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Abstract: This paper presents the development of a U-Net model using four basic optical bands
and SRTM data to analyze changes in mangrove forests from 1990 to 2024, with an emphasis on
the impact of restoration programs. The model, which employed supervised learning for binary
classification by fusing multi-temporal Landsat 8 and Sentinel-2 imagery, achieved a superior accuracy
of 99.73% for the 2020 image classification. It was applied to predict the long-term mangrove maps
in Wunbaik Mangrove Forest (WMF) and to detect the changes at five-year intervals. The change
detection results revealed significant changes in the mangrove forests, with 29.3% deforestation, 5.75%
reforestation, and −224.52 ha/yr of annual rate of changes over 34 years. The large areas of mangrove
forests have increased since 2010, primarily due to naturally recovered and artificially planted
mangroves. Approximately 30% of the increased mangroves from 2015 to 2024 were attributed to
mangrove plantations implemented by the government. This study contributes to developing a deep
learning model with multi-temporal and multi-source imagery for long-term mangrove monitoring
by providing accurate performance and valuable information for effective conservation strategies
and restoration programs.
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1. Introduction

Mangroves are intertidal and salt-tolerant evergreen forests that grow in the tropical
and subtropical regions of the world [1,2]. They are critical in providing valuable ecosystem
services, blue carbon conservation, and nature-based solutions for climate change adap-
tation and mitigation [1–5]. Despite their invaluable roles, approximately 3.4% of global
mangroves have disappeared over the past 24 years [6] due to both natural drivers, such
as climate change-induced sea level rise and extreme weather events, and anthropogenic
factors, such as increasing human populations, industrialization, aquaculture expansion,
natural retraction, and the expansion of paddy fields [1,7–9]. Therefore, accurate monitor-
ing of mangrove ecosystems is imperative for understanding their changing extent and
sustainable management and conservation practices.

Mangrove forests are in the global attention to conserve and manage them continu-
ously. Despite their invaluable matters, it is difficult to access the remote and wide forest
with tidal and mudflat existence, which causes difficulties in collecting reliable data, needs
many workers, and is costly to monitor regularly [7,10–12]. Currently, leveraging the
advancements of machine learning algorithms and the accessibility of satellite imagery
facilitates the comprehensive mapping of mangrove ecosystems, enabling effective long-
term monitoring [10,13]. Among the freely available satellite imagery, Landsat imagery
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has been widely used to conduct the historical mapping of mangrove forests than Sentinel-
2 [14], although Sentinel-2 provides a higher spatial resolution and accurate mapping of
mangrove species and extent than Landsat imagery [15,16]. The global distribution of
mangrove forests in 2020 was generated with Sentinel-2 at 10 m resolution to allow for
better detection of mangrove forests [17]. Accordingly, applying multi-source data fusing
Landsat and Sentinel-2 imagery is a current trend to provide consistent spatial resolution
for historical and continuous monitoring in cloudy regions [18]. However, according to
our knowledge, no study has focused on a classification task fusing Landsat and Sentinel-2
imagery for mangrove mapping and other forest classifications.

Satellite image classification has been attempted using the multispectral bands of
optical images, the polarizations of radar images, vegetation indices, and elevation data.
Many studies have documented the usefulness of the Normalized Difference Vegetation
Index (NDVI) in mangrove studies because of its significance in detecting healthy man-
groves [13,19–22]. Normalized Difference Water Index (NDWI) and Soil-adjusted Vegeta-
tion Index (SAVI) are widely used indices for the change detection of mangrove forests
while some studies combined with the mangrove recognition indices [13]. Elevation data
have been applied to improve the discrimination of mangrove forests stacked with the
Canopy Height Model (CHM) and slope [21–23] or applied to mask the input images with
the high elevation and coastal water areas before classification [24,25]. However, recent
researchers have not utilized numerous input features when training deep learning models
because of the ability of convolutional layers to extract the distinct features of the input
images [26,27]. The model can be trained efficiently, as fewer input features need less
computation power. Accordingly, this study aims to explore the development of a deep
learning model with fewer input features, considering its applicability to multi-source
satellite imagery.

Remote sensing has been utilized to produce mangrove maps combined with a series
of machine learning classification techniques, including random forests [28–30], support
vector machine (SVM) [31], decision trees [19], and iterative self-organizing data analysis
(ISODATA) [32]. With the recent development of computational power, deep learning
algorithms have been popular for researchers in remote sensing image analyses [33]. Deep
learning models have proven to perform outstandingly compared to traditional models,
with improved environmental monitoring with remote sensing data [34]. Relatively few
studies have applied deep learning to mangrove extent mapping with different satellite
imagery from high to medium resolution [26,35,36], focusing on attempts to classify man-
groves with a short-temporal [23,37] and single-source satellite datasets with multiple input
features [23,37]. Although the multi-source models fusing Sentinel-1 and Sentinel-2 were
applied to mangrove mapping for short-term distribution [29,38], there remains a need for
a multi-source deep learning model based on Landsat imagery to monitor the mangrove
forests on a long-term scale.

Recently, Guo et al. (2021) [26] proposed a Capsules–Unet model for large-scale and
long-term mangrove mapping from 1990 to 2015 using Landsat imagery to achieve the
precise extraction of mangroves. They achieved a low accuracy of 85.7–88.7% when they
utilized a large dataset available in 1990, 2000, 2010, and 2015 [26]. Their model had
challenges with low accuracy, although it can be applied for large-scale and long-term
mangrove mapping. Studies using Landsat 8 or Sentinel-2 imagery with a temporal dataset
for small-scale areas achieved a higher accuracy of 97.64% and 97.48% when developing
the deep learning models, namely MSNet and ME-Net [37,39]. According to the study by
Ghorbanian et al. (2022), multi-source datasets of Sentinel-1 and Sentinel-2 improved the
Artificial Neural Networks (ANN) model and provided accurate mangrove maps compared
to single-source datasets of Sentinel-2 [38]. Combining Landsat 8 and Sentinel-2 could
improve image quality by reducing the spatial resolution gaps between them and providing
temporally short-term observations for environmental applications [40]. Therefore, the
present study will explore the higher performance of a deep learning model using multi-
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temporal and multi-source datasets using Landsat and Sentinel-2 for long-term mangrove
mapping.

Myanmar ranked as the top country with the highest annual rate of mangrove loss
from 2000 to 2012 [41] despite decreasing the net loss of global mangrove areas [1]. The
Wunbaik Mangrove Forest (WMF) in Myanmar is one of the largest remnant mangrove
ecosystems endowed with ecologically important and endangered species, providing
invaluable ecosystem services to local communities [42]. It experienced a large hectare of
mangrove loss due to changing land uses to paddy fields and shrimp ponds in the past [43]
and has been recorded as one of the hotspots of mangrove changes worldwide [6]. However,
existing studies on long-term mangrove distribution in WMF need to be updated [42,43],
and recent information is a gap. They highlight the need for continuous monitoring using
accurate techniques to understand the historical changes and current conditions of WMF,
especially following extensive restoration efforts by the government.

