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Abstract: This paper presents the Hierarchical Spectral–Spatial Transformer (HSST) network, a
novel approach applicable to both drone-based and broader remote sensing platforms for integrating
hyperspectral (HSI) and multispectral (MSI) imagery. The HSST network improves upon conventional
multi-head self-attention transformers by integrating cross attention, effectively capturing spectral
and spatial features across different modalities and scales. The network’s hierarchical design facilitates
the extraction of multi-scale information and employs a progressive fusion strategy to incrementally
refine spatial details through upsampling. Evaluations on three prominent hyperspectral datasets
confirm the HSST’s superior efficacy over existing methods. The findings underscore the HSST’s
utility for applications, including drone operations, where the high-fidelity fusion of HSI and MSI
data is crucial.
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1. Introduction

Hyperspectral imagery (HSI), embodying an array of slender spectral bands that span
from visible to near-infrared wavelengths, enables the meticulous discernment of terrestrial
object compositions. This proficiency proves to be especially beneficial in fields such as
environmental surveillance and precision agriculture [1]. The utility of HSI spans across
various domains, including land cover classification and anomaly detection, thanks to their
detailed object attribute characterization [2–5]. Nevertheless, the high spectral resolution
inherent in HSI often comes at the expense of spatial resolution, a trade-off imposed by
the constraints of imaging platforms, including those mounted on drones. The scattering
of electromagnetic waves with narrow bandwidths into the instantaneous field of view
typically requires a compromise in spatial resolution to maintain an acceptable signal-to-
noise ratio, thereby limiting the broader application of HSI [6]. Consequently, there is a
pressing need for research aimed at algorithmically fusing low-resolution hyperspectral
images (LR-HSI) with high-resolution multispectral images (HR-MSI) to generate high-
resolution hyperspectral images (HR-HSI), particularly for use in drone-based platforms
where enhanced spatial detail is critical [7]. This integration is essential for maximizing
the potential of HSI in both aerial and terrestrial applications, ensuring that drones can
effectively utilize the resulting HR-HSI for a wide range of tasks.

Several machine learning techniques have been proposed for the integration of LR-
HSI (low-resolution hyperspectral imaging) and HR-MSI (high-resolution multispectral
imaging), including methods based on matrix and tensor factorization [8–12]. However,
many of these techniques rely on manually designed priors, which not only limit their
representational capacity but also prove to be time-consuming. The swift proliferation
of deep learning has illustrated its immense potential for the fusion of hyperspectral
and multispectral imaging, owing to its sturdy capabilities in the extraction of features.

Remote Sens. 2024, 16, 4127. https://doi.org/10.3390/rs16224127 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16224127
https://doi.org/10.3390/rs16224127
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs16224127
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16224127?type=check_update&version=3


Remote Sens. 2024, 16, 4127 2 of 19

This technique employs a multi-tiered, deep-seated neural network to discern the correla-
tion among high-resolution multispectral imaging, low-resolution hyperspectral imaging,
and the corresponding high-resolution hyperspectral imaging, thereby aiding the accom-
plishment of fusion tasks. Fusion methodologies predicated on deep learning not only
extrapolate information from the input imagery but also utilize learned correlations as
prior cognizance to reconstruct spectral and spatial details that are absent in multispectral
and hyperspectral imaging. As a result, in contrast to conventional fusion techniques
that rely on manually stipulated prior information, fusion methods underpinned by deep
learning exhibit superior efficacy. In recent epochs, several fusion techniques predicated on
convolutional neural networks have been conceived. To give an example, Yang et al. [13]
proposed a fusion technique that amalgamates convolutional neural networks and spatial
attention to extract intricate textures and enhance spatial structure. Cai et al. [14] incor-
porated a super-resolution module and progressive learning into their network, which
enables the capture of spatial details at varying scales and their integration into upsampled
multispectral images. Despite the enhancements in generalization capabilities by current
convolutional neural network-based fusion algorithms [15–17], these algorithms fall short
in effectively exploiting spatial location information and extracting long-range dependen-
cies in images, thereby resulting in a deficiency of global context information. Inspired by
the triumphant implementation of transformers in NLP, scholars have begun to suggest
the use of vision transformers for fusion tasks. However, most extant transformer-based
hyperspectral and multispectral imaging fusion methods extract features from a singular
modality. This approach regrettably neglects the interplay between spatial and spectral
modalities.

