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Abstract: Synthetic Aperture Radar (SAR) imagery is widely utilized in military and civilian applica-
tions. Recent deep learning advancements have led to improved ship detection algorithms, enhancing
accuracy and speed over traditional Constant False-Alarm Rate (CFAR) methods. However, chal-
lenges remain with complex backgrounds and multi-scale ship targets amidst significant interference.
This paper introduces a novel method that features a context-based decoupled head, leveraging
positioning and semantic information, and incorporates shuffle attention to enhance feature map
interpretation. Additionally, we propose a new loss function with a dynamic non-monotonic focus
mechanism to tackle these issues. Experimental results on the HRSID and SAR-Ship-Dataset demon-
strate that our approach significantly improves detection performance over the original YOLOv5
algorithm and other existing methods.

Keywords: ship detection; synthetic aperture radar (SAR); decoupled head; attention mechanism;
YOLOv5

1. Introduction

Synthetic Aperture Radar (SAR) is a microwave sensor that is unaffected by external
environmental factors such as clouds, fog, snow, and night situations. It is capable of
continuously monitoring local terrain scenes, possessing strong penetration capabilities
and high-resolution imaging characteristics, enabling accurate detection of obscured or
camouflaged targets [1]. It finds widespread applications in civilian and military sectors
including topographic mapping, disaster assessment, environmental monitoring, target
reconnaissance, and target localization. Among these applications, marine target detection
is a significant subdivision of SAR object detection, with ship target detection being a
primary focus within marine target detection.

In traditional ship detection algorithms, CFAR [2,3] and other adaptive algorithms
are widely utilized due to their capability of adaptively scanning images. The CFAR
method analyzes input noise to establish thresholds, thereby identifying the presence
of a target when the energy of the input signal surpasses these thresholds. To cater to
the diverse requirements of various SAR image applications, multiple statistical models
have been proposed, encompassing Gaussian, gamma, Weibull, log-normal, G0, and K
distributions [4,5]. Moreover, enhancements and variations of CFAR algorithms continually
emerge [6–8]. Nevertheless, these approaches often require the manual configuration of
features, which is laborious, and exhibit limited transfer ability. While these methods
excel in scenarios involving single-class ships and locally uniform background noise, their
efficacy wanes in scenarios such as nearshore ship detection with intense interference, as
well as multi-scale ship detection [9,10]. Additionally, they lack the capability to process
targets end-to-end. Hence, there exists an imperative need for more sophisticated and
robust algorithms to tackle these challenges.
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After AlexNet [11] achieved significant acclaim in the 2012 ImageNet competition,
convolutional neural networks (CNNs) have seen a resurgence in importance within the do-
main of image processing. Represented by R-CNN [12], CNN-based algorithms have been
employed in object detection, pioneering the development of two-stage object detection.
Subsequent advancements such as SPPNet [13], Fast R-CNN [14], and Faster R-CNN [15]
have further refined two-stage detection algorithms, achieving real-time processing im-
provements in both accuracy and speed. The evolution of two-stage detection algorithms
has led to the emergence of models such as Feature Pyramid Networks (FPNs) [16], Cascade
R-CNN [17], Mask R-CNN [18], and Libra R-CNN [19], among others [20]. The two-stage
algorithm first proposes a region proposal, then proceeds to classify it and refine the
bounding box through the subsequent stage network. While more accurate than one-stage
algorithms, it suffers from much slower processing speeds.

The two-stage algorithms still face bottlenecks in speed, and there is still a certain
gap in real-time image object detection. Addressing such issues, the You Only Look Once
(YOLO) [21] algorithm was proposed. As the pioneering work of single-stage detection
algorithms, it no longer needs to generate region proposals and process them in two steps,
but directly produces the output results for bounding boxes and class, achieving a nearly
10-fold speedup compared to the previous two-stage algorithms. Wei Liu proposed Single
Shot MultiBox Detector (SSD) [22], which introduces the concept of multi-scale and multi-
resolution detection. Subsequently, the YOLOv2 [23] and YOLOv3 [24] algorithms address
the poor accuracy issue of single-stage algorithms by incorporating ideas such as multi-box
detection, feature fusion, and multi-scale outputs into the network. While maintaining fast
processing speeds, these enhancements lead to a significant increase in accuracy. Following
RetinaNet [25], single-stage networks have surpassed the accuracy of the best two-stage
object detection networks at the time. CornerNet [26] and CenterNet [27] further introduce
the concepts of corner points and center points in deep learning. YOLOv4 [28] integrates
numerous contemporary ideas such as Complement IoU (CIoU) [29], PANet [30], and Mix
up data augmentation [31] to achieve both fast processing speeds and higher accuracy in
object detection algorithms. YOLOX [32] introduces decoupled head into object detection,
achieving better results on top of existing algorithms. This paper selects the YOLOv5 [33]
framework as the baseline for experimentation.

While existing networks have achieved good results in optical images, there are still
notable cases of false alarms and missed detections in SAR ship detection, particularly in
scenarios with strong interference near shorelines and in situations involving multi-scale
and small targets, as depicted in Figure 1. Therefore, there is an urgent need for algorithmic
improvements tailored to SAR images.