The study by Rahman et al. (2024) observed an improving trend of mangroves in
Southeast Asia, including Myanmar, from 2015 to 2020 when they analyzed the dataset of
Global Mangrove Watch (GMW), although most of the existing studies discussed a high
rate of deforestation in Myanmar [20,21,32,43–45]. A recent study by Maung and Sasaki
(2021) observed a slight decline in WMF due to the results of change detection from 2015
to 2020, while they detected mangrove gains in the plantation sites and approximately
50% of the naturally recovered mangroves in the abandoned sites [23]. Meanwhile, the
government of Myanmar has implemented restoration programs, such as the Myanmar
Rehabilitation and Restoration Programme (MRRP), across the country to reach the national
climate change and biodiversity targets [46,47]. Therefore, there is an urgent need to study
the contributions of restoration programs to the changes in mangrove forests. This study
will investigate the long-term distribution of mangrove forests, emphasizing the drivers of
mangrove losses and gains in WMF.

Considering the advantages of multi-source data, this study aimed to develop a
multi-temporal and multi-source deep learning model fusing medium-resolution satellite
imagery of Landsat 8 and Sentinel-2 for predicting the long-term distribution of mangrove
forests and to investigate the patterns of change distribution in WMF by discussing the
drivers behind mangrove losses and role of mangrove plantations on increasing mangrove
coverage. The proposed deep learning model provided accurate and reliable performance
in predicting long-term mangrove mapping in WMF. This approach helped to better
understand the changing patterns of mangrove forests, filling a critical gap of outdated
information on historical mangrove distribution in WMF and identifying the losses and
gains of mangrove forests due to anthropogenic factors in long-term periods.

2. Materials and Methods
2.1. Study Site

The study area is WMF, located between 19◦07′02′′N–19◦23′30′′N and 93◦51′00′′E–
94◦02′30′′E in Yambye township, Rakhine State, Myanmar. WMF consists of Wunbaik
Reserved Mangrove Forest (WRMF), Mingyaung Public Mangrove Forest, and Extended
Mingyaung Mangrove Forest (see Figure 1), protected by the Forest Department of Myan-
mar, and it plays a vital role in providing numerous ecosystem benefits to residents living
in and near the forest and enriching important and endangered mangrove species [48].
The topography of the study area is extensively flat and connects to the hill in the western
part. A road 20 miles long across WRMF was constructed and occupied 0.4% of the total
mangrove area in WMF [42].
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Figure 1. The location of the study area: (a) Wunbaik Mangrove Forest (Landsat 8 composite image 
of 4 bands); (b) Myanmar’s States and Regions (Myanmar Information Management Unit—MIMU); 
and (c,d) Example patches used in U-Net model training (Landsat 8 composite image). 

2.2. Ground Truth Image 
This study utilized a ground truth image or label image (Figure 2), created by Maung 

and Sasaki (2021) [23], who manually drew it based on the ground truth points collected 
from September to October 2019. As the original ground truth image was not available 
from the researchers, the current image was created by copying it from the original man-
uscript [49], upscaling it in OpenCV, georeferencing it in QGIS v3.32.0, validating it in 
high-resolution Google Earth images, setting the spatial resolution to 10 m and 30 m, and 
reclassifying it as 255 for mangroves and 0 for non-mangroves. 

 

Figure 1. The location of the study area: (a) Wunbaik Mangrove Forest (Landsat 8 composite image
of 4 bands); (b) Myanmar’s States and Regions (Myanmar Information Management Unit—MIMU);
and (c,d) Example patches used in U-Net model training (Landsat 8 composite image).

2.2. Ground Truth Image

This study utilized a ground truth image or label image (Figure 2), created by Maung
and Sasaki (2021) [23], who manually drew it based on the ground truth points collected
from September to October 2019. As the original ground truth image was not avail-
able from the researchers, the current image was created by copying it from the original
manuscript [49], upscaling it in OpenCV, georeferencing it in QGIS v3.32.0, validating it in
high-resolution Google Earth images, setting the spatial resolution to 10 m and 30 m, and
reclassifying it as 255 for mangroves and 0 for non-mangroves.
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2.3. Earth Observation Data

Considering the historical changes, Landsat series imagery was applied to investigate
the important input features to develop deep learning models and to predict long-term
mangrove maps despite its medium resolution of 30 m spatial resolution. Additionally,
Sentinel-2 imagery with a higher resolution of 10 m was utilized to build a multi-source
model with greater precision, and the Harmonized Landsat and Sentinel-2 imagery (HLS)
were employed to compare the area differences provided by different sources.

Multiple Landsat series images, including Landsat 5 for 1990, 1995, 2000, 2005, and
2010; Landsat 8 for 2015, 2019, and 2020; and Landsat 9 for 2024 and Sentinel-2 images
for each year from 2015 to 2024, were downloaded, considering level 2 with the least
cloud coverage (Appendix A). We conducted atmospheric correction using the Remotior
Sensus [50] in Google Collab; Landsat 7 images were not collected because of scan line
errors in the study area. HLS images of 2017, 2020, 2022, and 2024 [51] were available
from the EARTHDATA (https://search.earthdata.nasa.gov/, accessed on 28 June 2024).
Resampled Landsat images with 10 m resolution were used to compare deep learning
models, build multi-temporal and multi-source models, and predict long-term mangrove
mappings from 1990 to 2024.

For topographic and canopy height information, the Shuttle Radar Topography Mis-
sion (SRTM) 1 arc-second global Digital Elevation Model (DEM) [52] was downloaded from
the United States Geological Survey in Earth Resources Observation and Science (USGS)
EarthExplorer website (https://earthexplorer.usgs.gov/, accessed on 2 September 2023).
The Multi-Error-Removed Improved-Terrain DEM (MERIT) [53] was available through the
MERIT DEM website (https://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/, accessed
on 2 September 2023). Preprocessing processes such as band combination, image clipping,
resampling, and calculation of vegetation indices and canopy heights were conducted in
QGIS v3.32.0.

2.4. Input Feature Selections

Properly selecting important features is critical to building an accurate model in
machine learning, as irrelevant features can reduce the model’s performance [54]. For
model training based on 2020, the important input features were selected among the seven
multispectral bands of Landsat 8 images; four vegetation indices, including NDVI [55],
NDWI [56], SAVI [57], Combined Mangrove Recognition Index (CMRI) [58], and topo-
graphic height information, including SRTM, MERIT, Canopy Height Model (CHM), and
Slope by conducting multiple experiments combined with different input features using the
ANN; and Convolutional Neural Networks (CNN) models. Red, Green, Blue, Near-infrared
(NIR), and Short-wave infrared (SWIR) bands were mainly applied in the input feature
selections because of the unavailability of all bands in all Landsat series imagery. CHM was
obtained from the difference between SRTM and MERIT, where SRTM was utilized as the
Digital Surface Model (DSM) and MERIT as the Digital Terrain Model (DTM) [23,59–61].
The vegetation indices and CHM were calculated using the following equations. The
default value of 0.5 was used as the soil-adjusted value (L) in SAVI.