The observations previously discussed lay the groundwork for the introduction of
a novel Hierarchical Spectral–Spatial Transformer (HSST) network. The HSST is a two-
branch network that incorporates the self-attention mechanism of the transformer to extract
and merge spectral features of HSI with spatial features of MSI. To effectively leverage
the extensive spatial information in remote sensing images, a hierarchical structure is
employed to facilitate multi-scale information extraction. For the reconstruction of HR-HSI,
a hierarchical progressive fusion is employed to gradually restore spatial detail information
through progressive upsampling, thereby harnessing the acquired multi-level feature
representation. The main contributions of this paper are described in detail as follows:

• We introduce a Hierarchical Spectral–Spatial Transformer network (HSST) for the
fusion of HSI and MSI. The HSST is designed to extract and merge deep spectral
and spatial features via hierarchical Spectral–Spatial Transformers and subsequently
reconstruct HR-HSI through a process of hierarchical progressive fusion.

• We also propose the use of a Hierarchical Spectral–Spatial Transformer to more ef-
fectively capture cross-modality spectral and spatial features at multiple scales. In
addition to the traditional multi-head self-attention transformers, cross attention is
incorporated to enhance the extraction of cross-modality features.

• To optimize the spatial details of the reconstructed HR-HSI, hierarchical progressive
fusion is proposed to gradually recover spatial detail information through progressive
upsampling and fusion. This cumulative process facilitates the gradual reconstruction
of the HR-HSI result.

The remainder of this article is as follows: Section 2 provides an overview of relevant
HSI and MSI fusion methods and a detailed description of the proposed HSST. Section 3
presents and analyses the experimental results on three datasets. Section 4 consists of
discussions and ablation studies. Finally, Section 5 concludes the paper.
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2. Materials and Methods
2.1. Related Works
2.1.1. HSI and MSI Fusion

The current fusion strategies for hyperspectral images (HSI) and multispectral images
(MSI) primarily fall into four categories: matrix factorization, tensor factorization, pan-
sharpening, and deep learning.

Matrix factorization-based techniques transform the 3D HSI into a 2D matrix. There-
after, an HR-HSI is concocted utilizing the endmember matrix and abundance matrix
extricated from the LR-HSI and HR-MSI. For example, the CNMF [18] method employs
non-negative matrix factorization to disintegrate HR-MSI and LR-HSI into mixed pixels,
thereby engendering a superior HR-HSI through the utilization of the abundance matrix of
LR-HSI and the endmember matrix of HR-MSI.

Tensor factorization-based methods are utilized to maintain the spatial and spectral
structure of images, as opposed to reshaping them into matrices. Two frequently used de-
compositions in the fusion of HSI and MSI are the Tucker decomposition and the Canonical
Polyadic decomposition. Dian et al. [19] introduced a nonlocal sparse tensor factorization
method for semi-blind fusion of HSI and MSI. To mitigate computational strain, Kanatsoulis
et al. [20] implemented CP decomposition on the HR-HSI, obtaining each factor matrix by
resolving the least squares equation.

Pan-sharpening methods integrate the fusion of HSI and MSI images. Grohnfeldt
et al. [21] introduce a sparse representation (SR)-based pan-sharpening method for HSI and
MSI fusion. Although it achieves satisfactory performance with a limited number of MSI
bands, it fails to yield desirable outcomes when the number of bands increases due to the
diminished correlation between the missing bands of MSI and the high-resolution images.

With the emergence of deep learning, it is now feasible to learn all parameters from
training data using deep learning networks, eliminating the necessity for assumptions
about the images [22]. Bearing this in mind, Dian et al. [23] propose a novel HSI sharpening
method called DHSI for the fusion of HSI and MSI data. The method employs a deep
residual network to learn image priors, thereby obviating the need for manually crafted
priors. Palsson et al. [24] have proposed a method that utilizes a trained three-dimensional
convolutional neural network to acquire filters for effectively merging MSI and HSI. To
address the computational complexity associated with the 3D CNN, they have employed
principal component analysis (PCA) as a means of reducing the dimensionality prior to
fusion [25]. In a similar vein, Zheng et al. [26] have developed EC-FTN that aims to preserve
low-level structural details, including sharp edges. However, it is worth noting that many
of the existing learning-based approaches are supervised in nature, requiring a substantial
amount of training data, which can pose challenges in real-world applications.