Figure 1. Several typical examples of situations with small vessel targets and an inshore background.

With the introduction of the SAR Ship Detection Dataset (SSDD) [34] and the emer-
gence of more SAR target detection datasets [35,36], a plethora of papers on SAR domain
object detection have been proposed [37]. The earliest works typically employed classi-
cal networks such as Faster R-CNN [34], SSD [38], and YOLOv2 [39], without improve-
ments specifically tailored to SAR ship target problems, resulting in a relatively mediocre
performance.
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Attention mechanisms, by weighting key feature maps and spatial regions of im-
portance, are commonly employed for the deep mining of multi-scale and small object
information, serving as a means to address targets in complex nearshore scenes effec-
tively [40–50].

In earlier endeavors, the integration of the Squeeze and Excitation (SE) attention
mechanism with Faster R-CNN has demonstrated excellent detection results on the early
version of the SSDD dataset [40]. Zhao et al. [41] proposed utilizing the Convolutional
Block Attention Module (CBAM) and Receptive Fields Block (RFB) to address detection
and recognition challenges on top of YOLOv5. Wang et al. [42] introduced the sim attention
mechanism and C3 channel shuffling to tackle multi-scale ship detection issues in complex
scenarios. Li et al. [43] presented coordinate attention to enhance the performance of detect-
ing small objects. Tang et al. [44] devised a Multiscale Receptive Field Convolution Block
with Attention Mechanism (AMMRF) to leverage positional information in feature maps,
accurately capturing regions crucial for detection in feature maps, as well as capturing
relationships between feature map channels to better understand the ship–background
dynamics. A study [45] proposed the United Attention Module (UAM) and Global Context-
guided Feature Balanced Pyramid (GC-FBP) to enhance ship detection performance. Wu
et al. [46] introduced a method based on the coordinate attention (CA) mechanism and
Asymptotic Feature Fusion (AFF) to alleviate the problem of small object position loss
and enhance the model’s ability to detect multi-scale targets. Hu et al. [47] put forward
a Balance Attention Network (BANet), employing both Local Attention Module (LAM)
and Non-Local Attention Module (NLAM) to respectively capture the local information of
ships, strengthen network robustness, and equilibrate local and non-local features. Ren [48]
proposed incorporating the Channel and Position Enhancement Attention (CPEA) module
to enhance the precision of target localization by utilizing positional data. DSF-Net [49]
incorporated the Pixel-wise Shuffle Attention module (PWSA) to boost feature extraction
capabilities and employed Non-Local Shuffle Attention (NLSA) to enhance the long-term
dependency of features, thereby promoting information exchange. Cui et al. [50] proposed
the addition of a Spatial Shuffle-Group Enhance (SSE) attention module to the CenterNet
network to enhance its performance. Cai et al. [51] introduced FS-YOLO, which incor-
porates a Feature Enhancement Module (FEM) and a Spatial Channel Pooling Module
(ESPPCSPC) on top of the original YOLO backbone, thereby improving network perfor-
mance. Wang et al. [52] integrated the Global Context-Aware Subimage Selection (GCSS)
module with the Local Context-Aware False Alarms Suppression (LCFS) module to en-
hance the network’s adaptability to duplicated scenes. Cheng et al. [53] improved the
YOLOX backbone by proposing the S2D network, which better integrates information
from the neck component and enhances the network’s performance in detecting small
objects. Additionally, Zhang et al. [54] discovered the modulation effects of target motion
on polarization and Doppler. Meanwhile, Gao et al. [55] employed the dualistic cascade
convolutional method to enhance the performance of ship target detection.

Many papers have also focused on improving the loss function to enhance object
detection performance. Zhang et al. [56] introduced the center loss to ensure an equitable
allocation of loss contributions among different factors and reduce the sensitivity of object
detection to changes in ground truth box shapes. YOLO-Lite [48] utilized a confidence
loss function to improve the accuracy of ship object detection. DSF-Net [49] employed
an R-tradeoff loss to improve small detects, accelerate training efficiency, and reduce
false positive rates. Zhou [57] developed a loss function that employs a dual Euclidean
distance approach, leveraging the corner coordinates of predicted and ground truth boxes,
which accurately describes various overlapping scenarios. Zhang [58] used global average
precision loss (GAP loss) to enable the model to quickly differentiate between positive
and negative samples to enhance accuracy. The paper [59] utilized a KLD loss function to
improve accuracy. Chen [60] used the SIoU loss to aid the training process of the network.

These loss functions enhance the detection capability for small objects to some degree,
accelerate training convergence, and elevate accuracy. However, they do not consider
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the impediment caused by inferior instances to the learning ability of the object detection
model, resulting in limited performance improvement.

Many articles have also explored the use of decoupled heads [43,47,61] to decouple the
semantic information head and bounding box information head, preventing interference
between different features and achieving better results. However, these simple decou-
pled heads only provide limited performance improvements as they do not consider the
differences in semantic and bounding box information.

