent Scatterers (PS) time series classification through the PS-Time tool, deformation signal
decomposition via independent component analysis (ICA), and drivers’ investigation through spatio-
temporal correlation with geospatial and monitoring data. Subsidence time series at the three
demonstration sites of Bologna, Ravenna and Carpi (Po Plain, Italy) were classified into linear and
nonlinear (quadratic, discontinuous, uncorrelated) categories, and the mixed deformation signal of
each PS was decomposed into independent components, allowing the identification of new spatial
clusters with linear, accelerating/decelerating, and seasonal trends. The relationship between the
different independent components and DInSAR-derived displacement velocity, acceleration, and
seasonality was also analyzed via regression analysis. Correlation with geological and groundwater
monitoring data supported the investigation of the relationship between the observed deformation
and subsidence drivers, such as aquifer resource exploitation, local geological setting, and gas
extraction/reinjection.

Keywords: subsidence; InSAR; EGMS; time series analysis; trend classification; PS-Time; independent
component analysis; geostatistics; Po Plain; Emilia-Romagna

1. Introduction

Land subsidence is a gradually evolving, but often very impactful, geological phe-
nomenon influenced by various natural and anthropogenic factors [1,2]. Recent advance-
ments in remote sensing technologies, especially satellite interferometric synthetic aperture
radar (InSAR) [3], have significantly enhanced our capability to monitor and analyze
subsidence magnitude, patterns and temporal trends. Particularly, differential InSAR (DIn-
SAR) is a technique that exploits the information contained in the radar phase of at least
two complex SAR images acquired at different times over the same area to identify and
estimate any terrain displacement potentially occurring between the satellite passes [4].
To discriminate the displacement from other phase components (such as topographic er-
rors, atmospheric effects, decorrelation noise), as well as to generate displacement time
series, different advanced DInSAR data processing and analysis workflows have been
developed [5–10]. For instance, [5] effectively separates displacement signals by analyzing
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pixels with low phase noise, considering only targets coming from a strong reflecting object
constant over time (called Permanent or Persistent Scatterers, PS; PSInSAR technique), or
including those targets where scattering is constant over time, but comes from different
small scattering objects (Distributed Scatterers, DS; SqueeSAR technique) [6]. The accuracy
of advanced DInSAR datasets against independent geodetic data, such as leveling and
global navigation satellite systems (GNSS), can reach a few mm for displacement records
and less than 1 cm/year for displacement velocities [11–15].

The increasing SAR data availability, the development of new advanced DInSAR
data processing techniques, and the increase of computational capability has enhanced
the capability of DInSAR analysis to cover wide areas, up to the continental scale [16–18].
It is in this context that the European Ground Motion Service (EGMS) was developed, a
wide-area deformation monitoring system based on advanced DInSAR techniques, part of
the Copernicus Land Monitoring Service [16,19]. It builds upon big data stacks of C-band
Sentinel-1A/B Interferometric Wide (IW) swath SAR images, processed by the combination
of advanced PS and DS techniques (see [5,6,19] and the authors cited therein), and its time
series datasets have recently started to be exploited by the scientific community for urban
instability and geohazard investigations using semi-automated tools [20].

On the other hand, different methodologies have been developed in recent years to
analyze the resulting multi-temporal DInSAR time series data, aimed to the geological inter-
pretation of areas affected by land subsidence/uplift and seasonal movements [21–25]. By
employing advanced statistical and machine learning tools, these methodologies succeed in
identifying distinct spatio-temporal trends that characterize land deformation. Distinguish-
ing between different components of motion, such as long-term and seasonal behaviors, is
fundamental to analyzing the different natural and anthropogenic processes that may be
contributing to the subsidence process. For example, [26] employed a principal component
analysis (PCA) to extract the spatial patterns of deformation embedded in an InSAR time
series and related them to land elevation changes caused by groundwater withdrawal
and aquifer system recharge. On the other hand, [27] characterized areas of accelerating
and decelerating displacement behavior, identified zones of sagging and hogging using
horizontal displacement data, and marked areas with potentially yet unmapped ground
discontinuities by analyzing deformation trends on structurally-controlled subsidence.

Some of the methodologies are based on well-known statistical algorithms, that were
not originally designed for InSAR data evaluation but proved to be useful for deformation
time series characterization. This is the case with the independent component analysis
(ICA), an advanced statistical method that decomposes a mixed signal into a linear com-
bination of many independent components. ICA has been used with InSAR data for the
evaluation of volcanic deformation signals [28,29], to correct atmospheric phases [30], and
can be used to retain the different components of motion that could be embedded in a
deformation time series [31]. Conversely, some authors focused on developing algorithms
specifically for DInSAR time series evaluation and subsidence characterization. In this
framework, [21] developed a semi-automated classification tool that performs a series of
statistical tests to classify different deformation time series into predefined categories of
motion. This methodology has proved effective for detailed landslide and subsidence
analysis [27,32] and was even included in combined methodological approaches proposed
by other authors [23,24]. However, the full potential of these statistical methodologies for a
complete evaluation of subsidence processes is yet to be explored.

With the aim to contribute to this research line, the scientific goal of this study is to
bring novelty to the field by establishing and evaluating for the first time the benefits of the
sequential application of the following: (1) a semi-automated statistical test of displacement
time series for trend classification and mapping; and (2) an ICA for trend and pattern
retrieval to assess land subsidence and identify spatially the different ground motion trends
affecting a given study area. In addition to the statistical analysis of deformation time
series, a spatio-temporal correlation with geological and groundwater monitoring records
is performed for drivers’ identification. The proposed methodological approach has been
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applied on three representative areas prone to land subsidence in the Po Plain, a sedimen-
tary basin in northern Italy: Ravenna, Bologna, and Carpi, which are well known in the
scientific literature for the subsidence phenomena affecting them over the last decades [33].
As such, they offer the ideal testing ground for the approach, given the associated variety
of temporal trends, including accelerating, decelerating, seasonal, quadratic and linear
behaviors, and a combination of natural and human-related drivers. Although each method
has its own limitations, a combination of them that is experimented in this work results in a
powerful and novel analytical methodology that enhances a comprehensive analysis of the
subsidence phenomena necessary for land and urban planning, and the implementation
of risk mitigation strategies. The application of the method for the characterization of the
three land subsidence study sites enabled a better understanding of the phenomena, as
well as the identification of the potential and limitations of the proposed workflow, and key
aspects and directions for future research in the field of land subsidence characterization
with advanced statistics and computational tools, using free and open data such as the
EGMS products.

2. Study Areas

Ravenna, Bologna, and Carpi are located in the Po Plain, the most extensive (~46,000
km2) and densely populated (~450 inhabitants/km2) plain in Italy (Figure 1). Located in the
northern part of the country, the plain is crossed by main roads and highways, and many
urban centers and industrial settlements that are widely developed across a vast portion
of its territory, while the rest of it is characterized by intensive farming activities [34,35].
The plain spreads west to east from the western Alps to the Adriatic Sea, representing the
foreland sedimentary basin system of two fold-and-thrust belts (Northern Apennines and
Southern Alps) [36,37]. The upper part of its stratigraphic sequence is characterized by the
presence of Middle Pleistocene–Holocene alluvial fine and unconsolidated sediments that
were deposited by the Po River and its tributaries, and consist of an alternation of sands,
silts, and clays [38]. This sedimentary sequence hosts a complex multi-aquifer system,
which has been pumped through the years [39].