2.1.2. Hyperspectral Image Transformer

The proliferation of convolutional neural network (CNN)-based fusion methodologies
for amalgamating hyperspectral and multispectral images is noteworthy. Nonetheless, the
limiting receptive field of CNNs poses a challenge in extracting comprehensive information
from images. This is particularly crucial in hyperspectral imaging (HSI) where strong
correlations in the spectral dimension necessitate the extraction of global characteristics
for enhanced fusion performance. The transformer model, renowned for its self-attention
mechanism that accommodates long-range information, has gained momentum in various
applications. In the domain of HSI processing, the transformer model has demonstrated
its prowess in handling sequential data. For example, Hong et al. [27] proposed Spectral-
Former, a primary network for HSI classification, adept at learning locally sequential spec-
tral information from adjacent HSI bands and generating group-wise spectral embeddings.
He et al. [28] introduced a spectral–spatial transformer classification network, which com-
bines a well-structured CNN for spatial feature extraction with an improved transformer
to capture sequential spectral relationships. Selen et al. [29] developed a spectral-swin
transformer (SpectralSWIN) classification network, employing a spectral-swin module to
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simultaneously process spatial and spectral features. Transformers have gained significant
traction in the realm of HSI reconstruction. Cai et al. [30] were the pioneers in proposing a
transformer-based method for HSI reconstruction. They utilized the feature map of each
spectral channel to compute self-attention. Similarly, Bandara et al. [31] employed the
self-attention mechanism of the transformer to transfer high-resolution textual features to
low-resolution features for pan-sharpening.

2.2. Proposed Method

Our network utilizes a bifurcated structure, as illustrated in Figure 1. The input
HSI and MSI experience a corresponding upsampling and downsampling, respectively,
facilitated by linear and convolutive procedures. This process extracts spatial information
from low-level detailed features alongside semantic information from high-level semantic
features. The Spectral–Spatial Transformer is harnessed to execute comprehensive feature
extraction, foster meaningful interplay of information, and facilitate the amalgamation of
feature maps on a homogeneous scale. The image reconstruction incorporates a hierarchi-
cal progressive fusion procedure, which is designed to incrementally combine extracted
features across varying scales.
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Let Y0 ∈ Rr×c×S represent the input LR-HSI, where r, c, and S denote the number
of rows, columns, and spectral bands respectively. Similarly, let Z0 ∈ RR×C×s denote the
input HR-MSI, where R, C, and s correspond to the number of rows, columns, and spectral
bands respectively. Initially, we perform upsampling on the LR-HSI and downsampling
on the HR-MSI to generate Yupsample ∈ RR×C×S and Zdownsample ∈ Rr×c×s, respectively,
employing the bilinear interpolation method, which can be expressed as follows:

Yupsample ∈ UPS(Y0) (1)

Zdownsample ∈ DOWNS(Z0) (2)
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where UPS and DOWNS denote the functions of upsampling and downsampling. Subse-
quently, we perform concatenation of Y0 and Zdownsample to get Yconcat ∈ Rh×w×(S+s), and
concatenate Z and Yupsample to get Zconcat ∈ RH×W×(s+S), which can be written as

Yconcat = concat
(

Y0, Zdownsample

)
(3)

Zconcat = concat
(

Z0, Yupsample

)
(4)

where concat refers to the concatenation operation within the channel dimension. This cross-
modality concatenation enables the interaction of cross-modality information between the
two branches.

The intricate computational convolutions of the transformer are commensurate with
the sequence length, rendering it impractical to condense the input image into a sequence
for transformer assimilation. To mitigate this predicament, the Vision Transformer (ViT) [32]
advocates dividing the image into static-size segments. Initially, LR-HSI Yconcat is upsam-
pled to generate Y1 ∈ RH×W×C, which is of the same scale as the HR-MSI Z1. The same
downsampling operation is then performed on Y1 and Z1 to produce a pair of feature maps
of identical scale, Y2 ∈ R H

4 ×W
4 ×2C and Z2 ∈ R H

4 ×W
4 ×2C. The second downsampling can be

represented as Y3 ∈ R H
8 ×W

8 ×4C and Z3 ∈ R H
8 ×W

8 ×4C. Throughout the gradual downscaling
procedure, numerous local spatial features are harnessed. Subsequently, Yn and Zn are
inputted into Spectral–Spatial Transformers to further apprehend the long-range correlation
in a global context.

2.2.1. Spectral–Spatial Transformer

In order to integrate data from the spectral and spatial modalities and construct a
comprehensive image representation, a Spectral–Spatial Transformer (SST) was developed.
This concept is visually depicted in Figure 2. In the preliminary stage, the LR-HSI and
HR-MSI feature maps are subjected to a linear mapping procedure. Following this, the
overall dependency of features on both modalities is modeled to facilitate the fusion of
cross-modality data, utilizing a fusion attention block. This block serves to coalesce the
interactive data interwoven between the two modalities. Subsequently, the Multilayer
Perceptron (MLP) is structured as a bi-layer perceptron, supplemented with a hidden layer
expansion ratio. To conclude, Layer Normalization (LN) is executed.
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We began with two feature maps of identical dimensions, denoted as F ∈ Rh×w×C.
Subsequently, an LN was carried out on these features:

x1 = LN(LP(F1)), x2 = LN(LP(F2)) (5)

where LP denotes the linear projection operation, and x1, x2 ∈ Rd×h×w signify the feature
embeddings. LN signifies the layer normalization.