Therefore, in this paper, based on the YOLOv5 backbone, we propose the SAR Ship
Context Decoupled Head (SSCDH), which is based on the characteristics of localization
and semantic information. We use shuffle attention to enhance the focus on understanding
complex backgrounds. Additionally, we introduce a new Wise IoU loss grounded in a
dynamic non-monotonic focus framework and designed to utilize the degree of anomaly.
The goal is to improve the accuracy of ship detection. Hence, the primary advancements of
this paper include the following:

1. In order to enhance the effectiveness of the original decoupling head model, we design
dedicated decoupling heads that align with the specific characteristics of positioning
and semantic information.

2. To improve the model’s capability in detecting objects of varying scales, we in-
corporate a shuffle attention module into the larger feature layers of the original
model’s neck.

3. To boost the accuracy of object detection, we utilize the Wise IoU loss function, which
leverages attention-based bounding box regression loss and a dynamic non-monotonic
focus mechanism.

4. To demonstrate the effectiveness of the proposed technique, we conduct extensive
experiments using the HRSID dataset and the SAR-Ship-Dataset.

The first part of this paper served as an introduction, which presents the background,
related works pertinent to this study, and the identified issues. The second part focuses on
the methods, describing the network structure and the design approach for each module.
The third part presents the experimental details and results. The fourth part discusses the
effectiveness of our chosen head and attention mechanism. Finally, the fifth part concludes
the entire paper.

2. Methods

This section introduces the method of the proposed SSCDH. The first part provides
an overview of the architecture of the proposed model. The second part discusses the
shuffle attention module utilized in our model, along with its principles of spatial and
channel attention mechanisms. The third part introduces the decoupled heads based on
contextual information from ships. Lastly, the fourth part describes the Wise IoU loss
function employed.

2.1. Network Architecture

The network is based on YOLOv5 architecture [33]. The overall structure of the pro-
posed method is shown in Figure 2. The input RGB image size is H × W × 3, where H
represents the height of the image and W represents the width of the image. The input
image passes through 1 large convolutional module and 2 convolutional and residual con-
volutional modules, resulting in a feature map of size H

8 × W
8 × 256 after 3 downsampling

operations. Subsequently, another convolutional and residual module produces a feature
map of size H

16 × W
16 × 512, followed by another similar module yielding a feature map of

size H
32 × W

32 × 1024. These feature maps are then forwarded to the SPP bottleneck module
and subsequently to the neck module, still retaining the dimensions H

32 × W
32 × 1024.
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Figure 2. Overview of the proposed method’s structure. We used the backbone of YOLOv5 and neck
of PAN for the network, while the shuffle attention module and Context Decoupled Head added in
this paper are in the Attention Module and Context Decoupled Head part of this figure.

The feature map of size H
32 × W

32 × 1024 is processed through a 512-channel 1 × 1
convolutional layer, resulting in a feature map of size H

32 ×
W
32 × 512. This is then upsampled

twice and concatenated with another feature map. The feature map obtained after the
first upsampling, H

16 × W
16 × 512, is concatenated with the feature map from the backbone,

resulting in a feature map of size H
16 × W

16 × 1024. This is followed by another convolutional
layer to obtain a feature map measuring H

16 × W
16 × 512, which is then upsampled to obtain

a feature map of size H
8 × W

8 × 512. A 256-channel 1 × 1 convolution is applied to obtain
the P3 feature map of size H

8 × W
8 × 256.

Additionally, the feature map of size H
8 × W

8 × 256 undergoes downsampling using a
256-channel convolution with a kernel size of 3, padding of 1, and a stride of 2, resulting
in a feature map of size H

16 × W
16 × 256. This is concatenated with the output of the second

convolution, resulting in a feature map of size H
16 × W

16 × 512, which is then passed through
a convolutional residual block to obtain the P4 feature map measuring H

16 × W
16 × 512.

Similarly, the feature map of size H
16 × W

16 × 512 undergoes downsampling using a
512-channel convolution with a kernel size of 3, padding of 1, and a stride of 2, resulting
in a feature map of size H

32 × W
32 × 512. This is concatenated with the output of the second

convolution, resulting in a feature map measuring H
32 × W

32 × 1024. Another convolutional
residual block is applied to obtain the feature map P5 measuring H

32 × W
32 × 1024. A shuffle

attention module is then applied to this feature map to enhance feature extraction.
Subsequently, the model undergoes another convolution operation with 1024 channels,

a stride of 2, a kernel dimension of 3, along with a padding of 1. The generated feature map
is then directed to the next C3 module, yielding the feature map P6 of size H

64 × W
64 × 1024.

Finally, the SAR Ship Context Decoupled Head is utilized to fuse features from multi-
ple hierarchical levels. The feature map measuring H

4 × W
4 × 128 obtained after the second

downsampling is used as P2, the feature map. Consequently, P
′
3 is derived by incorporating

information from P2, P3, and P4 feature maps. Similarly, P
′
4 incorporates information from

P3, P4, and P5 feature maps, and P
′
5 incorporates information from P4, P5, and P6 feature

maps. This process ultimately yields the final bounding box positions and confidence
scores for target classification.
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2.2. Shuffle Attention Module

The application of the SE [62] mechanism considers the crucial role of channel attention
in target recognition and detection, which has found widespread application in object
detection. CBAM [63] combines both channel attention and spatial attention mechanisms,
resulting in a notable enhancement in the accuracy of computation. The shuffle attention
(SA) module [64] also integrates channel attention and spatial attention mechanisms while
incorporating the concept of group convolutional kernel channel rearrangement. This
achieves superior results compared to other attention mechanisms. In this proposed
method, we chose to integrate the shuffle attention component after 32× downsampling
layers, aiming to elevate the understanding of the semantic and channel information for the
final layer, thereby achieving more accurate detection capabilities for complex scenes, small
targets, and multi-scale objects. Figure 3 illustrates the shuffle attention process framework.