A natural subsidence of 2.5–3 mm/year was recognized in the Po Plain due to tectonics
and sediment load/compaction [40,41]. Other studies have identified higher rates of up to
5 mm/year through the geological history of the sedimentary basin, observing the addi-
tional effect of short-term glacial cycles to the long-term processes (tectonics, geodynamics,
and sediment load/compaction) [42]. On the other hand, significant anthropogenically-
driven subsidence, with rates over an order of magnitude higher than that associated
with natural causes, has been recognized in the plain for years, and has been principally
attributed to intense groundwater pumping [39,43]. For example, the last report published
by the Regional Agency for Prevention, Environment and Energy of Emilia-Romagna
(ARPAE)’s subsidence monitoring project [33], which encompasses deformation phenom-
ena over the 2016−2021 period for the Emilia-Romagna region, reveals that over 6% and 3%
of the regional territory experience subsidence rates from −5 to −10 mm/year and from
−10 to −20 mm/year, respectively, attributed to anthropogenic causes [33]. The selected
study sites of Bologna, Ravenna, and Carpi have been historically recognized among the
main areas substantially affected with anthropogenically-driven deformation over the Po
Plain [43] and were also identified as key subsidence hotspots by this report [33].
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Figure 1. The study areas of (1) Ravenna, (2) Bologna, and (3) Carpi–Correggio–Soliera: (a) geograph-
ical location in Italy; (b) extent of the European Ground Motion Service (EGMS) Level-3 (L3) and
Level-2b (L2b) dataset footprints used for the statistical analysis, overlapped onto the Copernicus
Global Digital Elevation Model [44]; and (c) detail of the mean vertical deformation velocity from
EGMS L3 datasets, overlapped onto a Google satellite imagery basemap.

3. Materials and Methods
3.1. DInSAR Datasets

The input InSAR datasets used in this study include the most updated EGMS version
currently released by Copernicus as of mid-2024, which provides ground displacement
data for a time span from January 2018 to December 2022.

Level 3 (L3) “Ortho” products containing vertical and east-west displacement infor-
mation, resampled to a 100 m × 100 m grid, were used (Figure 1b). These are obtained by
combining ascending and descending orbit InSAR datasets, and assuming that no north-
south displacement had occurred. A total of 6 L3 100 km × 100 km tiles were downloaded
from the Copernicus EGMS Explorer portal, mosaicked and clipped to the extent of the
three demonstration sites of Bologna, Ravenna, and Carpi (Figure 1c).

To detail the analysis at site scale, point-wise Level 2b (L2b) “Calibrated” products
containing PS datasets with line-of-sight (LOS) annual deformation velocity, time series,
and acceleration (among other values) were assessed. A total of five Sentinel-1 IW bursts
were examined covering the three study sites (Figure 1b): three descending datasets to
cover Bologna and Carpi, and two ascending datasets for Ravenna. The datasets involve,
respectively, Sentinel-1 track 168 with IW sub-swath 1 (incidence angle varying from ~30◦
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to ~36◦, from the near to the far range) and track 117 with sub-swath 2 (incidence angle
from ~36◦ to ~41◦). These datasets are calibrated with a model derived from high-quality
GNSS data and they are not relative to a local reference point (i.e., they display absolute
displacement values). Mean annual velocity and acceleration values are calculated by the
EGMS production team on the time series residuals after applying a regression model of a
first and second order polynomial, respectively, plus a seasonal (sinusoidal) component [45].
Positive LOS displacement rates indicate movements towards the satellite sensor (or uplift,
in case of vertical rates), while negative LOS rates indicate movements away from the
sensor (or subsidence, in case of vertical rates). Likewise, positive acceleration values at
subsiding sites indicate the deceleration of the subsidence process (i.e., an increase in the
displacement rate towards positive values), whereas negative acceleration at subsiding
sites indicates the transition towards lower negative values, hence an acceleration of the
subsidence process.

To enable a comparison of L2b time series with groundwater monitoring records, LOS
deformation estimates (DLOS) contained in the EGMS L2b products were reprojected into
vertical displacements (DU), by using the simplified assumption of absence of horizontal
displacement, and therefore by dividing DLOS by the local value of the directional cosine
along the vertical direction:

DU =
DLOS
cosθ

(1)

where θ is the incidence angle of the LOS. The assumption was deemed suitable for the
vast majority of the study areas, given that east-west displacements were generally absent
according to the EGMS east-west ortho product or, when present, they are characterized by
a lower order of magnitude with respect to vertical displacement records.

3.2. Groundwater and Geological Datasets

Groundwater monitoring data were provided by ARPAE, which oversees surveys at a
network of groundwater monitoring wells over the whole Emilia-Romagna region, dividing
them according to their use (e.g., irrigation, industrial, domestic). The data include histories
of piezometric levels (height of the groundwater level above the datum) and groundwater
depths to the topographic level at each well, which are manually recorded by ARPAE’s team
during regular surveys at the regional network (using pressure transducers, electric probes
or phreatimeters) or, at some piezometers, registered hourly with advanced equipment
installed on site. The depths of the different piezometers and their filters vary (hence they
allow recording data for different layers of the aquifer system), and some of them also
feature open screens across multiple layers.

On the other hand, geological datasets used for the statistical correlation of ground
deformation with lithology were downloaded from the MinERva Portal, also managed by
the Emilia-Romagna Region service [46]. These include surface geology maps at the 1:25,000
scale, depicting depositional environments and a lithological description. Sedimentary
deposits are categorized according to their texture in gravel, sand, silt, and clay, including
mixtures of the different granulometries (e.g., silty sand).

3.3. Time Series Semi-Automatic Classification (PS-Time)

“PS-Time” is a MATLAB-based semi-automatic classification tool developed by [21]
that recognizes different motion trends in the input InSAR time series through the applica-
tion of a conditional sequence of statistical tests, such as multiple regression and Analysis
Of Variance (ANOVA). The program has been used for the evaluation of DInSAR time
series in many different geohazard applications, proving to be significantly useful for land
movement characterization [24,27,47,48]. It is included in the methodology for detection
of ground motion areas proposed by [23], who succeeded in identifying different compo-
nents of motion in the Oltrepò Pavese (Po Plain, Italy) related to natural and man-induced
processes (such as swelling/shrinkage of clayey soils, land subsidence due to load of new
buildings, and seasonal behaviors in response to groundwater level variations).
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The tool conducts a series of statistical tests to categorize the time series into six
predefined categories: uncorrelated, linear, quadratic, bilinear, discontinuous with constant
velocity, and discontinuous with variable velocity. The latter four categories are collectively
referred to as “non-linear” motion trends. Additionally, it evaluates the presence of any
cyclic fluctuations in the displacement time series, characterized by a periodicity of around
one year, by computing its amplitude.

As explained in detail in [21], PS-Time first runs an ANOVA F test to assess the sig-
nificance of the linear regression. If there is no relationship between displacement and
time, the slope of the linear regression β1 equals 0 (i.e., null hypothesis). If the proba-
bility of such condition (p1) exceeds the level of significance of the linear regression (α1)
that is set by the user (p1 > α1), the point is classified as “uncorrelated”. Otherwise, if
p1 ≤ α1, the null hypothesis is rejected, and the existence of a linear relationship is con-
firmed. That being the case, a segmented linear regression is run to assess the probability of
a bilinear motion trend. The Bayesian information criterion (BIC) [49] is exploited to verify
the existence of a breakpoint, and the evidence ratio Bw [50] is calculated and compared
with the selected level of significance of the segmented regression (Bth). If the segmented
regression is not significant (Bw < Bth), the time series is further analyzed using quadratic
regression and another ANOVA F test. If the probability of not having a quadratic term (p12)
does not exceed the predefined threshold (α12) that was set by the user (p12 ≤ α12), the
deformation behavior of the point is classified as “quadratic”. Otherwise, when p12 >‘α12
the “linear” motion trend is confirmed. On the other hand, if Bw ≥ Bth, a breakpoint is
identified, and the series is classified as “bilinear”.