NDVI =
NIR − RED
NIR + RED

(1)

NDWI =
Green − NIR
Green + NIR

(2)

SAVI =
(

NIR − RED
NIR + RED + L

)
× (1 + L) (3)

CMRI = NDVI − NDWI (4)

CHM = SRTM DEM − MERIT DEM (5)

https://search.earthdata.nasa.gov/
https://earthexplorer.usgs.gov/
https://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/
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2.5. CNN

CNN, a specialized form of ANN, is uniquely designed for tasks involving grid-
structured data, such as images. Its ability to learn spatial information, including textures,
edges, and distinct patterns, makes it particularly useful for remote sensing image analysis,
such as scene-based classification and pixel-wise segmentation [33,62]. The basic architec-
ture of CNN consists of three types of layers: convolutional layer, pooling layer, and fully
connected layer. The convolutional layer, operating with a three-dimensional structure
with height, width, and depth or channels, includes numerous optimizable filters that
transform the input features into the important features that describe the targets. Pooling
layers perform to reduce the number of parameters by down-sampling while preserving
discriminant information. The fully connected layer interprets the features extracted by the
convolutional and pooling layers, facilitating final classification tasks.

Multiple CNN architectures have been published, mainly for scene-based image
classifications [62], and they are not appropriate for pixel-wise satellite image classifications.
Therefore, the architecture (Figure 3) for CNN was designed on three convolutional layers,
one pooling layer, and one flattened layer, and parameters were selected through hyper-
parameter tuning. The model was trained with the parameters of 96, 64, 64 filters in three
convolutional layers, 96 nodes in dense layers, four dropout layers with 0.25, Rectified
Linear Unit (ReLU) activation functions for the hidden layers, sigmoid activation function
for the output layer, Adaptive Moment Estimation (Adam) optimizer, and binary cross-
entropy for loss function. Then, the results were compared with the U-Net model to identify
the strengths and weaknesses of each model. To train the CNN model, the input features
were clipped into the shape of 7 × 7 using the Pyrsgis library.
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2.6. U-Net

The U-Net, a CNN designed specifically for medical image segmentation, stands out
with its U-shaped architecture. This unique design includes a contracting path (encoder)
for feature extraction and an expanding path (decoder) for precise localization facilitated
by skip connections. Similar to a convolutional network, the contracting path comprises
convolutional and pooling layers for down-sampling. The expanding path, on the other
hand, up-samples the features learned in the contracting path using up-pooling operations,
followed by convolutional layers with the activation functions [63].

In this study, the architecture of the U-Net model (Figure 4) was designed using
the convolutional layers, max-pooling layers, convolutional transpose layers, concatenate
layers, and dropout layers. For training the model, the images were clipped into the
shape of 128 × 128 using the Geotile library. On the encoder side, the model was set
with the parameters of 32 filters in the first two convolutional layers, 64 in the second
two convolutional layers, and 128 in the third two convolutional layers, where three
dropout layers were added between two convolutional layers, followed by max-pooling
layers and 256 filters in the fourth two convolutional layers with a dropout layer. On
the decoder side, 256 filters were applied in the first two convolutional layers, 128 in the
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second two convolutional layers, and 64 in the third two convolutional layers, where three
dropout layers were added between two convolutional layers, followed by a concatenate
layer and 32 filters in the fourth two convolutional layers with a dropout layer. The loss
function, optimizer, and learning rate were utilized in the same way as the parameters
of the CNN model: binary cross entropy for the loss function and Adam optimizer with
0.0001 learning rate.
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2.7. Model Training and Evaluation

The input dataset in each model was split into three parts: training data, representing
60%; testing data, 20%; and validation data, 20%. The training data and validation data
were utilized in the training process, and the model performance was evaluated using the
testing data after training. Model training and evaluation were conducted using TensorFlow
2.4.1 with 1 GPU in the Wisteria/BDEC-01 Supercomputer System of the University of
Tokyo. The results of each model were evaluated using several metrics calculated in the
following equations: overall accuracy, precision, recall, F1-score, and intersection over
union (IoU), and the predicted results were summarized in the confusion matrix describing
the true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN).

Accuracy =
Number of Correct Predictions

Number of Total Predictions
(6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1 − Score = 2 × Recall × Precision
Recall + Precision

(9)

Intersection over Union (IoU) =
TP

TP + FP + FN
(10)

2.8. Change Detection

Change detection is useful for identifying the differences in an image by observing
it on different dates and is widely applied to several applications based on remote sens-
ing [64,65]. The present study utilized the image differencing method among the multiple
post-classification change detection techniques. The results of change detection were
demonstrated in mangrove gains, mangrove losses, and unchanged areas and were visually
checked using high-resolution Google Earth images. The number of pixels showing the
gains, losses, and unchanged were extracted and used to calculate the long-term changes
in mangrove forests and the annual rate of changes.
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3. Results
3.1. Important Input Features

Important input features were first identified using feature importance scores derived
from the Random Forest Classifier and correlation values between input features and
targets. However, these techniques were not useful in providing a proper combination
of input features. Subsequently, the proper combinations were investigated by executing
multiple experiments using ANN and CNN models.

The feature importance scores of the Random Forest Classifier demonstrated that
NDVI, CMRI, NDWI, and SAVI were the most important ones, followed by MERIT, SRTM,
Slope, and CHM. According to experiments based on the ANN model, the highest accuracy
of 93.80% was achieved with the combination of input features consisting of NDVI, NDWI,
SAVI, CMRI, SRTM, and CHM. On the other hand, the CNN model provided the highest
accuracy of 95.99% with the combination of four bands of Landsat 8 (Blue, Green, Red,
and NIR) and SRTM (Appendix B). Therefore, four bands and SRTM were applied to
compare the deep learning models of CNN and U-Net and to develop a multi-temporal
and multi-source model using U-Net architecture.

3.2. Multi-Temporal and Multi-Source Model
3.2.1. Comparison of CNN and U-Net Using Landsat 8 and Sentinel-2

The CNN and U-Net models were compared using Landsat 8 and Sentinel-2 imagery
to observe the strengths and weaknesses of each model and to select an optimal model for
the long-term distribution of mangrove forests.