Figure 3. The structure of the shuffle attention process.

First, shuffle attention employs “channel partitioning” to concurrently process sub-
features for each group. Next, in the channel attention pathway, global average pooling is
utilized to compute statistics at the channel level. This is followed by the application of a
pair of parameters to adjust the scaling and shifting of the channel vectors. For the spatial
attention pathway, group normalization (GN) is utilized to derive statistics at the spatial
level, resulting in a condensed feature representation similar to that of the channel pathway.
Then, these two pathways are combined. Following this, all the derived sub-features are
consolidated and, ultimately, the channel shuffle technique is applied to enhance the data
exchange between the various sub-features.

Shuffle attention achieves the grouping of features, initially, by partitioning the feature
maps of a given size C × H × W into G groups. Here, C indicates the total number of
channels, while H signifies the vertical dimension of the feature map, and W corresponds
to its horizontal dimension. Specifically, shuffle attention divides the feature maps of
X as G clusters, denoted as X = [X1, . . . , XG], where each Xk is of the size C

G × H × W.
Consequently, during training, every individual component map Xk progressively captures
different interpretive insights.

Subsequently, an attention module is used to generate the corresponding significance
weights for each component map. In detail, each attention unit processes the input feature
map Xk by splitting it into two separate pathways, denoted as Xk1 and Xk2, each of size
C

2G × H × W. One branch, Xk1, is used to create channel attention maps using connections
between channels to improve channel effectiveness. Meanwhile, the other branch, Xk2,
produces spatial attention maps using connections between spatial features to identify
more useful spatial characteristics.
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First, we extract channel-level statistical information from the input Xk1 by utilizing
global average pooling (GAP), embedding global information into s of size C

2G × 1 × 1. s
can be obtained by performing spatial average pooling with dimensions H × W, defined as

s = GAP(Xk1) =
1

H × W

H

∑
i=1

W

∑
j=1

Xk1(i, j). (1)

Next, employing a basic gating function combined with a Sigmoid activation, we
construct a compact feature to precisely and adaptively select. The ultimate result of
channel attention X

′
k1 can be derived as follows:

X
′
k1 = σ(Fc(s))Xk1 = σ(W1s + b1)Xk1, (2)

where W1 and b1 are parameters of size C
2G × 1 × 1 and used for the fully connected and

bias term s, Fc(•) represents the full collection operation, and σ(•) represents the Sigmoid
activation function.

Simultaneously, we process data to obtain spatial-level statistical information, enhanc-
ing the representation through a Group Norm (GN) operation. The ultimate result of spatial
attention can be derived as follows:

X
′
k2 = σ(W2GN(Xk2) + b2)Xk2, (3)

where W2 and b2 are parameters of size C
2G × 1 × 1.

Finally, we merge the passways of the channel and spatial attention to obtain the output
of the same size as the input, X

′
k = [X

′
k1, X

′
k2], with dimensions C

G × H × W. Subsequently,
all components are aggregated. Lastly, we employ a “channel shuffle” that enhances the
flow of information between groups across channel dimensions. The final output of the SA
module matches the size of the input X.

2.3. SAR Ship Context Decoupled Head

The preference inconsistency towards feature context between classification and lo-
calization is strong. Specifically, localization tends to emphasize boundary features for
accurate bounding box regression, whereas object classification leans towards semantic
context. Existing methods like YOLOX utilize decoupled heads to handle different feature
contexts for various tasks. However, since these heads work with the same input features,
there is an imbalance between classification and localization.

Based on the structure and principles of Task-Specific Context Decoupling (TSCODE) [65],
we separately manage the encoding of features for categorization and positioning, known as
context decoupling, to selectively employ more suitable semantic contexts for specific tasks.
For the classification branch, rich semantic contextual features present in the image are
typically required to infer object categories. Therefore, we use feature encoding that is broad
but captures strong semantic details. For the localization branch, which requires precise
boundary information, we offer high-resolution feature maps to better define object edges.

While classification in object detection is less detailed and focuses on identifying
objects within a bounding box, using downsampled feature maps for classification does not
significantly impact performance but does lower computational costs. On the other hand,
object categories can be inferred from their surrounding environments; for instance, ship
targets are likely to appear on the sea surface or docked at port edges. Employing broad
insights derived from detailed semantic information improves classification performance.

Building on these findings, we developed Semantic Context Encoding (SCE) to enhance
classification efficiency and accuracy. As illustrated in Figure 4, SCE uses two levels of
feature maps, Pl and Pl+1, at each pyramid level l to produce a feature map with rich
semantic information for classification.
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Figure 4. Semantic Context Encoding (SCE).