At that stage, the presence of any vertical jump in the series is also evaluated by a
discontinuity test with confidence bands at 95%, and an F test for the equality of slopes [51]
is applied to identify any regression slope change before vs. after the breakpoint (which
would classify the series as “discontinuous”, with either constant or variable velocity).

The outcomes of the automatic classification tests are highly influenced by the chosen
significance level for each statistical analysis, which can be determined before executing
the program. In this study, we set such thresholds to α1 = 0.05, Bth = 1.2 and α12 = 0.01,
by building upon both the recommendations of the developers [21] and the results of the
extensive trials presented in [32]. The latter tested four different combinations of the three
thresholds (α1, Bth, α12) to classify a ~5500 PS time series extracted from the EGMS InSAR
dataset for the city of Ravenna as follows: (i) α1 = 0.01, Bth = 1 and α12 = 0.01; (ii) α1 = 0.05,
Bth = 1.2 and α12 = 0.01; (iii) α1 = 0.05, Bth = 1.5 and α12 = 0.05; and (iv) α1 = 0.05, Bth = 1.2
and α12 = 0.05. By training the tool with an assorted selection of linear, quadratic, bilinear,
and uncorrelated time series, set (ii) provided the best classification performance.

3.4. Independent Component Analysis (ICA)

ICA is a blind signal separation method that consists of decomposing a mixed signal
into a linear combination of statistically independent sources, under the assumption that
each component has a non-Gaussian probability distribution [52,53]. The central limit
theorem underpins this assumption, suggesting that a mixture of non-Gaussian signals
tends towards a Gaussian distribution, making it feasible to identify the original non-
Gaussian sources by maximizing their statistical independence [52,53]. Therefore, the
problem is expressed mathematically as:

X(t∗p) = A(t∗n).S(n∗p) (2)

where X is the input mixed signal matrix, with the number of dates (t) considered in the
rows and the number of pixels/points (p) as columns, S is the matrix of independent
components (IC), and A is the mixing matrix, which describes the relative contribution of
each source to the input mixed signal. The number of IC retrieved is n.

The authors of [52] introduced the FastICA algorithm, which performs a fast fixed-
point iteration to retrieve independent sources in the mixed signal. The algorithm starts
by centering and whitening the observations, achieved by subtracting the mean from the
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mixed signal matrix, making the variables zero-mean. This converts the mixing matrix
into an orthogonal matrix, reducing the number of free parameters. FastICA preconditions
the centered observations using principal component analysis (PCA) [54], which is also
helpful for reducing the dimensionality and noise of the data. Following this, the mixed
signals are linearly transformed into uncorrelated variables with a variance of 1 through
whitening, and the problem becomes U = D·S, where U is the centered and whitened mixed
matrix and D is the orthogonally adjusted mixing matrix. Consequently, the source matrix
can be estimated using the equation S = D−1·U, where D−1, also known as the unmixing
matrix W.

The number of principal components to be retained for the ICA, which is consequently
equal to the number of resulting ICs, can be defined by the user while running the FastICA
algorithm. In this work, a trial-and-error approach was applied to select the minimum
number of components necessary to accurately describe the different deformation patterns
embedded in the total deformation signal, trying to avoid overfitting (e.g., [28]). Starting
from two, the number of components was iteratively increased in each trial until no more
significant new trends were recovered. A temporal ICA was applied to the deformation
time series through the freely available FastICA MATLAB code, distributed by Aalto
University [55]. The output number (unique identifier) assigned to each component was
chosen randomly by the program, without following a specific order [30] (e.g., the linear IC
could be assigned the identifier IC1, IC2, or even a different one, not necessarily placed at
the beginning of the IC list).

4. Results
4.1. Subsidence Time Series Trend Classification

The vertical velocity provided by L3 EGMS datasets at 100 m resolution (Figure 1c),
and the mean LOS velocity and acceleration values provided by L2b EGMS point-wise
products enable a first-level assessment of the minimum and maximum values estimated
at the three study sites as follows: (1) in the coastal area of Ravenna, LOS subsidence rates
are lower than −5 mm/year for ~30% of the PS targets, with a peak at −37.1 mm/year and
vertical rates as low as −50.0 mm/year, and accelerating trends reach up to −7.1 mm/year2;
(2) within the wide area comprising Bologna, LOS velocities are lower than –5 mm/year for
~40% of the PS targets and reach up to −35.8 mm/year corresponding to −42.5 mm/year
vertical rates, and deceleration and acceleration are up to +7.6 and −8.2 mm/year2, respec-
tively; and (3) in the industrial area of Carpi–Correggio–Soliera, another significant mean
deformation velocity cluster is identified, with LOS values lower than −5 mm/year for
~60% of the PS targets, with a peak at −25.2 mm/year and vertical rates of −25.4 mm/year,
and acceleration/deceleration values reaching −5.7 and +5.6 mm/year2, respectively.

To fully understand and evaluate the spatial variability of subsidence during the five
year-long period, LOS deformation velocity, acceleration, seasonality, and trend classifica-
tion maps were created and analyzed in detail for each of the three study sites (Figures 2–4).
The first two parameters were extracted from the L2b EGMS products, while the seasonality
(i.e., amplitude of the annual periodicity component) and the time series trend classification
were obtained from the PS-Time analysis.

In the area of Ravenna (Figure 2a), the LOS deformation velocity map displays values
higher than −5.0 mm/year towards the city center, aligning with the natural subsidence
rates revised in the literature [43] and indicating a general stability in that area. On the
other hand, lower velocities are observed in the western agricultural fields and over the
coastal zone, with values varying between −5.0 and −10.0 mm/year. The industrial district
and a small area identified by Copernicus’ Urban Atlas Land Cover inventory [56] as a
dump site (see location in Figure 2a) exhibit the lowest deformation velocities, with peaks
of −28.0 and −37.1 mm/year, respectively.
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The acceleration map (Figure 2b) highlights a cluster of decelerating points in the
southern coastal region, with values between +3 and +6 mm/year2. Conversely, the area of
the agricultural fields depicts an accelerating tendency, with values up to −7.1 mm/year2,
as well as some annual periodic components, with amplitudes varying between 2 and
8 mm (Figure 2c). The seasonality map (Figure 2c) also shows a small cluster of points with
amplitude exceeding 6 mm within the industrial area of Ravenna, particularly noticeable
over a large fabric metal rooftop. This seasonal pattern may be attributable to the possible
thermal expansion of the material in response to seasonal temperature changes.

Finally, the PS-Time trend analysis classified the majority of the points as quadratic
(~67%) or linear (~32%), with less than 1% falling into other categories (uncorrelated,
bilinear, or discontinuous). A cluster of quadratic trends was noted exclusively in the agri-
cultural fields zone (Figure 2d), aligning with the accelerating cluster previously mentioned
(Figure 2b).