The Spectral–Spatial Fusion Self-Attention block is crafted with the intention of cap-
turing the intricate interdependence of spectral and spatial feature maps within an image,
wherein each map contains distinct semantic information at diverse scales. This design is
specifically customized by calculating self-attention across spatial and spectral dimensions,
thereby revealing the correlations present. Initially, we feed the feature embedding Yn into
the system to obtain the query matrix Q, the key matrix K, and the value matrix V through
a trainable linear projection:

Q = xnWQ, K = xnWK, V = xnWV (6)

where Wq, Wk, Wv are learnable projection matrices. Then, given two feature vectors x1 and
x2, the fusion attention block can be expressed as:

y1 = attention(Q1, K1, V2) = so f tmax

(
Q1KT

1√
dk

)
V2 (7)

y2 = attention(Q2, K2, V1) = so f tmax

(
Q2KT

2√
dk

)
V1 (8)

where Q, K, and V denote the query, the key, and the value respectively, while y1 and y2
represent the output feature maps. This cross-attention mechanism encourages a more
effective interaction between the two feature maps in the fusion task, resulting in an
improved fusion outcome. Once the feature map is processed through another layer of
normalization and MLP, its dimensions cannot align with the subsequent network structure.
To rectify this, we employ a feature mapping module to reconfigure the output sequences
into a standard 3D feature map of dimensions H × W × d. Subsequently, the channel
count of the feature maps is reduced by the convolution operation, resulting in feature
maps z1 and z2 that share the same dimensions as feature maps F1 and F2. The final
step involves combining the two feature maps to generate the feature map Fout, thereby
enhancing information fusion. The above process can be described as:

z1 = FM(LN(y1) + MLP(LN(y1))), z2 = FM(LN(y2) + MLP(LN(y2))) (9)

Fout = z1 + z2 (10)

where LN represents the layer normalization, FM represents the feature mapping, and MLP
refers to the multilayer perceptron network.

2.2.2. Hierarchical Progressive Fusion

The quality of reconstructed images is profoundly influenced by the precise restoration
of spatial intricacies. Furthermore, the efficacy of feature fusion utilization is pivotal for
acquiring a comprehensive multi-level feature representation. Consequently, we have
engineered a feature amalgamation reconstruction module to synchronously merge these
three distinctive feature maps. This method incrementally recovers spatial detail intelli-
gence via sequential elevation in sampling. Our methodology merges the spatial detail
data from the reduction layer with the introductory information from the amplified layer.
This initiative enhances the image’s semantic features while concurrently maintaining the
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spatial particulars of each band, thereby aiding the systematic reconstruction of the HR-HSI
result.

f usionn = StripConv(Concat(Yn, Zn, SST(Yn, Zn))) (11)

where StripConv is the Strip Convolution Block, the Concat is the concatenation operation,
and SST is the Spectral–Spatial Transformer.

The strip convolution block captures long-range context information from four differ-
ent directions: horizontal, vertical, left diagonal, and right diagonal. In the strip convolution
block, F is input to four different shapes of strip convolution paths after a 1 × 1 convolu-
tion. The output feature maps of the four paths are concatenated. Then, the upsampling
operation and a 1 × 1 convolution are performed to obtain the final output of the strip
convolution block. Let w ∈ R2k+1 be a strip convolution filter of size 2k + 1, and let
D = (Dh, Dw) represent the direction of filter w. Let H be the result of strip convolution.
The strip convolution can be defined as follows:

HD[i, j] = (F ∗ w)D[i, j] (12)

3. Results
3.1. Experimental Settings

The performance of the HSST network was evaluated on three openly accessible
remote sensing datasets. Specifically, we employed the Pavia Center dataset, the Botswana
dataset, and the Urban dataset for conducting experiments. We conducted comparative
experiments between HSST and five SOTA fusion models. The five fusion algorithms were
CNMF [18], MSD-CNN [33], TFNET [34], SSF-CNN [35], and MCT-NET [36]. CNMF is
a matrix factorization-based method, while the other models are deep learning methods.
MSD-CNN proposes a multi-scale and multi-depth CNN for remote sensing image fusion,
which is based on residual learning and multiscale feature extraction. TFNet is a two-stream
network that encodes spatial and spectral features independently, and then decodes the
HR-HSI using the fusion of spatial and spectral features. SSF-CNN utilizes the direct
concatenation of LR-HSI and HR-MSI to predict the HR-HSI, with the HR-MSI being
concatenated in each convolutional layer. Lastly, MCT-NET employs a cross transformer to
fuse spatial and spectral features.