Initially, we downsample Pl by a factor of two and then concatenate it with Pl+1, to
yield the final classification feature map, Gcls

l :

Gcls
l = Concat(DConv(Pl), Pl+1), (4)

where Concat((•)) signifies a concatenation operation, and DConv(•) refers to a shared
convolutional layer used for downsampling. It is noteworthy that the resolution of Gcls

l is
half of Pl .

Subsequently, Gcls
l is passed through to Fc(·) = { fcls(·), C(·)} to predict classifica-

tion scores, where fcls(·) represents the classification loss function and C(·) represents
further classification and the Objection Operation. We employ fcls(·), consisting of two
convolutional layers with 512 channels. Given that Gcls

l is downsampled by a factor of
2 compared to Pl , at each position (x, y) in Gcls

l , the predicted classification scores of its
four nearest neighbors in Pl are computed, denoted as C̃ ∈ RHl+1×Wl+1×4N , where N is the
number of classes, and Hl+1 and Wl+1 represent the height and width of the feature map.
Subsequently, C̃ is reshaped to C̃ ∈ RHl×Wl×N to recover the resolution

C̃[2x + i, 2y + j, c] = C̃[x, y, (2i + 2j)c], ∀i, j ∈ {0, 1}. (5)

This approach not only leverages the sparse key features from Pl but also incorporates
the rich semantic information from higher levels on the pyramid as Pl+1.

Localization is more complex than classification, needing additional details for key-
point prediction. Methods usually use a one-scale feature map Pl , though lower pyramid
levels often have stronger responses to object contours, edges, and fine textures. Neverthe-
less, higher-level feature maps are crucial for localization as they facilitate the comprehen-
sive observation of the entire object, thus giving more details to understand the complete
shape of the object.

Based on these findings, we recommend Detail Preserving Encoding (DPE) for accurate
localization. At each layer l of the pyramid, our DPE integrates feature maps from three
layers: Pl−1, Pl , and Pl+1. Pl−1 supplies detailed edge features, whereas Pl+1 gives a broader
object view.

Figure 5 shows the DPE structure. The feature map on Pl is first upsampled by a factor
of 2 and then aggregated with Pl−1. Subsequently, it is downsampled to the resolution of
Pl through a 3 × 3 convolutional layer with a stride of 2. Finally, Pl+1 is upsampled and
combined to produce the final classification feature map, Gloc

l . The computation process is
as follows:

Gloc
l = Pl + µ(Pl+1) + DConv(Pl−1 + µ(Pl)). (6)

Here, µ(•) signifies upsampling, while DConv(•) indicates a shared convolutional
layer for downsampling. Specifically, we compute Gloc

3 using C2, P3, and P4. Subsequently,
further bounding box predictions at the l-th pyramid level are performed through Fr(·) =
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{ flos(·), R(·)}, where flos(·) represents the locational loss function and R(·) represents the
further bounding box regression operation.

Figure 5. Detail Preserving Encoding (DPE).

2.4. Wise IoU Loss

In the field of object detection, Intersection over Union (IoU) evaluates the overlap
between anchor boxes and target boxes. Compared to employing the norm as the bounding
box loss function, IoU loss effectively mitigates interference from the proportional repre-
sentation of bounding box sizes, which allows the model to efficiently balance learning for
both large and small objects when IoU loss is utilized for bounding box regression. IoU
loss is defined as

LIoU = 1 − IoU. (7)

However, when IoU is zero (i.e., Wi = 0 or Hi = 0), the gradient of the IoU loss
∂LIoU
∂Wi

= 0, resulting in the disappearance of gradients during back-propagation and the
failure to update the overlapping distance Wi.

To address this issue, existing research accounts for various geometric aspects of
bounding boxes and incorporates a penalty term Ri. The existing bounding box regression
(BBR) loss follows the paradigm

Li = LIoU + Ri. (8)

The Generalized Intersection over Union (GIoU) loss function extends the standard
IoU loss by incorporating a penalty term. Unlike traditional IoU, which only assesses the
overlap between boxes, GIoU also evaluates the surrounding non-overlapping regions.
However, when one box is fully enclosed within another, GIoU cannot differentiate its
relative positional relationships.

To address the limitations of GIoU, Distance-IoU (DIoU) [29] adjusts the penalty term
by maximizing the overlap area. This is achieved through minimizing the normalized
distance between the center points of two bounding boxes. This modification aims to
prevent divergence issues that can occur during the training process when using IoU loss
and GIoU loss.

DIoU is defined as the relative spacing between the centers of two bounding boxes:

RDIoU =
ρ2(b, bgt)

c2 (9)

where b and bgt are the centers of the predicted and ground truth bounding boxes, respec-
tively. The term ρ represents the Euclidean distance between these centers, while c refers to
the diagonal length of the minimal bounding rectangle that can enclose both the predicted
and actual boxes.
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This method effectively addresses the gradient vanishing issue encountered with LIoU
and incorporates a geometric aspect. By utilizing RIoU , DIoU can make more intuitive
selections when faced with anchor boxes that have identical LIoU values.