Figure 2. (a) Mean LOS deformation velocity; (b) acceleration; (c) annual seasonality amplitude; and
(d) PS-Time classification maps for Ravenna, overlapped onto Google satellite imagery. The area
selected for the following ICA analysis is highlighted on (a). DCV = discontinuous with constant
velocity; DVV = discontinuous with variable velocity.
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Figure 3. (a) Mean LOS deformation velocity; (b) acceleration; (c) annual seasonality amplitude;
and (d) PS-Time classification maps for Bologna, overlapped onto Google satellite imagery, with
indication of the administrative boundary of the city of Bologna (black polygon). The rectan-
gles (i.e., 1 in (c), and 2 in (b)) indicate the testing areas utilized in the following ICA analysis.
DCV = discontinuous with constant velocity; DVV = discontinuous with variable velocity.

The maps from the area of Bologna show stability only in the southern area of the
city center that is towards the Apennine border, with LOS deformation velocity values
between −3 and +3 mm/year, among the natural subsidence values registered for the
region. On the other hand, a notorious concentric subsidence cluster is observed in the
center and northern part of the study area (Figure 3a), with the highest deformation rates
(−35.8 mm/year) recorded along Reno river plain. The general mean deformation velocity
cluster broadly coincides with the decelerating cluster shown in Figure 3b, with values
generally in the range of +1 to +3 mm/year2, and a localized peak of +7.6 mm/year2 in
the town of San Giovanni in Persiceto. On the other hand, two accelerating clusters were
identified, one located in the western sector of the study area, around the industrial area of
Ponte Samoggia, and another towards the eastern part, between Ozzano dell’Emilia and
Minerbio towns, with acceleration values between −3.0 and −8.2 mm/year2. The sector of
Minerbio is also characterized by a strong seasonal component, as can be seen in Figure 3c,
representing the only seasonally deforming cluster recognizable in the study area.

Similar to what was observed in the area of Ravenna, PS-Time mainly identified linear
(~50%) and quadratic (~44%) trends, with clusters of quadratic points aligning with the
most accelerating and decelerating areas (Figure 3d). In addition, points located over the
Apennines boundary are mostly classified as uncorrelated (~6%).
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Figure 4. (a) Mean LOS deformation velocity; (b) acceleration; (c) annual seasonality amplitude; and
(d) PS-Time classification maps in the Carpi–Correggio–Soliera area, overlapped onto Google satellite
imagery. The area selected for the following ICA analysis is highlighted on (a). DCV = discontinuous
with constant velocity; DVV = discontinuous with variable velocity.

The industrial area of Carpi, Correggio, and Soliera displays a general instability,
also concentrically distributed, with subsidence velocities ranging between −3.0 and
−20.0 mm/year (Figure 4a). The lowest deformation rate (−25.2 mm/year) is located along
the A22 highway, in the north-western sector of Carpi. However, this area also experiences
the strongest decelerating tendency, of around +5.6 mm/year2, according to the results
observed in the acceleration map (Figure 4b). On the other hand, a strongly focalized
accelerating cluster is shown over the town of Soliera, with a peak value of −5.7 mm/year2

(Figure 4b). No seasonally deforming clusters were recognized in the area (Figure 4c).
The trend classification map shows a general linear (~59%) and quadratic (~40%) time

series behavior, with a cluster of quadratic points coinciding with the area of Carpi where
the highest subsidence velocities and decelerating values were observed (Figure 4d). Only
less than 1% of the time series exhibits different behavior. Among them, a cluster of bilinear
points (0.14%) was identified over Soliera, aligning spatially with the highest accelerating
area identified in Figure 4b. For these points, PS-Time software v.1.1 (64-bit) identified
breakpoints in the time series between May 2021 and December 2021 (see Figure A1 in
Appendix A).
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4.2. Retrieval of Different Deformation Patterns Through ICA

Taking into consideration the results obtained using PS-Time, local scale analysis has
been performed with the FastICA algorithm to evaluate the different deformation patterns
and trends embedded in the deformation time series, as well as to detail the understanding
of their spatial distribution, over the three study sites. Three small subsets of ~22 km2 were
selected, one within each study area (the industrial area of Ravenna, and the areas around
Minerbio and Soliera; Figures 2a, 3c and 4a), plus a wider 52 km2 testing sector north-west
of Bologna (“Area 2”, between San Giovanni in Persiceto and Ponte Samoggia; Figure 3b).
These sub-areas were selected according to the places where the most variable time series
behaviors were observed, in order to fully assess their deformation pattern (see Section 4.1).

Figures 5–7 depict the various independent signals identified for each area (i.e., namely,
the rows of the mixing matrices, A in Equation (2)), along with the spatial distributions
of the components (i.e., S in Equation (2)). The latter is represented with a color scale in
the form of “scores”, which describe how similar the time series of a certain PS point is to
the one retrieved in a certain component: higher scores indicate a higher match between
the time series, while scores approaching 0 indicate no correlation, and negative scores
highlight that the PS follows a trend that is opposite to the one depicted by that component.
To simplify the following discussion, they are codified with the following structure: initials
of the area (Ra, Ravenna; Bo, Bologna; So, Soliera) and number of IC (1, 2, 3, 4). The different
independent signals mixed in the total ground motion time series generally showed the
presence of a linear component, a quadratic one, plus one or two sinusoidal signals. For
Ravenna, San Giovanni in Persiceto and Ponte Samoggia (Bologna, Area 2), and Soliera
four components were retained (Figures 5, 6a and 7), while at Minerbio (Bologna, Area 1;
Figure 6b) the deformation patterns were described by using two components only. This
methodological choice enabled the identification of the most significant components, but
included some noisy signals (e.g., at Soliera, So-IC4; Figure 7), and less relevant or mixed
components, which are discussed in detail below.

Figure 5. Independent components identified in Ravenna (Ra) testing area, overlapped onto Google
satellite imagery.
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By analyzing the time series of the various ICs within the four testing areas, linear
deformation trends were identified in Ra-IC2, Bo1-IC1, Bo2-IC1, and So-IC3, corresponding
to the areas of Ravenna, Bologna (1 and 2), and Soliera, respectively. On the other hand, Ra-
IC4, Bo2-IC3, and So-IC1 (and, less pronouncedly, Bo1-IC1) depict quadratic deformation
signals. Two sinusoidal signals of different periodicity were retained for Ravenna in Ra-IC1
and Ra-IC3 (with a yearly, and a multiyear frequency, respectively), whilst just one periodic
signal was identified for the area of Soliera in So-IC2. Sinusoidal components were also
retained in Bo1-IC2, Bo2-IC2, and Bo2-IC4 for Areas 1 and 2 of Bologna, although the latter
component mentioned is significantly affected by noise and shows a slight shift in the
temporal location of the peak values of the sinusoid with respect to Bo2-IC2.

Figure 6. Independent components identified in Bologna (Bo), covering (a) Area 1, and (b) Area 2,
overlapped onto Google satellite imagery.

When displaying the spatial distribution of the ICs (maps in Figures 5–7), it is inter-
esting to notice that there is a great spatial correspondence in most of the cases with the
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clusters observed in the mean deformation velocity, acceleration, and seasonality maps
(Figures 2–4). The areas that display high scores for linear components align with the
ones where lower deformation velocities were recorded (i.e., Figure 3a with Bo1-IC1 and
Bo2-IC1, Figure 4a with So-IC3, Figure 2a with Ra-IC2). Something similar happens with
quadratic components, whose scores generally align with the spatial distribution observed
in acceleration maps (i.e., Figure 3b with Bo2-IC3, Figure 2b with Ra-IC4, Figure 4b with
So-IC1). This is the case for Ra-IC4 and So-IC1, which present a quadratic trend that
scores positively in the areas where accelerating clusters were previously identified (see
Figures 2b and 4b). On the other hand, although the trend retrieved by the mixing matrix
for Bo2-IC3 is flipped, positive IC3 scores are observed for the accelerating area of Ponte
Samoggia, and strong negative scores are found for the decelerating areas of San Giovanni
in Persiceto and Anzola dell’Emilia (Figure 3b). Therefore, it is reasonable to think that
negative scores indicate time series trends that behave exactly oppositely to the signal
retained in the component.