The comparison results (Table 1) revealed that the U-Net model using Sentinel-2
outperformed the CNN model, while similar accuracy was produced by both CNN and
U-Net trained with Landsat 8. The U-Net model using Sentinel-2 produced an accuracy
of 98.25%, while the CNN result was 97.24%. The most significant difference was training
time; about 250–260 s was needed for the U-Net model, while the CNN model took about
10,000–12,000 s. Although the architecture of the CNN model was simple with 152,193
training parameters, it needed a huge amount of training time compared to the U-Net
model, which utilized many convolutional layers with many filters, providing 3,133,921
parameters. This comparison has important implications, suggesting that the U-Net model
is more efficient and effective than the CNN model for this application.

Table 1. The comparison of CNN and U-Net models using Landsat 8 and Sentinel-2.

Satellites Models Accuracy IoU Precision Recall F1-score Training
Time (s) Inputs Epochs

Landsat 8
(10 m)

CNN 96.65% 0.93 0.96 0.97 0.96 10,988.99 4 images 200
U-Net 96.64% 0.93 0.96 0.97 0.96 260.59 4 images 200

Sentinel-2
(10 m)

CNN 97.34% 0.94 0.96 0.98 0.98 11,231.63 4 images 200
U-Net 98.25% 0.96 0.98 0.98 0.98 257.36 4 images 200

Four images consist of two pairs of identical images, with each pair captured on different dates.

3.2.2. Performance of Multi-Temporal and Multi-Source Model

A multi-temporal and multi-source deep learning model was built on the U-Net
architecture using the multi-temporal images available in November 2019, December 2019,
and January 2020 of Landsat 8 and Sentinel-2. The model was trained for 500 epochs using
twelve images by doubling the six temporal images of Landsat 8 and Sentinel-2. As a result,
it achieved the highest accuracy of 99.73%, IoU 0.99, precision 1, recall 1, and F1-score
1 (Table 2). Then, it was applied to produce the mangrove maps with Landsat 8 and
Sentinel-2 of 2020 to draw a confusion matrix (Table 3) describing TP, TN, FP, and FN and
visualize them (Figure 5). The confusion matrix described a few false positives and false
negatives given by the model, where more false positives and false negatives were found in
Landsat 8 than in the results of Sentinel-2. After model evaluation, mangrove distribution
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maps from 1990 to 2024 were predicted using the model. The resulting maps (Figure 6)
were visually checked using Google Earth images. The results were promising, and the
changes in mangrove forests were significantly identified due to the visual assessment with
high-resolution Google Earth images.

Table 2. The classification results of the multi-temporal and multi-source U-Net model.

Accuracy IoU (MG) IoU (nMG) Precision
(MG)

Precision
(nMG)

Recall
(MG)

Recall
(nMG)

F1-Score
(MG)

F1-Score
(nMG)

99.73% 0.99 1 1 1 1 1 1 1

MG = Mangrove, nMG = Non-Mangrove.

Table 3. Confusion matrix of multi-temporal and multi-source U-Net model on Landsat 8 and
Sentinel-2 images.

Landsat 8 (21 January 2020)

Total Pixels

Sentinel-2 (21 January 2020)

Predicted Predicted
nMG MG nMG MG

Actual
nMG 2,951,560 4304 2,955,864

Actual
nMG 2,952,392 2157

MG 7620 2,422,512 2,430,132 MG 6788 2,424,659
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encing between two different temporal maps provided by the model to detect the man-
grove changes in WMF. Then, the mangrove and non-mangrove areas were extracted from 
mangrove maps for each year, and the changes in mangrove areas for each year were vis-
ualized for 34 years. The result of mangrove changes demonstrated the abnormal fluctu-
ation of mangrove distribution in WMF (Figure 7). Mangrove areas in WMF were 
32,402.40 ha in 1990 and had steadily decreased to 23,561.64 ha by 2010. Afterward, they 
started increasing slowly in 2015 and have still increased to 24,768.77 ha in 2024. 

Figure 6. Mangrove maps predicted by the multi-temporal and multi-source model and Google Earth
images from 1990 to 2024: (a) the mangrove map of 1990; (b) the Google Earth image of 1990; (c) the
mangrove map of 1995; (d) the Google Earth image of 1995; (e) the mangrove map of 2000; (f) the
Google Earth image of 2000; (g) the mangrove map of 2005; (h) the Google Earth image of 2005; (i) the
mangrove map of 2010; (j) the Google Earth image of 2010; (k) the mangrove map of 2015; (l) the
Google Earth image of 2015; (m) the mangrove map of 2020; (n) the Google Earth image of 2020;
(o) the mangrove map of 2024; and (p) the Google Earth image of 2024. (The dark green is mangroves,
light and dark brown are agricultural and aquacultural areas, and light green is water bodies).

3.3. Long-Term Mangrove Changes in WMF

Monitoring the distribution and changes in mangrove forests over time is crucial for
understanding the health of their ecosystems and the intervention of humans in these
ecosystems, and informing conservation efforts. The present study utilized the image
differencing between two different temporal maps provided by the model to detect the
mangrove changes in WMF. Then, the mangrove and non-mangrove areas were extracted
from mangrove maps for each year, and the changes in mangrove areas for each year
were visualized for 34 years. The result of mangrove changes demonstrated the abnormal
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fluctuation of mangrove distribution in WMF (Figure 7). Mangrove areas in WMF were
32,402.40 ha in 1990 and had steadily decreased to 23,561.64 ha by 2010. Afterward, they
started increasing slowly in 2015 and have still increased to 24,768.77 ha in 2024.
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Figure 7. The annual changes of mangrove forests in WMF from 1990 to 2024.

Change detection results highlighted that a significant area of mangroves has been
changed in WMF over a period of 34 years (Figure 8). A substantial portion of the man-
grove forests have been lost since 1990 and a minor recovery by 2024. Specifically, 29.3%
of the mangrove extent in WMF has been lost, while only 5.75% has been gained. The
most significant deforestation occurred during the period of 2005–2010, while the most
substantial reforestation was observed during the period of 2015–2020. Notably, the ex-
pansion of mangrove forests has been consistent since 2010. The annual rate of change is
−224.52 ha/yr, equivalent to a decrease of 0.69% per year over the 34 years. The highest
negative rate of change was recorded at −703.4 ha/yr, representing a severe 2.27% per year
decrease over 5 years between 1995 and 2000, with a positive rate of change observed from
2010, peaking between 2020 and 2024 (Figure 9).
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4. Discussion
4.1. Selection of Key Input Features

Input feature selection is important in preprocessing data before training the model.
Properly selecting important features influences the model’s performance by reducing
the data complexity and irrelevant features among multiple input features [54]. To select
the optimal combination of input features for model training, the present study utilized
the Random Forest Classifier and conducted manual experiments using ANN and CNN
models. Although the Random Forest Classifier demonstrated NDVI, CMRI, NDWI, and
SAVI as the most important ones, followed by MERIT, SRTM, Slope, and CHM, it did not
identify the optimal combination for model training. Therefore, multiple experiments were
conducted using the ANN model for 30 epochs, which was designed with two hidden
layers with 50 and 40 nodes for each layer. These results provided the highest accuracy of
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93.80%, with the combination of input features consisting of NDVI, NDWI, SAVI, CMRI,
SRTM, and CHM.