Furthermore, considering the aspect ratio in addition to DIoU leads to the proposed
CIoU:

RCIoU = RDIoU + αυ, (10)

where
α =

υ

LIoU + υ
(11)

and υ describes the consistency of aspect ratios:

υ =
4

π2 (tan−1 w
h
− tan−1 wgt

hgt
)2. (12)

Here, w and wgt denote the widths of the prediction box and the ground truth box,
while h and hgt represent the heights of the prediction box and the ground truth box,
respectively. Because the unavoidable presence of poor-quality instances in the dataset
leads to increased penalties, especially when influenced by factors like geometry, distance,
and aspect ratio, thus diminishing the model’s generalization performance. In order to
reduce the effects of geometry when anchor boxes align closely to target boxes, while
intervening less during training to elevate the model’s ability to generalize, we construct
WIoU v1 [66] as

LWIoUv1 = RWIoU LIoU . (13)

The IoU score LIoU ∈ [0, 1] significantly diminishes the penalization for high-quality
anchor boxes in RWIoU , emphasizing the gap between center points when anchor boxes
closely match with target boxes, where RWIoU ∈ [1, e) is the term amplifying LIoU for
regular quality anchor boxes.

RWIoU = exp(
(x − xgt)2 + (y − ygt)2

W2
g + H2

g
). (14)

Here, Wg and Hg denote the size of the minimum bounding box, while the numerator
represents the l2 distance between the prediction box and ground truth. For the purpose of
stopping RWIoU from causing gradients hindering optimization, Wg and Hg are excluded
from the computation framework and the computation is denoted by the superscript *.
This effectively eliminates factors hindering convergence, thus avoiding the introduction of
new metrics like the aspect ratio.

Inspired by focal loss, which concentrates model attention on challenging samples,
improving classification performance, we introduce a monotonic focusing coefficient Lγ∗

IoU
for LWIoUv1:

LWIoUv2 = Lγ∗
IoU LWIoUv1, γ > 0. (15)

The introduction of the focusing coefficient alters the gradient propagation of WIoU
v2:

∂LWIoUv2

∂LIoU
= Lγ∗

IoU
∂LWIoUv1

∂LIoU
, γ > 0. (16)

It is noteworthy that the gradient gain r = Lγ∗
IoU ∈ [0, 1]. During model training, as

LIoU decreases, the gradient gain also diminishes, resulting in diminished efficiency in the
final training phases. Thus, we introduce the average of LIoU as a normalization factor:

LWIoUv2 = (
Lγ∗

IoU

LIoU
)γLWIoUv1. (17)
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Here, LIoU denotes the exponentially weighted momentum-weighted moving average
with parameter m. Dynamic adjusting of the normalization parameter maintains the

gradient improvement r = (
Lγ∗

IoU
LIoU

)γ on a more elevated perspective overall, thus dealing

with the challenge of reduced convergence speed in later training phases.
The abnormality of anchor boxes is distinguished by the proportion of LIoU to LIoU :

β =
Lγ∗

IoU

LIoU
∈ [0,+∞). (18)

Lower abnormality implies a higher quality of anchor boxes. We assign smaller gra-
dient improvement to them, focusing the regression on anchor boxes of normal quality.
Additionally, assigning reduced gradient improvement to anchor boxes with higher ab-
normality effectively prevents large gradients from low-quality samples. We construct a
non-monotonic focusing coefficient apply it to WIoU v1:

LWIoUv3 = rLWIoUv1, r =
β

δαβ−δ
. (19)

Here, when β = δ, r = 1. When the abnormality of anchor boxes satisfies β = C,
where C represents a constant, the reference box will obtain the maximum gradient benefit.
Since LIoU is variable, the standards for categorizing anchor box quality are, likewise,
flexible, enabling WIoU v3 to adopt the most suitable gradient gain distribution method at
each moment.

3. Experiment and Results
3.1. Experiment Setup

The experiment was carried out on PyTorch 1.13.1, CUDA 12.0, on a system equipped
with an NVIDIA Quadro P5000 GPU and Windows 10. The model started with weights that
were previously trained provided by ImageNet, and trained with the stochastic gradient
descent algorithm for 400 epochs, with a starting learning rate of 0.01, momentum of 0.937,
and weight decay of 0.0005. Additionally, a warm-up of weights was performed for the
first 3 epochs, with a momentum of 0.8 during the warm-up phase. Furthermore, batch
sizes of 64 and 16 were used for HRSID and SAR-Ship-Dataset, respectively. All remaining
parameters were aligned with the initial YOLOv5 setup. The same settings were utilized in
every experiment that involved alternative techniques to ensure a fair comparison. Table 1
presents the setup for the experiment.

Table 1. Table of experiment setup.

Experiment Details

PyTorch Version 1.13.1
CUDA Version 12.0

GPU NVIDIA Quadro P5000
Operating System Windows 10

Batch Size (HRSID) 64
Batch Size (SAR-Ship-Dataset) 16

3.2. Dataset
3.2.1. HRSID

The HRSID dataset, annotated and publicly released by Wei et al. [35], comprises
5604 SAR image samples from Germany’s TerraSAR-X, and TanDEM, the Sentinel-1 satel-
lite of the European Space Agency that includes 16,951 annotated ship targets. Images
are divided into patches of 800 × 800 pixels and have resolutions of 0.5 m, 1 m, and 3 m.
They cover international maritime routes such as those in São Paulo, Barcelona, Chittagong,
and Bangladesh. The dataset encompasses diverse ship environments, ranging from good



Remote Sens. 2024, 16, 4128 12 of 23

to poor sea conditions, coastal scenes, and simple offshore scenes. Given the variety of
complex scenes in the HRSID dataset, it is appropriate for evaluating SAR detection perfor-
mance in challenging environments. The dataset creators partitioned HRSID, allocating
65% for training and 35% for validation. All experiments conducted in this paper on HRSID
were trained and tested using this partitioning.