Figure 7. Independent components identified in Soliera (So), overlapped onto Google satellite imagery.

Sinusoidal components are more variable within the observed time series. Although
Ra-IC1 aligns spatially with the seasonality amplitude cluster identified in Figure 2c, Ra-
IC3 shows no clustering or specific correlation with any parameter determined before.
Consequently, it can be assumed as a not relevant, noisy component. A similar situation
occurs in Area 2 of Bologna, where Bo2-IC4 represents a noisy component, with no apparent
spatial clustering on the map. However, it is interesting to notice that Bo2-IC2 depicts a
cluster of points with seasonal time series that was not recognized in the area using the
EGMS dataset information or PS-Time (Figure 3b,c), therefore suggesting the importance
of implementing ICA to assess similarly complex trends or any hidden patterns. As an
example, the time series of one of these points is shown in Figure A2 in Appendix A,
where some very noisy seasonality can be observed onto a seeming quadratic behavior. In
the area of Soliera, So-IC2 represents the seasonal component, but no spatial clustering is
recognized, coinciding with the results observed in Figure 4c.
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To confirm the relationship between the different components retained for each area
and the mean deformation velocity, acceleration, and seasonality parameters previously
analyzed, a regression analysis was pursued and R2 values were calculated (Figures 8–11).
Linear fittings were performed for mean deformation velocity and acceleration correlations,
while a quadratic fitting was applied for the amplitude of the annual periodicity component
(APC) parameter. In all cases, the components that displayed linear trends (Ra-IC2, Bo1-
IC1, Bo2-IC1, and So-IC3) are accurately correlated with the mean deformation velocity
measured in each area, showing a negative linear correlation, with R2 values ranging
between 0.517 and 0.857. Similarly, quadratic ICs (Ra-IC4, Bo2-IC3, and So-IC1), which
spatially seemed to correlate with the accelerating and decelerating trends observed on the
maps, show a clear negative linear correlation with the accelerating values calculated from
EGMS products, with slightly lower R2 values, ranging between 0.518 and 0.709.

Figure 8. Correlation between mean deformation velocity, acceleration and amplitude of the APC,
from EGMS products and PS-Time analysis, and the ICs retained for the area of Ravenna. Linear or
bilinear fitting (red lines) and R2 values are shown in the graphs that show the best correlation.

When comparing the seasonal ICs with the annual seasonality calculated through
PS-Time, points are generally displayed following a parabolic distribution with axes of
symmetry at IC scores equal to 0 (e.g., Bo1-IC2 and Bo2-IC2 in Figures 9 and 10, and
So-IC2 in Figure 11). Similarly, evidence of a bilinear correlation is displayed for Ra-IC1 in
Figure 8, with breakpoint at a score of 0. The parabolic and bilinear correlations in this case
are believed to happen because some points score positively to a certain periodic pattern
retained by ICA, as they follow exactly the same trend; but others, although being very
seasonal, show the opposite periodicity (e.g., positive peak in the deformation time series,
corresponding to a negative peak in the IC mixing matrix series).
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Figure 9. Correlation between mean deformation velocity, acceleration, and amplitude of the APC,
from EGMS products and PS-Time analysis, and the ICs retained for Area 1 in Bologna. Linear or
quadratic fitting (red lines) and R2 values are shown in the graphs that show the best correlation.

Figure 10. Correlation between mean deformation velocity, acceleration, and amplitude of the APC,
from EGMS products and PS-Time analysis, and the ICs retained for Area 2 in Bologna. Linear or
quadratic fitting (red lines) and R2 values are shown in the graphs that show the best correlation.
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Figure 11. Correlation between mean deformation velocity, acceleration, and amplitude of the APC,
from EGMS products and PS-Time analysis, and the ICs retained for the area of Soliera. Linear or
quadratic fitting (red lines) and R2 values are shown in the graphs that show the best correlation.

4.3. Subsidence Drivers Analysis
4.3.1. Ravenna

Historically, subsidence in Ravenna has been linked to the combined effects of ground-
water extraction and methane withdrawal from both onshore and offshore gas reservoirs,
which leads to pressure loss and subsequent compaction [40,41,57]. For the 2018−2022
period, Porto Corsini Mare and Angela Angelina offshore fields are the only gas extraction
fields with ongoing operative concessions in the study area, according to the data published
by the Italian Ministry of Environment and Energy Security [46]. In order to explore a
possible connection between the Angela Angelina reinjection well and the deceleration
pattern observed in Figure 2b, changes in acceleration rates within a 3 km buffer around
the well were analyzed (Figure A3, Appendix A). The area closest to the well exhibited the
most significant deceleration tendency (i.e., +1.64 mm/year2 for that point, equivalent to
declining subsidence velocity over time), and lower deceleration rates were observed as
the distance from the well increased. These results suggest a possible correlation between
gas reinjection activities and the localized decrease in deformation velocities near the well.

Comparison of piezometric records at ARPAE’s monitoring wells RA49-00 and RA29-
00 with InSAR-derived ground deformation in contiguous PS–DS points provides insights
into the correlation between groundwater withdrawal and accelerating subsidence at the
agricultural fields and over the coastal area (Figure 12b). RA49-00 is drilled in the al-
luvial plain, and reaches the lower confined aquifer, with filter at 205−229 m; whereas
RA29-00 is drilled in the coastal alluvial plain and supplies water for irrigation, from the
confined aquifer, with filter at 233−251 m. In the first case, some correlation between the
deformation time series of a representative PS point in the vicinity of the well and the mea-
sured piezometric change was observed, despite the limited piezometric and displacement
changes recorded (i.e., an 80 cm decrease in underground water levels, accompanied by
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~20 mm cumulative deformation during 2018−2022). Additionally, seasonal variations are
observed in the displacement time series (with ~1.0 mm of amplitude according to PS-Time,
overlapping onto a noisy quadratic behavior), though they are less distinguishable in the
piezometric records, given the less frequent temporal sampling), that may suggest the exis-
tence of an elastic deformation behavior overlapping onto the main process of compaction.
Peak values occur in winter and spring (potentially due to rainfall-driven aquifer recharge
and short-term deceleration of the subsidence process, e.g., in January–May 2022) and are
followed by acceleration in summer and autumn (e.g., in July–September 2022). A different
situation is observed in RA29-00, where groundwater levels showcase an overall increase
(though very limited, only in the range of less than 1 m), contrary to what is observed in
the deformation time series, which depicts a negative cumulative deformation of 31 mm.