The experimental procedure was carried out using LR-HSI, obtained from HR-HSI
through the application of Gaussian blur and a subsequent four times downsampling.
HR-MSI were generated by extracting red–green–blue bands at regular intervals that
corresponded to their physical wavelengths from using specific dataset or sensors. For
testing purposes, subsets with dimensions of 128 × 128 were extracted from the data center
while the remaining components served as the training set. In each iterative cycle, the
training area was randomly cropped to the size of 128 × 128 as part of the training process.
The procedure was performed on a computational system equipped with an Intel i7-11700K
3.60 GHz CPU and an Nvidia RTX 3080Ti 12 GB GPU, with the assistance of PyTorch 2.2.2.
The Adam optimization algorithm was selected for this particular experiment.

3.2. Evaluation Metrics

This paper utilizes four prominent indexes to thoroughly assess the quality of the
reconstructed HR-HSI at a reduced resolution, as subsequently detailed.

To appraise the spatial quality, the Peak Signal-to-Noise Ratio (PSNR) is employed.
PSNR serves as an objective evaluation metric, gauging the noise level or image distortion.
A higher PSNR value indicates less distortion and superior image quality. The definition of
PSNR is as follows:

PSNR
(
X, X′) = 10log10

(
max(Xk)

2

1
HW ∥Xk − X′

k∥2
2

)
(13)
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where X′ represents the estimated HR-HSI, X represents the ground truth HR-HSI, and Xk
and X′

k denote the kth band of the reference HR-HSI and the estimated HR-HSI, respec-
tively.

We evaluated the spectral quality utilizing the Spectral Angle Mapper (SAM). SAM
serves as a metric to estimate an image’s spectral quality, achieved through the computation
of the average spectral angle across the entire spatial domain, as defined below:

SAM
(
X, X′) = 1

HW

H

∑
i=1

W

∑
j=1

arccos

(
XT(i, j)X′(i,j)

∥X(i, j)∥2∥X′(i,j)∥2

)
(14)

where H and W represent the number of rows and columns in the HR-HSI. The pixel vector
of the reference HR-HSI is represented by X(i, j), while the estimated HR-HSI at the same
position (i, j) is represented by X′(i, j). Spectral Angle Mapper (SAM) is a measure of
spectral distortion, with a lower value indicating less distortion.

Erreur relative globale adimensionnelle de synthèse (ERGAS): The ERGAS index is
specifically crafted to assess the comprehensive quality of fused images, defined as follows:

ERGAS
(
X, X′) = 100

r

√√√√ 1
S

S

∑
k=1

∥Xk − X′
k∥2

2
µ2(Xk)

(15)

where r signifies the downsampling ratio, and µ represents the mean value. A lower
ERGAS value indicates a more favorable fusion outcome.

The Root Mean Squared Error (RMSE) is a statistical measure that represents the
discrepancy between the values of X and X′. A lower value of RMSE indicates fewer
reconstruction errors, thus implying superior quality of reconstruction. It is defined as
follows:

RMSE =

√
∑S

k=1 ∑H
i=1 ∑W

j=1(Xk(i, j)− X′
k(i, j))2

HWS
(16)

where Xk(i, j) and X′
k(i, j) represent the values at the position (i, j) in the kth band of the

reference HR-HSI and the estimated HR-HSI.

3.3. Experimental Results on the Pavia Center Dataset

The Pavia Center dataset was obtained using drone-based ROSIS sensors. The sensor
initially comprised 115 bands, which, post-processing, were reduced to 102. The dimensions
of the Pavia Center dataset are 1096 × 715 pixels.

The fusion performances and quantitative evaluations are illustrated in Figure 3 and
Table 1. Overall, the deep learning methods outperformed the traditional methods. The
proposed HSST achieved three optimal results for PSNR, SAM, and RMSE, and a sub-
optimal result for ERGAS. The best values of PSNR and RMSE demonstrated the superior
elementwise reconstruction quality of HSST, while the best value of SAM showed the
spectral reconstruction quality of HSST. First place for ERGAS, which indicates the spatial
reconstruction quality, was achieved by TFNet. TFNET has the deepest network, which
gives it an advantage in extracting nonlinear deep features that are beneficial for spatial
reconstruction.
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Figure 3. The fusion outcomes of various models on the Pavia Center dataset. The first row shows the
R-G-B images after fusion, and the second row shows the pseudo-color processed differential images
between the fused and reference images. (a) Original image; (b) CNMF; (c) MSD_CNN; (d) TFNET;
(e) SSF-CNN; (f) MCT-NET; (g) HSST.
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Table 1. Quantitative evaluations for the Pavia Center dataset. The optimal and sub-optimal values
are bolded and underlined, respectively.