3.2.2. SAR-Ship-Dataset

To address the issue of network training relying on large amounts of data, Wang
et al. [36] built a dataset named SAR-Ship-Dataset. The SAR-Ship-Dataset comprises
43,819 images and 59,535 ship targets, sourced from 108 Sentinel-1 images and 102 Gaofen-
3 SAR images. The images are cropped into 256 × 256 patches, with resolutions of 3 m, 5 m,
8 m, and 10 m. The original authors did not provide an official partitioning of training and
validation sets. We randomly partitioned and selected the experimental data based on a
proportion of 4:1 for the training and testing sets.

3.2.3. Analysis of the Two Datasets

The SAR-Ship-Dataset has a large scale, containing 43,819 images, including a signifi-
cant number of high-noise images, which enhances the robustness of models trained on
this dataset for real-world applications. However, the slices of the SAR-Ship-Dataset are
256 × 256 pixels, which is relatively small. This limitation may pose some challenges to
the generalization capability of the dataset during training. Because of the small slice size,
various models generally achieve high AP50 results on this dataset. However, the smaller
slice dimensions result in lower AP50-95 scores, which require higher accuracy.

In contrast, the slices of the HRSID dataset are 800 × 800 pixels, which allows for a
more substantial inclusion of land information and accommodates a variety of ship target
sizes at different scales, as well as a greater range of complex dense scenes and nearshore
environments. This larger slice size is advantageous for distinguishing multi-scale ship
targets in images and for effectively addressing nearshore conditions. Although the larger
slice size results in slightly lower AP50 scores across different models, the AP50-95 scores
of the models are relatively higher. However, it is worth noting that the HRSID dataset has
a relatively limited number of images, with only 5604 available, which could somewhat
influence the model’s overall capabilities. Additionally, the increased clarity of the HRSID
images might lead to some challenges in maintaining robustness in scenarios that involve
significant noise.

3.3. Evaluation Metrics

To evaluate ship detection systems, we utilized metrics including precision (P), recall
rate (R), F1 Score, and average precision (AP). The formulas for precision and recall are
outlined below:

P =
TP

TP + FP
, (20)

R =
TP

TP + FN
. (21)

In these formulas, true positive (TP) refers to instances correctly identified as positive,
while false positive (FP) indicates cases incorrectly classified as positive. False negative (FN)
refers to ship targets missed due to misclassification as background. Precision indicates
the likelihood of correct predictions, while recall measures the probability of successfully
identifying true positive samples.

The F1 Score assesses the balance between precision and recall and is calculated using

F1 Score = 2 × P × R
P + R

. (22)
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Because precision and recall are mutually influenced, a high precision often implies a
low recall and vice versa. Their relationship is represented by the P-R curve. The formula
for average precision (AP) is as follows:

AP =
∫ 1

0
P(R)dR. (23)

When the IoU threshold is defined as 0.5, we obtain the result for AP50. AP50-95 is
the average of AP values computed across different instances as the IoU threshold varies
between 0.5 and 0.95 in increments of 0.05.

3.4. Ablation Study

This part investigates the impact of various enhancements on object detection perfor-
mance through an ablation study conducted on two datasets: HRSID and SAR-Ship-Dataset.
Modifications to the baseline YOLOv5 model, including Wise IoU loss, shuffle attention,
and Context Decoupled Head, individually and in combination, are evaluated.

Table 2 summarizes the performance improvements achieved by different enhance-
ments on the HRSID dataset. The baseline model attains a precision of 91.4% and a recall of
86.5%, with AP50 and AP50-95 scores of 93.4% and 68.1%. Integrating Wise IoU loss slightly
improves recall and AP50 by 1.0% and 0.4%, respectively, with AP50-95 increasing by 1.4%.
Adding shuffle attention results in improved precision, recall, and AP50 by 0.8%, 0.8%, and
0.4%, while increasing AP50-95 to 69.3%. Combining both enhancements results in a further
increase in precision to 92.8% and recall to 88.0%, with notable improvements in AP50 to
94.2% and AP50-95 to 70.5%. Incorporating the Context Decoupled Head yields notable
improvements across all metrics, with precision, recall, AP50, and AP50-95 increasing by
0.9%, 1.8%, 0.7%, and 2.6%, respectively. Combining Wise IoU loss and shuffle attention
with the Context Decoupled Head further enhances performance. The highest overall
improvements are observed in the model incorporating all three enhancements, with AP50
increasing by 1.1% and AP50-95 by 4.0% compared to the baseline model.

Table 2. Detection results on HRSID.