Figure 12. (a) Geological map with the location of the principal gas fields operating near the coast of
Ravenna and two ARPAE groundwater monitoring wells, overlapped onto Google satellite imagery;
(b) Comparison between piezometric level variations in ARPAE’s monitoring wells RA49-00 and
RA29-00 and the deformation time series of contiguous points; (c) Deformation velocities observed
within each lithological unit, expressed in [mm/year]. Gas exploitation data in (a) is made available
by the Italian Ministry of Environment and Energy Security [58], while the location of the monitoring
wells and the geological layers were downloaded from the MinERva Portal, managed by the Emilia-
Romagna Region service [46].
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Descriptive statistical analysis enabled the identification of any possible correlation
between the observed deformation velocity and the geological framework (Figure 12c).
Key statistics (mean, median, mode, standard deviation, maximum, and minimum) for the
velocity values of the points located within four different textural categories reported in the
geological mapping of Ravenna were calculated. Areas encompassed by the lithified dune
and the silty sands display similar statistics, with a mean of −3.8 mm/year that could be
associated with the natural subsidence rates experimented by the region. The silty clays
and sands, on the other hand, highlight a lower mean, median and mode, and a higher
standard deviation (mean of −5.3 and −6.2 mm/year, respectively; standard deviation of
2.3 and 1.8 mm/year). When analyzing these statistics, it is worth noting that the density
of PS points across the four lithologies varied, due to the different distribution of urban
structures and reflective radar targets across the landscape of the study site. The silty clay
lithology recorded sparser densities (855.7 PS/km2) with respect to the silty sand, sand,
and lithified dune (1532.8, 1374.4, and 1319.1 PS/km2, respectively); therefore, this might
influence the confidence levels of the extracted statistics for the four lithologies. Sands are
distributed mainly along the coast and present the lowest average, with a minimum of
−24 mm/year, aligning with the coastal subsidence rates observed in Figure 2a. Localized
peaks in the observed displacements could link with anthropogenic drivers, such as land
use change. For instance, the statistics reveal the highest standard deviation and the most
extreme subsidence values for the silty-clayey terrain. Considering that the industrial area
of Ravenna and the dump site are located onto this geological unit (see Figure 12a), the
high velocity could result from compaction by the loading of the buildings in the clayey
sediments layer. Moreover, Urban Atlas Land Cover maps show an expansion of the
dump site during the period 2012−2018 [56], modifying a previous forestry land cover and,
therefore, probably triggering the observed subsidence process.

4.3.2. Bologna

When analyzing the change in piezometric levels (∆hi) recorded in 2018−2022 across
the area of Bologna (Figure 13a), it is possible to notice a deepening of groundwater levels
over the central-western part of the city and in the area of San Giovanni in Persiceto. Most
of the wells are located over the Reno River alluvial fan, known for its historical pumping
record [59,60]. On the other hand, a recovery in the piezometric levels is observed in
the northern, eastern, and western sectors of the study area. Even accounting for the
fact that the different piezometers operate at different depths and, as such, at different
layers of the multi-aquifer system of Bologna, the spatial pattern of changes in piezometric
levels resembles the observed subsidence velocity distribution across the area (Figure 3a),
suggesting the correlation between groundwater extraction activities and subsidence.

Comparison of piezometric level variations with deformation time series at neigh-
boring PS–DS points in two industrial and one monitoring well (BO05-00, BOF6-00, and
BOF9-00, respectively), showcase the local relationship between groundwater level changes
and ground deformation (Figure 13b), initially investigated in [61]. During 2018−2022, a
deepening of −10.0 m in piezometric levels was recorded in well BOF6-00 (drilled within
the Reno-Lavino cone, reaching the unconfined aquifer, with filter at 90−131 m), and a
cumulative vertical ground deformation of −17.8 mm was estimated in the area. The sea-
sonal oscillation observed in both time series, with peak values during the winter–spring
season and lower values during summer–autumn, suggests a close relationship between
piezometric level variations and the observed deformation. On the other hand, although
well BOF9-00 (located in the Apennine alluvial plain, reaching the upper confined aquifer,
with filter at 100−130 m) presents a sudden recovery of the piezometric levels in the last
measurement (recorded on 21 November 2022), leading to a positive ∆hi of +4.4 m, no
remarkable change is observed in the deformation time series, which experiences a cumula-
tive vertical displacement of −63.6 mm. Finally, well BO05-00 (within the alluvial plain,
reaching the lower confined aquifer, with filter at 168−172 m) experiences a ∆hi = −14.7 m,
which corresponds to −16.2 mm vertical displacement.
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The study area’s morphology and geology are primarily influenced by the alluvial fans
of the Reno and Savena rivers (Figure 13c). These fans consist of layered coarse-grained
deposits that transition to finer, less amalgamated sediments in their distal areas [62].
Following the workflow applied for the analysis of Ravenna, a descriptive statistical
analysis was performed to assess the correlation between deformation and different textural
classes (Figure 13d). The geological units were retained from Bologna geological mapping
at scale 1:25,000 [46], and the density of PS for each lithology was: 0.3 PS/km2 for clays,
901.6 PS/km2 for sands, 1573.2 PS/km2 for gravels, and 1057 PS/km2 for silt. Similar
to what was observed for Ravenna, clay and sand lithologies exhibit lower subsidence
velocities, with a mean of −7.1 and −6.5 mm/year, respectively. Silt and gravel lithologies
have their mean among the natural subsidence values of the Emilia-Romagna region (up to
−3 mm/year).

Figure 13. (a) Position of ARPAE’S groundwater monitoring wells and the recorded change in piezo-
metric levels (∆hi) for the area of Bologna during the studied time period (2018−2022), overlapped
onto Google Satellite imagery; (b) Comparison between piezometric level variations in three of the
wells and the deformation time series of contiguous PS–DS points; (c) Geological map of Bologna;
(d) Deformation velocities observed within each lithological unit, ex-pressed in [mm/year]. Geologi-
cal layers used in (c) were downloaded from the MinERva Portal, managed by the Emilia-Romagna
Region service [46].
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4.3.3. Carpi, Correggio, and Soliera

The industrial area of Carpi, Correggio, and Soliera encompasses the north-eastern part
of Reggio Emilia province and the north-western sector of Modena province (Figure 14a).
In order to evaluate the relationship between groundwater extraction activities and the
ground deformation observed during the studied time period (2018−2022), a comparison
between change in the piezometric levels, recorded in MO10-01 monitoring well (drilled
within the Apennine alluvial plain, reaching the upper confined aquifer at 120 m depth),
which is used for irrigation purposes, and cumulative ground deformation in a contiguous
PS–DS point was pursued (Figure 14b). A decrease of −2.64 m in the piezometric levels is
observed, with an associated cumulative ground deformation of −82 mm. Deformation
time series display a slightly periodic component, which aligns with seasonality observed
in piezometry variations from the second half of 2020 but displays an apparently opposite
tendency in the previous period (2018−2019 to mid-2020).

Figure 14. (a) Geological map of Carpi–Correggio–Soliera subsidence hotspot, overlapped onto
Google satellite imagery; (b) Comparison between piezometric level variations in MO10-01 ARPAE’s
monitoring well and a deformation time series of a contiguous PS–DS point; (c) Deformation velocities
observed within each lithology, expressed in [mm/year]. Geological layers used were downloaded
from the MinERva Portal, managed by the Emilia-Romagna Region service [46].