Methods PSNR SAM ERGAS RMSE

CNMF 25.2221 4.3635 11.4361 13.9777
MSD-CNN 35.7566 5.2540 4.7125 4.1563

TFNET 35.6575 4.8931 3.7617 4.2040
SSF-CNN 34.9898 4.7308 4.9807 4.5401
MCT-NET 36.9809 4.1504 4.1325 3.6099

HSST 37.5183 4.1338 3.8451 3.3933

3.4. Experimental Results on the Botswana Dataset

The Botswana dataset comprises a sequence of datasets procured by NASA satellites
during the period from 2001 to 2004. The dataset encompasses a total of 145 spectral
bands, subsequent to the exclusion of the uncalibrated band and the noise band, which
encompasses the water absorption characteristic. The dimensions of the dataset amount to
1476 × 256 pixels.

The fusion performances and quantitative evaluations are depicted in Figure 4 and
Table 2. Our HSST experimental results are in the second tier, trailing slightly behind
MCT-NET. In the Botswana dataset, the pixel’s spatial resolution reaches up to 30 m,
making the spatial information more intricate compared to other datasets that have a
higher requirement for feature extraction. The smaller size of HSST, in contrast to MCT-
NET, constrains the performance of our model in extracting spatial features from a large
receptive field.

Table 2. Quantitative evaluations for the Botswana dataset. The optimal and sub-optimal values are
bolded and underlined, respectively.

Methods PSNR SAM ERGAS RMSE

CNMF 26.3457 2.4866 9.4849 26.3457
MSD-CNN 35.7160 2.7977 3.2249 0.5964

TFNET 36.5435 2.4479 2.9630 0.5422
SSF-CNN 30.0626 5.1641 16.2764 1.1434
MCT-NET 37.8955 2.1803 2.6303 0.4640

HSST 37.1824 2.2274 2.4898 0.5037

3.5. Experimental Results on the Urban Dataset

The Urban dataset, acquired in 1995 using a drone-mounted HYDICE sensor, was
centered on Copper Tree Bay, located in the state of Texas, USA. This dataset, characterized
by image dimensions of 307 × 307, originally consisted of 210 spectral bands. However,
after eliminating the bands affected by noise and water absorption, only 162 bands were
preserved for further processing and analysis.

The fusion performances and quantitative evaluations are presented in Figure 5 and
Table 3. It is evident that the proposed HSST outperforms all other comparative methods in
terms of all four evaluation metrics. The superiority of the proposed HSST can be observed
from the perspective of elementwise reconstruction quality (RMSE and PSNR), spectral
reconstruction quality (SAM), and spatial reconstruction quality (ERGAS).
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Figure 4. The fusion outcomes of various models on the Botswana dataset. The first row shows the
R-G-B images after fusion, and the second row shows the pseudo-color processed differential images
between the fused and reference images. (a) Original image; (b) CNMF; (c) MSD_CNN; (d) TFNET;
(e) SSF-CNN; (f) MCT-NET; (g) HSST.
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Figure 5. The fusion outcomes of various models on the Urban dataset. The first row shows the
R-G-B images after fusion, and the second row shows the pseudo-color processed differential images
between the fused and reference images. (a) Original image; (b) CNMF; (c) MSD_CNN; (d) TFNET;
(e) SSF-CNN; (f) MCT-NET; (g) HSST.
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Table 3. Quantitative evaluations for the Urban dataset. The optimal and sub-optimal values are
bolded and underlined, respectively.