These findings suggested that the application of four vegetation indices, such as NDVI,
NDWI, SAVI, and CMRI, was sufficient for mangrove classification with the ANN model,
while SRTM and CHM contributed to higher accuracy in discriminating the terrestrial
forests in high-elevation areas. However, these findings differed from those of Maung and
Sasaki (2021), who discussed the significance of MERIT and CHM for model improvement
by integrating ten bands of Sentinel-2, NDVI, and NDWI [23]. In the present study, SRTM
emerged as significantly more important in almost every combination of input features
than MERIT (Appendix B). Although CHM was observed as an important feature of the
ANN model based on 2020 data, it did not represent 2020 because it was estimated using
SRTM and MERIT, which were created on elevation data in 2000. For historical change
detection, it does not represent different years and could produce a bias in the historical
map prediction. Moreover, the above input combination demonstrated overfitting when
used to train the CNN model with 50 epochs (Figure 10). Therefore, experiments for feature
selection were conducted using the CNN model, considering fewer input features. The
results of these experiments provided the highest accuracy of 95.99%, with the combination
of four bands and SRTM when training for 100 epochs.
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trained with NDVI, NDWI, SAVI, CMRI, SRTM, and CHM; (b) accuracy flow trained with 4 bands
and SRTM.

Existing studies proved the success of deep learning-based mangrove classification
using three bands, including Red, NIR, and SWIR; and four bands, including Blue, Green,
Red, and NIR combined with VH and VV of Sentinel-1; seven bands; and multiple bands
combined with vegetation indices and elevation data [23,26,37–39]. The present study
observed that four bands with SRTM were useful for mangrove classification, where SRTM
effectively removed the high-elevation areas, such as terrestrial forests. Moreover, the
present study found that three bands, including Green, Red, and NIR with SRTM, could be
utilized in long-term mangrove monitoring except for 1995 images of Landsat 5, in which
open forests with less mangrove cover were misclassified as non-mangroves (Figure 11).
We did not identify the causes of misclassification in 1995 images, possibly due to the
low image quality available in 1995 and their original image preprocessing. Therefore,
this model training was conducted using the input features of four multispectral bands
and SRTM.
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Figure 11. Mangrove maps predicted by CNN model trained with three bands and SRTM for 1995:
(a) mangrove map predicted using 3 bands and SRTM; (b) mangrove map predicted using 4 bands
and SRTM; and (c) Google Earth image for 1995. (The dark green is mangroves, light brown is
agricultural and aquacultural areas, and light green is water bodies).

4.2. Application of Multi-Temporal and Multi-Source Imagery to U-Net

The application of multi-temporal and multi-source imagery is a pivotal aspect of
mangrove mapping. Numerous studies have demonstrated the benefits of multi-temporal
images in developing machine learning and deep learning models [19,26,38], and some
studies have utilized multi-source imagery of radar and optical satellites to enhance the
model’s accuracy by reducing the effects of weather conditions [21,29,38]. While some
studies have explored multi-source imagery, our study is unique in its focus on fusing
Landsat and Sentinel-2 imagery.

Given the availability of a single ground truth image for 2020, we initially developed
the model using a temporal dataset available in January 2020. However, the model’s
performance was not consistent across different temporal images, leading to misclassified
results when predicting the images in December 2019, when the conditions of paddy fields
were different (Figure 12). The farmers in WMF grow the paddy fields from June to August
and harvest them from December to March [43]. The paddy fields in November and
December appeared green in the true color images, which were before harvesting, while
white colors appeared in January after harvesting.

The fluctuation of NDVI values in different months confirmed the significant differ-
ences in paddy fields. The NDVI values of paddy fields were slightly different, mainly in
January. These values of paddy fields were lower than those of mangroves in January and
became higher in December than in January. These values were nearly identical to those of
mangroves in November. The images from February to May showed conditions similar to
those in January, and those before November contained a high percentage of clouds in the
satellite images because of the monsoon rainy season. Therefore, three temporal images
available in November, December, and January were utilized to train a multi-temporal and
multi-source model.

The comparison of CNN and U-Net highlighted the strengths and weaknesses of each
model when using Landsat 8 and Sentinel-2 images. The strength of the CNN model was
that it could be trained using a single satellite image, but it took longer than U-Net. The
CNN model is best suited if a study emphasizes a small area using medium-resolution
satellite images. On the other hand, the U-Net model achieved higher accuracy when
training for many epochs and needed less training time than the CNN model. However,
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the weakness of the U-Net model is its requirement for large training samples. Data
augmentation techniques, such as doubling the same images, were employed during the
training processes to address it. Moreover, we encountered overfitting when conducting
multiple experiments to obtain an optimal model and solved it by changing the number of
filters in each layer and adding or reducing the number of layers in the U-Net architecture.
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Figure 12. Different temporal conditions of paddy fields: (a) Landsat composite image of January
2020; (b) Landsat composite image of December 2019; (c) Landsat composite image of November 2019;
(d) CNN result for January 2020; (e) CNN result for December 2019; and (f) CNN result for November
2019. (The dark brown is mangroves, light green and white are agricultural and aquacultural areas,
and yellow-green is water bodies).

The results of comparing different satellite imagery demonstrated that Sentinel-2
outperformed Landsat 8. The U-Net model with Sentinel-2 achieved higher accuracy than
that of Landsat 8. Sentinel-2 imagery could be the best choice for mangrove mapping when
focusing on data since 2015. However, this study needed to utilize the Landsat imagery for
historical changes in mangrove forests. Therefore, the fusion of resampled Landsat 8 and
Sentinel-2 images was applied to train the U-Net model using the multi-temporal datasets.

4.3. Model Performance and Limitations

The U-Net model trained with multi-temporal and multi-source imagery achieved
the highest accuracy of 99.73%, which outperformed the ANN model trained on the same
ground truth image [23] with Sentinel-2 in the same site, and all existing models, such
as Capsules-Unet [26], MSNet [39], and ANN [38], studied in different locations with
different satellite imagery. Moreover, it can be applied to multi-temporal datasets from
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medium-resolution optical satellite imagery, including Landsat, Sentinel-2, and HLS. Its
higher accuracy was achieved when training the model for 500 epochs.