Similar to the other sites analyzed, the area is characterized by the presence of highly
compressible materials, with clays and silts being the only textural classes present among
the lithologies (Figure 14a). The statistical correlation analysis between mean deformation
velocities and the different geological layers showed negative values in all the cases, below
the ones considered as natural subsidence rates (<−3 mm/year) (Figure 14c). While the
sandy silt lithology shows the lowest mean subsidence velocity (−7.7 mm/year), clay and
sandy silt display higher deformation rates, with mean velocities of −4.4 and −7.0 mm/year,
respectively. The PS density is higher for the sandy silt (1524.3 PS/km2) and presents sparser
values for the silt and clay lithologies (941.8 and 480.6 PS/km2, respectively).
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5. Discussion
5.1. PS-Time and ICA for Deformation Time Series Analysis

EGMS datasets offer an unprecedented temporal sampling, with calibrated displace-
ment records available up to the weekly scale, using both acquisition geometries, and
derived vertical and east-west datasets. This characteristic clearly opens new perspectives
for the detailed assessment and characterization of land subsidence phenomena, as well as
many other geohazard processes, the evolution and dynamics of which can be characterized
using DInSAR data. Yet, the notable potential of EGMS data, on the other hand, calls for
semi-automated and statistical approaches capable of supporting their advanced analysis,
to ensure a detailed investigation of displacement trends and patterns of interest.

The integration of advanced statistical methods such as PS-Time and ICA into DIn-
SAR data analysis for the three study sites in this work has significantly enhanced the
identification of different patterns of motion in the deformation time series. The appli-
cation of PS-Time proved to be effective for classifying the various deformation trends,
especially for distinguishing clusters of points that experiment quadratic behaviors. In
all cases, quadratic points were clustered in the areas where EGMS products displayed
accelerating or decelerating behaviors, indicating a strong correlation between this cate-
gory of the classification and a change in deformation velocities during the time series
(Figures 2b–d, 3b–d, and 4b–d). Additionally, the tool has succeeded in identifying the
existence of a breakpoint in the time series for a specific period of time, displaying a
cluster of bilinear points over a small area of Soliera (Figure 4d). This functionality is
very interesting, as not only enhances the identification of strongly focalized deformation
hotspots over the study area, but also provides the specific time frame of when the change
occurred. However, the classification provided by the program is highly dependent on the
specific parameters set for the statistical analysis [32]. Therefore, it is highly recommended
to run numerous trials with subsets of the input datasets, to correctly define the most
appropriate thresholds for the analysis. Furthermore, as the PS-Time platform analyzes
each point individually, executing all the statistical analysis in the series, the computational
demands when processing large datasets are significant, leading to extended processing
times. Given the point-by-point analysis approach, however, the computational load could
easily be distributed by splitting the input dataset into subsets and using multiple process-
ing machines, or via parallelization of the code and the exploitation of high-performance
computing infrastructure.

On the other hand, ICA proved to be effective for separating the different motion
trends embedded in the deformation mixed signal, successfully isolating linear, seasonal,
accelerating, and decelerating patterns with a high degree of precision (Figures 5–7). As can
be appreciated from the correlation analysis shown in Figures 8–11, a great correspondence
between the retained components and the different motion trends identified was observed.
Independent components showing linear or seasonal trends were spatially distributed in
concordance with mean deformation velocity and seasonality maps, respectively, while the
components showing a quadratic behavior spatially aligned with accelerating and quadratic
PS-Time clusters. However, the analysis performed by the ICA algorithm also presented
some limitations. Even though ICA is considered a blind signal separation method, when
applying temporal ICA for evaluation of time series, some a priori knowledge is required,
in order to properly define the number of components to be retained from the mixed
signal. In this study, the number of PCs selected for each study area (which consequently
correspond to the number of ICs retained by the program) was evaluated with a trial-and-
error approach, taking into consideration the results obtained from PS-Time and EGMS
products. Although the components managed to identify the different trends of motion,
a trade-off had to be made in order not to retain too many noisy components, which
would have made the interpretation of the results more challenging. Consequently, some
components still showed mixed signals (e.g., slightly seasonal signals embedded within
quadratic components in Bo1-IC1 and in So-IC1), although one of them is remarkably
more significant than the other. Additionally, ICA successfully detected the accelerating
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trends (e.g., So-IC1), but did not identify any clear breakpoints that were, on the other
hand, undoubtedly highlighted by PS-Time. Moreover, as the components could display
mirrored deformation behaviors (e.g., Bo2-IC3), a priori knowledge is advisable to avoid
any possible misinterpretation of the results.

Some of the limitations of PS-Time were therefore overcome by adding ICA to the
analysis workflow. In the areas where quadratic clusters were identified by PS-Time, ICA
complemented the analysis by differentiating between accelerating and decelerating behav-
iors, scoring the points positively or negatively in comparison to the retained quadratic
signal. This is the case, for example, for Area 2 in Bologna, where the decelerating area
of San Giovanni in Persiceto scored negatively for an accelerating quadratic trend of Bo2-
IC3. Additionally, ICA has successfully identified another seasonal, but noisy, cluster of
points for the area of Anzola dell’Emilia, which was not noticeable in the previous sea-
sonality analysis. Hence, the combination of these two methodologies has the potential to
fully identify and interpret the different components of motion that compose the mixed
deformation signal.

5.2. Subsidence in Ravenna, Bologna and Carpi–Correggio–Soliera

Apart from the −3 to −5 mm/year natural subsidence rate affecting the whole Po
Plain [40,42], significant anthropogenically-driven subsidence has been recorded through
the years by many authors for the three land subsidence prone areas assessed in this study.

Previous investigations reported deformation velocities between −10 and −20 mm/year in
Ravenna over the coastal area and related them with the combined effects of groundwater
extraction and methane withdrawal from both onshore and offshore gas reservoirs, which
leads to pressure loss and subsequent compaction [38–41,48,57]. The most recent report
published by the ARPAE subsidence monitoring project [33], which investigated the evolu-
tion of subsidence over the Emilia-Romagna region between 2016 and 2021, recognized
coastal deformation velocities in Ravenna between −7.5 and −10 mm/year, aligning with
what was observed in Figure 2a. Even though subsidence resulting from groundwater
exploitation has been recorded since the early 1950s [39] and different mitigation plans
have been implemented through time, involving the decrease of pumping rates, recent
studies prove that the recorded subsidence values along the coastline show no significant
correlation with water withdrawal activities, consequently recognizing methane extraction
as the main driver [48]. In accordance with what was observed by these authors, piezo-
metric level variations in well RA29-00 seemed to have no correlation with the contiguous
subsidence values recorded (Figure 12b). However, the opposite situation was observed for
well RA49-00, where ground deformation showed some correlation with piezometric level
variations. This could explain subsidence in the accelerating agricultural fields area, which
has already been recognized in the past by [35] as the ground motion area of Savarna and
Mezzano, groundwater withdrawal being the most statistically significant driver identified.