Methods PSNR SAM ERGAS RMSE

CNMF 36.0468 2.4971 1.5612 4.0198
MSD-CNN 35.7440 3.2117 1.8428 3.2133

TFNET 35.9584 3.0255 1.7885 3.1350
SSF-CNN 37.3912 2.5904 1.4638 2.6582
MCT-NET 37.3294 2.7076 1.4312 2.6772

HSST 37.6249 2.4644 1.3954 2.5877

4. Discussion

The Pavia Center dataset, obtained via drone-based ROSIS sensors, presents a chal-
lenging platform for evaluating the effectiveness of various fusion algorithms. This dataset
is particularly beneficial for urban analysis, wherein detailed spatial information is crucial
for applications like infrastructure monitoring, land use classification, and urban planning.
Our proposed HSST model showcased optimal results in three out of the four evaluation
metrics, namely PSNR, RMSE, and SAM, against this dataset. A close inspection of the
fusion outcomes in Figure 3 suggests that deep learning-based approaches, including HSST,
are superior at preserving spectral and spatial details compared to traditional methods like
CNMF. The high PSNR and low RMSE values achieved by HSST indicate a high degree
of fidelity in the reconstructed images, which is essential for accurately identifying and
monitoring minor urban features like road networks, building footprints, and vegetation
patches. The best SAM score of HSST underlines its capability in spectral reconstruction,
preserving the spectral signatures necessary for distinguishing between different land cover
types and materials in remote sensing applications. TFNet, another deep learning-based
method, achieved the best ERGAS score, highlighting the advantage of deeper networks
in extracting spatial features that maintain spatial resolution and contextual information
in the fused image. However, despite TFNet’s deeper architecture, HSST outperformed
it in other metrics, suggesting that HSST strikes a balance between network depth and
efficiency in feature extraction and reconstruction.

The Botswana dataset, taken from NASA satellite imagery, posed a unique challenge
due to its high spatial resolution, which increases the complexity of spatial information.
This complexity requires a model capable of effectively extracting features from a larger
receptive field. In this context, MCT-NET outperformed HSST, which may be due to its
larger size and enhanced capacity for spatial feature extraction. Despite having a smaller
model size, HSST’s performance was commendable, achieving sub-optimal results across
all metrics. This suggests that HSST offers computational efficiency without significant
compromises in fusion quality. However, the results imply that for datasets with higher
spatial resolution, like the Botswana dataset, the model’s complexity might need to be
increased to improve feature extraction capabilities. The Botswana dataset is rich in
spectral information, which is pivotal for environmental monitoring and ecosystem health
assessment. HSST’s strength in spectral reconstruction, as evidenced by its SAM score, is
particularly relevant for these applications. The accurate spectral information provided
by HSST can facilitate more precise monitoring of vegetation health, which is essential
for understanding the effects of climate change, identifying drought stress, and assessing
the proliferation of diseases among plant populations. The slightly sub-optimal spatial
reconstruction performance of HSST, likely due to its smaller size, suggests that the model
could potentially be enhanced for satellite-based datasets with high spatial resolution.

The Urban dataset presented a scenario that played to the strengths of HSST, where it
excelled over all other methods across all evaluation metrics, including RMSE, PSNR, SAM,
and ERGAS. The dataset’s characteristics, featuring smaller dimensions and a significant
number of spectral bands, appear to be ideally matched to HSST’s capabilities. HSST’s
consistently optimal performance on the Urban dataset highlights its comprehensive skill
in addressing the multifaceted challenges of image fusion, including elementwise, spectral,
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and spatial reconstruction. This robust and versatile performance indicates that HSST is
well-suited for a broad spectrum of hyperspectral image fusion tasks. With a focus on
industrial and urban land cover, the Urban dataset greatly benefits from HSST’s proficiency
in capturing both spatial and spectral details. In applications such as pollution moni-
toring, HSST’s superior reconstruction quality is instrumental in pinpointing pollution
hotspots and tracking the spread of pollutants over time. For urban planning purposes,
the detailed spatial and spectral information provided by HSST is invaluable for informed
decision-making regarding land use, infrastructure development, and environmental im-
pact assessments. The outstanding performance of HSST on the Urban dataset underscores
its potential role in managing the intricate and dynamic interactions within urban environ-
ments, where the relationship between human activities and the environment is particularly
complex.

The experimental outcomes across the Pavia Center, Botswana, and Urban datasets
strongly support the efficacy and robustness of the proposed HSST model for hyperspectral
image fusion. HSST‘s capability to maintain a balance between elementwise, spectral,
and spatial reconstruction qualities positions it as a promising tool for applications in
remote sensing and other hyperspectral imagery-dependent fields. The depth of networks
like TFNet may enhance spatial reconstruction, but HSST‘s overall balance and efficiency
suggest that increased network depth does not always equate to optimal performance.
The results also underscore the significance of model complexity in relation to dataset
characteristics such as spatial resolution and the number of spectral bands.

4.1. Ablation Studies

In order to explore the role of the components of HSST in HSI and MSI fusion, some
ablation experiments were conducted on the Urban dataset based on the three model varia-
tions of a model with only a spectral transformer, a model with only a spatial transformer,
and a model without progressive fusion.