The U-Net model provided less accuracy when training with single-source datasets for
200 epochs; it provided an accuracy of 98.25% with Sentinel-2 and 96.64% with Landsat 8
(Table 1). The result could be about 98% if the present study focused on training the model
with Landsat imagery for 500 epochs. It highlighted the usefulness of fusing Landsat 8 and
Sentinel-2 imagery for mangrove mapping. The combination of Landsat and Sentinel-2
optical imagery enhanced the accurate performance by reducing the spatial resolution gap
between them. This approach allows the model to leverage the higher spatial resolution of
Sentinel-2 while benefiting from the broader spectral bands of Landsat 8.

However, the model has limitations in generalization. When the model was applied
to different locations in Myanmar, the results were evaluated using the mangrove maps
of the High-Resolution Global Mangrove Forest (HGMF), and it performed well in all
mangrove areas located near Rakhine State, Myanmar. However, it failed to accurately
classify mangrove forests located in the Ayeyarwady Delta and the Tanintharyi Region,
Myanmar. To address these issues, we conducted multiple experiments using different
input features and larger training samples from the above three regions. The testing model
trained using four bands, NDVI and NDWI, classified mangrove forests in different regions,
though it had a weakness in distinguishing mangroves from terrestrial forests. The model
trained using four bands and SRTM with larger training datasets available from three
regions performed well for all regions and accurately distinguished between mangroves
and terrestrial forests. Therefore, more ground truth images representing different locations
should be included to train a generalized model for nationwide maps. Additionally, it
should be tested with data from different countries to ensure broader generalization and
better reliability.

The present model trained on multi-source imagery provided a slight discrepancy
in mangrove extents when predicting their specific images and with different spatial
resolutions. The resampled Landsat 8 images of 2020 provided an estimated extent of
2430.13 ha, while Sentinel-2 images estimated 2431.45 ha. A significant difference was
identified when predicting the same Landsat 8 images without resampling, which covered
an extent of 2405.74 ha (Figure 13). Its resulting map provided a coarser distribution of
mangrove forests without showing distinct features of the river network (Figure 14).
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Similar discrepancies were observed when interpreting the mangrove extents of Land-
sat 8 at 30 m resolution in 2024, resampled Landsat 8 (10 m resolution), and Sentinel-2
(10 m resolution). The largest extent was observed using resampled Landsat 8, with about
a 30-hectare difference compared to the results of Sentinel-2, followed by the least extent
of Landsat 8 without resampling. Therefore, the U-Net model of this study should not
be used to predict the Landsat images without resampling because it can provide a less
accurate map. Instead, it is crucial to resample the Landsat images into 10 m to match the
spatial resolution of Sentinel-2 images, ensuring consistent and reliable predictions.

4.4. Extent Changes in WMF

The change detection analysis revealed that 29.3% of the mangrove extent in the study
area was deforested from 1990 to 2024, including a steady increase in mangroves since 2010.
However, Saw and Kanzaki (2015) reported that 40% of the mangrove extent in WRMF
was lost from 1990 to 2011 [43], and Maung and Sasaki (2021) observed a slight decrease in
WMF from 2015 to 2020 [23]. The difference between the study of Saw and Kanzaki (2015)
and the present study depends on the extent of the study area. The research of Saw and
Kanzaki (2015) focused on the extent of WRMF, which covers 22,919 ha, while the total area
of this study is 53,859.95 ha. When the change detection was analyzed for the period from
1990 to 2010, it was found that 30.75% of the mangrove forests had been deforested.

Our findings from 2015 to 2020 differ from those of Maung and Sasaki (2021), in which
they observed a slight decline from 254.30 to 249.83 km2 in WMF, while our study observed
a slight increase. To validate the results of the present study, we downloaded available
mangrove maps of the Global Mangrove Watch (GMW) and analyzed their long-term
distribution. GMW data showed a similar pattern of mangrove changes as the present
study, illustrating deforestation from 1996 to 2015 and reforestation from 2015 to 2020
(Figure 15). The declined results of Maung and Sasaki (2021) could be due to the usage
of different preprocessing levels of Sentinel-2: level 1 C images for 2015 and level 2 A for
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2020 and the application of transfer learning in a small dataset, representing mainly the
agricultural areas.
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4.5. Extent Comparison with Different Datasets

Evaluating the resulting mangrove map with the available data is a crucial step to
demonstrate the reliability of the proposed model. We compared the mangrove map
predicted by the U-Net model with the existing global datasets for 2020, such as the Global
Mangrove Watch (GMW) [6] and the High-resolution Global Mangrove Forest (HGMF) [17],
by referencing the ground truth image used for model training. The comparison highlighted
huge discrepancies: the area difference between the ground truth image (24,268.16 ha) and
the GMW data (28,785.78 ha) was substantial. In contrast, the gap between the ground
truth image and the HGMF data was much smaller, around 1000 ha (Table 4). The GMW
data overestimated the distribution of mangrove forests in the study area by approximately
4000 ha. The mangrove map produced by the U-Net model is closely aligned with the
ground truth image, indicating the reliability of the deep learning approach.

Table 4. The extent comparison with global datasets in 2020 for the study area (ha).

Ground Truth Image U-Net Result GMW Data HGMF Data

24,268.16 24,301.32 28,785.78 25,882.29

The long-term changes in mangrove forests were examined using Sentinel-2 and HLS
images to compare the results of Landsat images with different medium-resolution satellite
images. The mangrove distribution maps of Sentinel-2 predicted by the U-Net model
indicated a relatively stable trend with slight fluctuations (Figure 16). The mangrove extent
of the study area in 2015 was 24,541.09 ha, reaching a peak around 2017, followed by a
slight decrease in 2020 to 24,314.47 ha and gradually increasing to 24,469.76 ha in 2024. The
above data provided by Sentinel-2 showed a slight overall decrease in WMF from 2015 to
2020, with a marginal increase in 2024.

To verify the extent of changes in WMF, we applied the model to both HLS L30 and
HLS S30. HLS L30 was created using Landsat surface reflectance by adjusting the Sentinel-2
tiling system. At the same time, HLS S30 images were created based on the Sentinel-2
imagery by resampling to 30 m and adjusting to Landsat 8 and 9 spectral functions. The
mangrove distributions of HLS L30 demonstrated an abnormal increase from 2015 to 2024,
with the least coverage in 2017 (Figure 17a). Meanwhile, HLS S30 images illustrate a
marginal decrease from 2015 to 2020, followed by a slight increase in 2024 (Figure 17b).
Their results are also different from those of Sentinel-2; however, they confirmed an increase
in mangrove forests by 2024.
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Different satellite images provided different results, possibly due to spatial resolutions,
sensors, and preprocessing techniques, although they were available from the same source
using the Remotior Sensus library. This study utilized the Landsat series images due to the
availability of historical data. Moreover, our results align similarly to those from the global
GMW dataset. Therefore, the results produced by Landsat images are considered reliable.