Recognized as one of the most important subsidence hotspots over the Emilia-Romagna
region, the city of Bologna experienced peak subsiding velocities of up to −100/−110 mm/year
in 1970−1982, and a lessening in ground deformation rates has been observed during
the last 30 years, mainly due to an increase in regional groundwater pumping regu-
lations and subsidence monitoring activities [59]. Although a significant recovery of
deformation rates was observed in 2011−2016, with areas that even showed uplifting
behaviors [63], a decrease of up to −20 mm/year in subsidence velocities has been ob-
served in 2016−2021, according to the most recent ground velocity change map published
by ARPAE [33]. Subsidence of up to −27.7 mm/year was recognized in the area north
of Bologna for the 2016−2021 period [33], aligning with the subsiding values depicted
in Figure 3a, that range between −20 and −30 mm/year for the same place, with peak
velocities of −35.8 mm/year. The correlation between the subsidence phenomena and
groundwater withdrawal activities in Bologna has been observed by different authors in the
literature [38,59,60], even focusing on the same study period [64]. The comparison between
the change in piezometric levels and the equivalent subsidence velocity implemented in
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this study showed a good correlation in the majority of cases (except for well BOF9-00,
Figure 13b), suggesting that pumping activities continue to be one of the main drivers for
the subsidence phenomena affecting the broad area. However, the geological setting also
conditions the occurrence of ground deformation, as historically the highest deformation
velocities in the area occur mainly associated with the Reno river alluvial fan [38,59,60,62],
which is also the place where most of the pumping activities of the area are concentrated.
The results of the correlation between the recorded subsidence velocities and the different
lithological classes (Figure 13d) suggest that sediment compaction is more predominant
in clayey materials, an observation that coincides with what was observed by other au-
thors [59]. Nevertheless, this observation is based on the sole analysis of statistics across
the geological layers, with no account for the spatially variable thickness of geological
deposits or their geotechnical properties; therefore, more investigation should be done on
the detailed correlation with these data to improve this initial assessment. Moreover, a
detailed contextualization of the results with respect to the hydrogeology of the area would
also be beneficial to complement the investigation.

Finally, subsidence over the industrial area of Carpi, Correggio, and Soliera was
also recognized by [65], who recorded deformation velocities of up to −15.0 mm/year
over the area for the time span between 2012 and 2022. Moreover, ARPAE’s last report
depicts subsidence values of −27.3 mm/year, −15.0 mm/year, and −14.9 mm/year for
each town, respectively, for 2016−2021. The values identified by the literature are in
accordance with the ones identified in this study (Figure 4a), that present subsidence
values for the area that vary between −10.0 and −20.0 mm/year, with peak velocities
of up to −25.2 mm/year in the north-western sector of Carpi. Although subsidence has
diminished for Correggio and Soliera in the last 5 years, Carpi continues to experience
lower deformation velocities [33,63] The presence of this phenomenon has been attributed
to groundwater withdrawal activities together with overload due to industrial expansion,
in an area characterized by the presence of highly compressible materials [65]. Correlation
analysis carried out in Figure 14b,c support this hypothesis, as a deepening in piezometric
levels is accompanied by ground deformation in the surrounding area, and all the mapped
lithologies in the area, apart from being highly compressible (clays and silts), show values
below the natural subsidence rate.

6. Conclusions

Thoroughly characterizing the evolution of subsidence deformation in a certain pe-
riod is important to recognize its main drivers, their identification being crucial for the
implementation of appropriate mitigation measures. By employing different statistical
tools, it is possible to evaluate acceleration or deceleration in the deformation time se-
ries, as well as cyclic or seasonal trends. In this study, the evolution of the subsidence
phenomena between 2018 and 2022 in three land subsidence prone areas of the Po Plain
was accurately characterized through the application of a three-step workflow, which
includes the following: (1) the application of the semi-automated algorithm “PS-Time” [11],
(2) an independent component analysis (ICA), and (3) a correlation with groundwater
and geological data. The input data included EGMS L3 and L2b products, with the latter
being particularly important because, in addition to providing the complete deformation
time series of each PS–DS point, they calculate the acceleration values at each single target,
serving as validation for the following statistical analysis.

The PS-Time tool [11] was applied in the three selected study areas (the coastal area of
Ravenna, a broad area comprising Bologna, and the industrial area of Carpi, Correggio, and
Soliera) in order to classify the time series of the points according to their characteristics
and to identify any seasonal trends. Mean deformation velocity, acceleration, seasonality,
and trend classification maps were generated for each study site. These maps not only
allowed for the identification of the places affected by subsidence, including the recognition
of local hotspots with the lowest deformation velocities in each area (e.g., the dump site
at Ravenna with deformation rates of −37.1 mm/year, or an area in the northern part of
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Bologna with up to −35.8 mm/year) but also enhanced the recognition of ground motion
patterns that differ from the classical (and often blindly assumed) linear trend. For example,
a cluster of deformation trends with significant seasonality was identified in localized areas
of Ravenna and Bologna (with peak amplitudes of 6 mm and 9 mm, respectively), and
accelerating deformation time series were identified for an area with agricultural fields
in Ravenna, for the industrial area of Ponte Samoggia and around Ozzano dell’Emilia
in the area of Bologna, and over a strongly localized area of Soliera. Conversely, a small
coastal area to the south of Ravenna, the city of Bologna, San Giovanni in Persiceto, and the
industrial area of Carpi depicted decelerating time series. Moreover, trend classification
maps showed clusters of quadratic points in the areas where accelerating/decelerating
time series were identified, with even a bilinear cluster of points in a strongly accelerating
area in Carpi–Correggio–Soliera, emphasizing the potential of this classification tool for
identifying nonlinear time series.

Areas showing interesting deformation patterns were retained to perform an ICA.
While a single window area of ~22 km2 was carefully selected for each study site, an
additional ~52 km2 testing sector was retained for Bologna, encompassing the areas of
San Giovanni in Persiceto, Ponte Samoggia, and Anzola dell’Emilia (named “Area 2”). In
all cases, the different deformation trends embedded in the time series were thoroughly
retained by using four components, except from “Area 1” of Bologna, which was completely
described by using only two components. A linear, a quadratic, and one or two seasonal
components were retained for each area. Moreover, a noisy component was recovered for
all cases, either clearly represented as noise (e.g., So-IC3) or as a noisy sinusoidal trend (e.g.,
Bo2-IC4). By spatially comparing the distribution of the components, it was noticeable
that components displaying linear trends correlate with the deformation velocity clusters
previously identified, quadratic components with accelerating/decelerating trends and
sinusoidal components with seasonal time series, validating the previously obtained results
and discovering new clusters (e.g., a new cluster of seasonal time series in Bologna). This
appreciation was confirmed by correlation analysis, which showed R2 between 0.4 and 0.9.

Finally, the results were compared with piezometric levels recorded by ARPAE and
with geological layers downloaded from MinERva Portal [46]. Generally, in places where
high subsidence values were identified, a decrease in the piezometric levels was also
recorded, underscoring the role of aquifer recharge and withdrawal on land subsidence.
On the other hand, the correlation with geology revealed that lower deformation velocities
are mainly associated with the most compressible materials (e.g., silts and clays).

The conjunct use of PS-Time and ICA for time series evaluation that has been ex-
perimented in this work, as well as the implementation of spatio-temporal correlation
analysis for drivers’ evaluation at the three subsiding sites, has proved to be a powerful
methodology to assess the evolution of the subsidence phenomena over a specific time
period, with a particular strength on identifying deformation patterns that vary from lin-
ear trends. Despite the discussed limitations of each methodology itself, their conjunct
use provides truthworthy identification and full characterization of linear, accelerating,
decelerating, and seasonal deformation trends, as well as their spatial distribution. The
evolution of ground motion in an area over time is closely related to the drivers that derive
the subsidence phenomena, and future research may therefore focus on the more extensive
implementation of such methods across wider areas, for instance across the whole territory
of the Emilia-Romagna region to enable regional authorities and end-users to easily identify
anthropogenic activities affecting the area and, therefore, inform land and groundwater
resource management.
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Appendix A

Figure A1. Example of a time series classified as “Bilinear” by PS-Time automatic classification
algorithm, in the southern area of Soliera.

Figure A2. Time series of one of the PS–DS points scored positively for Bo2–IC2 seasonal component.
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Figure A3. Acceleration variations vs. buffer distances from Angela Angelina reinjection well.
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