The fusion performances and quantitative evaluations of the ablation experiments
are presented in Figure 6 and Table 4. When comparing the model with only the spectral
transformer and the model with only the spatial transformer, it can be observed that the
first model, which reconstructs the spectral information, performed significantly better than
the second model, which reconstructs the spatial information. These results suggest that the
reconstruction of spectral information is easier compared to spatial information, indicating
that spatial information is more complex. Ablation studies on progressive fusion demon-
strate that the use of progressive fusion significantly improves the accurate reconstruction
of spatial details, thereby affecting the quality of the final reconstructed images.

Table 4. Quantitative evaluations for the ablation studies on the Urban dataset. The optimal values
are bolded.

Methods PSNR SAM ERGAS RMSE

Spectral Transformer only 34.3125 3.4971 2.9380 3.7891
Spatial Transformer only 21.2898 8.0370 9.4513 16.9695

Without progressive fusion 37.3294 2.7076 1.4312 2.6772
HSST 37.6249 2.4644 1.3954 2.5877

4.2. Classification Performance Studies

To further evaluate the advantages of HSI-MSI image fusion, we conducted additional
classification experiments on the Pavia Center dataset using unfused LR-HSI and fused
HR-HSI. The Pavia Center dataset is a high-resolution city scene located in Pavia, northern
Italy. For this dataset, we utilized the Self-Adaptive 3D ASPP Multi-Scale Feature Fusion
Network (SAAFN) [37] for HSI classification. For all experiments, only 10% of labeled
samples were randomly selected for training, with the rest used for testing. Both qualitative
maps and quantitative evaluations comprehensively analyzed performance using four
common metrics: producer‘s accuracy, overall accuracy, average accuracy, and Kappa.
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The classification maps and the corresponding quantitative evaluations for the classifi-
cation experiments using SAAFN conducted at the Pavia Center are presented in Figure 7
and Table 5, respectively. The optimal value for each line is highlighted in bold, while the
sub-optimal value is underlined.
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Figure 6. The fusion outcomes of ablation studies on the Urban dataset. The first row shows the
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between the fused and reference images. (a) Original image; (b) Spectral Transformer only; (c) Spatial
Transformer only; (d) Without progressive fusion; (e) HSST.
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Figure 7. The results for the Pavia Center classification experiment: (a) Original image; (b) Ground
truth; (c) LR-HSI; (d) CNMF; (e) MSD-CNN; (f)TFNET; (g) SSF-CNN; (h) MCT-NET; (i) HSST.
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Table 5. Quantitative evaluations for Pavia Center classification experiment (%). The optimal and
sub-optimal values are bolded and underlined, respectively.

Unfused
LR-HSI

Fused HR-HSI

CNMF MSD-CNN TFNET SSF-CNN MCT-NET HSST

OA 81.93 82.54 94.37 96.68 94.25 96.11 96.74
AA 48.26 71.15 68.95 83.25 78.07 91.40 86.72

Kappa 0.73 0.76 0.92 0.95 0.92 0.94 0.95

The HSST method achieved the highest overall accuracy (OA) with a score of 96.74%,
closely followed by the TFNET method at 96.68%. It is worth noting that the fused HR-HSI
methods outperformed the unfused LR-HSI, which only achieved an OA of 81.93%. Both
the TFNET and HSST methods achieved the highest Kappa score of 0.95. On the other
hand, the CNMF method performed the worst among the fused HR-HSI methods, with
an OA of 82.54%. Overall, the fused HR-HSI methods, particularly TFNET and HSST,
demonstrated higher classification accuracy compared to the unfused LR-HSI, as evidenced
by their higher OA, AA, and Kappa scores.

5. Conclusions

In this article, we introduced the innovative Hierarchical Spectral–Spatial Transformer
(HSST) network, a technique particularly well-suited for enhancing the capabilities of
drone-based imaging systems. The HSST network comprises two branches that harness the
self-attention mechanism inherent in transformers, enabling the extraction and integration
of spectral details from hyperspectral images (HSI) with the spatial details from multi-
spectral images (MSI). To leverage the rich spatial information inherent in remote sensing
imagery, including that captured by drones, we incorporated a hierarchical structure that
captures multi-scale information. Furthermore, our hierarchical progressive fusion strat-
egy is designed for the reconstruction of high-resolution hyperspectral images (HR-HSI),
progressively restoring spatial detail through upsampling and effectively utilizing the
multi-level feature representation. Comparative experiments of the proposed HSST and
five state-of-the-art methods were conducted on three widely used remote sensing hyper-
spectral datasets, including the Pavia Center, the Botswana, and the Urban. The superior
experimental results of HSST demonstrate the effectiveness of the proposed method, and
can be a competitive method for practical applications.
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