4.6. Drivers of Mangrove Losses and Gains

The existing studies reported that the drivers of mangrove changes in WMF were
anthropogenic factors, such as the expansion of shrimp ponds and paddy fields [42,43].
Although the present study did not directly detect the drivers of mangrove changes, it
identified the drivers of mangrove losses and gains through high-resolution Google Earth
images (Figure 18). Due to change detection results, mangrove forests had been steadily
lost from 1990 to 2010. These losses were caused by constructing a crossing road through
the reserved forest in 1994, the significantly increased number of farmers and shrimp-pond
operators from 1990 to 2000, the expanding paddy fields between 1994 and 2003, and illegal
logging with weak regulations [43].
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2024; (d) land use in 2009; and (e) land use in 2024. The drivers of losses from (b) to (c) are shrimp
ponds and from (d) to (e) are paddy fields due to Google Earth images and the study by Maung et al.
(2024) [48].

The mangrove forests have increased forward since 2010. The drivers of mangrove
gains were identified as artificially planted and naturally recovered mangroves in aban-
doned sites, in sedimentation areas, and along roadsides (Figure 19). The coverage of
mangrove trees has increased along roadsides; the road crossing through the study area
was significantly detected in the mangrove maps from 1995 to 2015, while it was detected
in some parts of 2020 and 2024. The Forest Department of Myanmar implemented 855 acres
(346 ha) of mangrove plantations from 2017 to 2023 within WRMF. Moreover, Maung and
Sasaki (2021) confirmed that mangrove gains were due to mangrove plantations and the
natural recovery ability of mangroves [23].

The present study identified that some areas with recently recovered mangroves had
the risk of being lost again due to anthropogenic disturbances. Maung and Sasaki (2021)
found that mangroves naturally recovered at approximately 50% of the three abandoned
sites. However, mangroves in two of these sites were lost again by 2024 (Figure 20).
Accordingly, the natural recovery rate of mangroves is insufficient to ensure the long-term
stability of these ecosystems. Anthropogenic disturbances pose a significant threat to the
sustainability of naturally recovered mangroves. Protecting naturally recovered mangroves
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can increase mangrove coverage at a low cost. Therefore, sustainable management and
conservation strategies are essential to protecting these vital ecosystems, ensuring their
resilience and ability to thrive in the face of environmental and human-induced challenges.
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Figure 19. Mangrove gains: (a) changes from 2010 to 2024; (b) land use in 2009; (c) land use in 2023;
(d) land use in 2009; and (e) land use in 2023. The drivers of gains from (b) to (c) are mangrove
plantations and from (d) to (e) are natural mangroves due to Google Earth images and Maung and
Sasaki (2021) [23].
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Monitoring the present conditions in mangrove forests is vital for detecting changes,
pinpointing their locations, and identifying the drivers behind them. Saw and Kanzaki
(2015) reported that illegal woodcutting occurred in the reserved forests to obtain charcoal
and firewood [43]. The present study observed that mangrove losses have occurred since
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2020 and onward, both within and outside the reserved area. Over half of the lost areas
from 2020 to 2024 have been lost within a year since 2023. As shown in Figure 21, some
areas covered with mangroves in 2020 disappeared by 2024; however, over half of those
mangroves were still present in the Google Earth images from January 2023, indicating
rapid and recent cutting.
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(The red line represents the areas of change with dark green for mangroves, light and dark brown
indicating newly cut areas for aquaculture).

According to change detection from 2020 to 2024, most losses were outside the reserved
area. Approximately half of those losses were detected close to the local villages. The
proximity of those losses near the villages suggests that local communities could contribute
to deforestation. The impact of local villages on mangrove loss underscores the need for
community-based mangrove conservation. Therefore, the deep learning model effectively
identified all changes and can be applied to real-time mangrove mapping.

4.7. Mangrove Gains After Restoration

Mangrove restoration is a nature-based solution (NbS) that supports biodiversity
and climate change mitigation. Mangrove reforestation also benefits blue carbon storage.
Therefore, mangrove restoration should be set as a priority when designing NbS [4]. Despite
the numerous benefits of restoration, the systematic assessment and documentation of its
achievements are still limited, especially in Myanmar [66].

Mangroves have been increasing in the plantation sites within WMF, initiated by
the Forest Department [23]. The present study also identified the numerous patches
of mangrove plantations in WMF, referencing the Google Earth images. Additionally,
change detection summarized the increased areas of mangrove forests in WMF since 2010.
Therefore, the increased areas were compared with the data on the implementation of
mangrove plantations by the Forest Department.

The Forest Department planted 855 acres (346 ha) of mangrove trees in WRMF from
2017 to 2023. The model predicted 991.59 ha of mangrove gains from 2015 to 2024. Man-
grove plantations of 346 ha accounted for 34.89% of the mangrove gains observed from 2015
to 2024. These percentages of planted mangroves did not fully represent all the increased
mangroves identified in the change detection results because the model failed to predict
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newly planted mangroves accurately, classifying them as non-mangroves due to high soil
reflection and low vegetation reflection. Therefore, the restoration efforts could represent
approximately 30% of the total increased areas of mangrove forests from 2015 to 2024, with
the remaining areas likely consisting of naturally recovered mangroves.

A lot of restoration programs have been implemented by the Forest Department, not
only in WMF but also across the country. The present model detected the increased extent
of mangrove forests introduced by restoration programs and noticed relatively small areas
for 10 m spatial resolution despite having limitations for newly cultivated mangroves.
Therefore, our research could be useful for designing mangrove restoration strategies for
conservationists and policymakers by utilizing the present model for the methodology to
develop an advanced model and using the results of the change detection analysis.

One of the possibilities for increasing mangrove areas could be the development of
a forest restoration program. The Myanmar Rehabilitation and Restoration Programme
(MRRP), developed by the Ministry of Natural Resources and Environmental Conservation
(MONREC), is a 10-year restoration program (2017/2018 to 2026/2027) to increase the forest
land up to 30% of the total country area by 2030 and to reduce the deforestation around the
country. This program aimed to achieve the targets of Nationally Determined Contributions
(NDC) with the guidance of the Myanmar Forest Policy (1995) [46,47]. Therefore, the
beginning year of MRRP was observed in the same year, 2017, when the Forest Department
initiated mangrove plantations in WMF. This highlights the restoration policy’s contribution
to increasing mangrove areas in WMF.

5. Conclusions

This study developed a U-Net model using the multi-temporal and multi-source imagery
of Landsat 8 and Sentinel-2 to predict mangrove maps for long-term periods from 1990 to 2024.
The model utilized four optical bands and SRTM as input features and achieved an accuracy
of 99.73%, outperforming the existing models for mangrove classification. The development of
a deep learning model fusing Landsat 8 and Sentinel-2 imagery for mangrove mapping could
be documented as the first attempt due to our knowledge, although some studies existed with
deep learning models fusing Sentinel-1 and Sentinel-2 for mangrove mapping. The present
model still needed additional data to improve generalization and to support national-scale
mangrove mapping. While fusing Landsat 8 and Sentinel-2 images slightly enhanced the
model by reducing the need for huge datasets, discrepancies in the estimated mangrove
extents persisted across different satellite imagery, such as Landsat series, Sentinel-2, HLS L30
and HLS S30, and different spatial resolutions, such as Landsat 8 30 m and Landsat 8 10 m
with resampling. These significant variations highlight the need for further investigation to
address these challenges in future studies.

Change detection highlighted significant losses of mangrove forests from 1990 to 2010 and
steady gains from 2010 to 2024. In WMF, 29.3% of the mangrove extent has been deforested,
while only 5.75% has been reforested with −224.52 ha/yr of annual rate of changes over 34
years. Anthropogenic activities, such as shrimp ponds and paddy fields with weak regulations,
were drivers of mangrove losses. By contrast, mangrove gains can be classified as planted
mangroves, naturally recovered mangroves grown in abandoned sites, sedimentation areas,
and along roadsides. Mangrove losses have continued in WMF despite gains where 30% were
attributed to mangrove plantations and the remaining percentage to natural regeneration.
The naturally recovered mangroves in the abandoned sites near the villages and outside the
reserved area can potentially be lost again by human encroachment. Therefore, mangrove
forests should be monitored continuously using the improved model, which helps reduce
deforestation, monitors the healthy conditions of planted mangroves, provides accurate
information, and supports blue carbon conservation strategies. Further research should
develop a model to classify the natural and planted mangroves to better understand the
contribution of restoration programs to mangrove gains.
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Appendix A

Table A1. Specifications of the satellite imagery used in the study.

Satellite Name Acquired Date Data Type/Product
Type Cloud Coverage

Landsat 5 2 January 1990 TM_L2SP 0
Landsat 5 5 March 1995 TM_L2SP 0
Landsat 5 14 January 2000 TM_L2SP 0
Landsat 5 27 January 2005 TM_L2SP 0
Landsat 5 10 February 2010 TM_L2SP 0
Landsat 8 23 January 2015 OLI_TIRS_L2SP 2
Landsat 8 * 18 November 2019 OLI_TIRS_L2SP 0
Landsat 8 * 4 December 2019 OLI_TIRS_L2SP 2
Landsat 8 * 21 January 2020 OLI_TIRS_L2SP 0
Landsat 9 8 January 2024 OLI_TIRS_L2SP 0
Sentinel-2 23 November 2015 S2MSI2A 5
Sentinel-2 27 December 2016 S2MSI2A 0
Sentinel-2 2 December 2017 S2MSI2A 0
Sentinel-2 31 January 2018 S2MSI2A 0
Sentinel-2 * 22 November 2019 S2MSI2A 0
Sentinel-2 * 22 December 2019 S2MSI2A 1
Sentinel-2 * 21 January 2020 S2MSI2A 0
Sentinel-2 25 January 2021 S2MSI2A 0
Sentinel-2 9 February 2022 S2MSI2A 0
Sentinel-2 4 February 2023 S2MSI2A 0
Sentinel-2 20 January 2024 S2MSI2A 0
HLS L30 25 December 2015 HLS Landsat OLI 0
HLS L30 1 March 2017 HLS Landsat OLI 0
HLS L30 21 January 2020 HLS Landsat OLI 0
HLS L30 10 January 2022 HLS Landsat OLI 0
HLS L30 8 January 2024 HLS Landsat OLI 0
HLS S30 23 December 2015 HLS Sentinel-2 MSI 0
HLS S30 16 January 2017 HLS Sentinel-2 MSI 0
HLS S30 5 February 2020 HLS Sentinel-2 MSI 0
HLS S30 25 January 2022 HLS Sentinel-2 MSI 0
HLS S30 20 January 2024 HLS Sentinel-2 MSI 0

Satellite imagery with * was used for training the multi-source model.
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Appendix B

Table A2. Experimental results of input feature selection using ANN model with 30 epochs.

No. Groups of Input Features Accuracy (%)

1 7 Bands (B1, B2, B3, B4, B5, B6, B7) 57.06
2 5 Bands (B2, B3, B4, B5, B6) (BGRNIR, SWIR) 54.77
3 4 Bands (B2, B3, B4, B5) 54.77
4 NDVI, NDWI, SAVI, CMRI 92.04
5 NDVI, NDWI, SAVI, CMRI, MERIT 93.41
6 NDVI, NDWI, SAVI, CMRI, SRTM 93.67
7 NDVI, SAVI, CMRI, NDWI, Slope 92.85
8 NDVI, NDWI, SAVI, CMRI, CHM 92.42
9 NDVI, NDWI, SAVI, CMRI, SRTM, CHM 93.80
10 NDVI, NDWI, SAVI, CMRI, MERIT, CHM 93.37
11 NDVI, NDWI, SAVI, CMRI, SRTM, MERIT, CHM 93.63
12 NDVI, NDWI, SAVI, CMRI, SRTM, MERIT, CHM, Slope 93.34
13 NDVI, NDWI, SAVI, SRTM 93.43
14 NDVI, SAVI, CMRI, SRTM 93.71
15 NDVI, NDWI, CMRI, SRTM 93.65
16 4 Bands, NDVI, NDWI, SAVI, CMRI, SRTM 93.53
17 5 Bands, NDVI, NDWI, SAVI, CMRI, SRTM 93.72
18 4 Bands, NDVI, NDWI, SAVI, CMRI, MERIT 93.47
19 5 Bands, NDVI, NDWI, SAVI, CMRI, MERIT 93.59
20 4 Bands, NDVI, NDWI, SAVI, CMRI, SRTM, CHM 93.74
21 5 Bands, NDVI, NDWI, SAVI, CMRI, SRTM, CHM 93.58
22 4 Bands, NDVI, SAVI, CMRI, SRTM 93.64
23 5 Bands, NDVI, SAVI, CMRI, SRTM 93.59
24 4 Bands, NDVI, NDWI, CMRI, SRTM 93.25
25 5 Bands, NDVI, NDWI, CMRI, SRTM 93.44
26 NDVI, SAVI, CMRI, MERIT 93.43
27 NDVI, SAVI, CMRI, CHM 92.81
28 4 Bands, SRTM 69.79
29 3 Bands (B3, B4, B5), SRTM 68.90
30 7 Bands, NDVI, NDWI, SAVI, CMRI, SRTM, CHM 93.47

Table A3. Experimental results of input feature selection using CNN model with 100 epochs.

No. Groups of Input Features Accuracy (%)

1 NDVI, NDWI, SAVI, CMRI,
SRTM, CHM 95.93

2 4 Bands 54.91
3 4 Bands, SRTM 95.99
4 3 Bands, SRTM 95.85
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