Baseline +Wise IoU
Loss

+Shuffle
Attention

+Context
Decoupled

Head

Precision
(%) Recall (%) F1 Score

(%) AP50 (%) AP50-95
(%)

✓ 91.4 86.5 88.9 93.4 68.1
✓ ✓ 91.4 87.5 89.4 93.8 (+0.4) 69.5
✓ ✓ 92.2 87.3 89.7 93.8 (+0.4) 69.3
✓ ✓ 92.3 88.3 90.3 94.1 (+0.7) 70.7
✓ ✓ ✓ 92.8 88.0 90.4 94.2 (+0.8) 70.5
✓ ✓ ✓ 92.3 88.9 90.6 94.3 (+0.9) 71.3
✓ ✓ ✓ 92.5 88.7 90.6 94.3 (+0.9) 71.1
✓ ✓ ✓ ✓ 92.4 89.4 91.0 94.5 (+1.1) 72.1

Similar performance improvements can also be seen in results from the SAR-Ship-
Dataset in Table 3. The baseline YOLOv5 attains a precision of 90.6%, recall of 89.8%, AP50
of 94.7%, and AP50-95 of 56.1%. Adding Wise IoU loss slightly improves precision, recall,
and AP50 by 0.1%, 0.4%, and 0.3%, respectively. Incorporating shuffle attention results
in improvements across all metrics, with AP50 and AP50-95 increasing by 0.2% and 0.5%.
Context Decoupled Head integration yields significant improvements, with precision, recall,
AP50, and AP50-95 all increasing by 1.3%, 0.6%, 0.4%, and 1.0%, respectively. Combining
Wise IoU loss and shuffle attention with the Context Decoupled Head further enhances
performance. The highest overall improvements are observed in the model incorporating
all three enhancements in our proposed method, with AP50 increasing by 0.8% and AP50-95
by 2.2% in comparison to the baseline network.
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Table 3. Detection results on SAR-Ship-Dataset.

Baseline +Wise IoU
Loss

+Shuffle
Attention

+Context
Decoupled

Head

Precision
(%) Recall (%) F1 Score

(%) AP50 (%) AP50-95
(%)

✓ 90.6 89.8 90.3 94.7 56.1
✓ ✓ 90.7 90.2 90.5 95.0 (+0.3) 56.5
✓ ✓ 91.2 89.7 90.4 94.9 (+0.2) 56.6
✓ ✓ 91.9 90.4 91.1 95.1 (+0.4) 57.1
✓ ✓ ✓ 91.5 89.7 90.6 95.2 (+0.5) 56.9
✓ ✓ ✓ 92.0 90.5 91.2 95.3 (+0.6) 57.7
✓ ✓ ✓ 92.2 90.3 91.2 95.2 (+0.5) 57.4
✓ ✓ ✓ ✓ 92.5 90.5 91.5 95.5 (+0.8) 58.3

To summarize, the ablation study illustrates the cumulative effect of integrating Wise
IoU loss, shuffle attention, and the Context Decoupled Head on enhancing object detection
performance across both datasets, resulting in notable improvements in precision, recall,
and AP scores.

3.5. Comparative Experiments

The comparative experiment result on the HRSID dataset is shown in Table 4. Based
on the comparative experiments on the HRSID dataset, we focused on the performance of
various object detection models across key metrics including F1 Score, AP50, and AP50-
95. YOLOv5, serving as the baseline model, demonstrates a strong performance, with
an F1 Score of 88.9%, AP50 of 93.4%, and AP50-95 of 68.1%. In contrast, classic methods
like Faster R-CNN and SSD show comparatively less impressive results on these metrics.
YOLOv3 exhibits high performance but it is lower than the baseline model YOLOv5. The
results of CenterNet are lower than those of YOLOv3. YOLOv4 performs better than
YOLOv3, but it is still below our baseline, YOLOv5. YOLOX, another emerging method,
exhibits a notable performance for AP50, AP50-95, and F1 Score, at 89.5%, 93.1%, and 67.7%,
respectively, albeit slightly below the baseline model YOLOv5. However, our proposed
method showcases superior overall performance across all key metrics, achieving an F1
Score of 90.9%, AP50 of 94.5%, and AP50-95 of 72.1%, significantly outperforming all other
models. This underscores the significant advantages of our approach in object detection
tasks, particularly in enhancing detection accuracy, recall, and stability.

Table 4. Detection results on HRSID.

Method Precision (%) Recall (%) F1 Score (%) AP50 (%) AP50-95 (%)

Faster R-CNN 81.7 81.6 81.6 84.1 53.4
SSD 86.3 80.8 83.5 87.1 57.8
YOLOv3 91.5 85.7 88.5 92.7 66.5
CenterNet 90.1 84.3 87.1 91.4 63.1
CenterNet+SSE 91.1 86.2 88.6 93.0 65.0
YOLOv4 91.1 85.9 88.4 92.9 67.2
YOLOv5 91.4 86.4 88.9 93.4 68.1
FS-YOLO 92.0 87.1 89.5 93.7 68.6
GLC-DET 91.6 87.9 89.7 93.9 69.0
YOLOX 92.7 86.6 89.5 93.1 67.7
S2D 92.7 87.6 90.1 94.0 69.7
Proposed Method 92.4 89.4 90.9 94.5 72.1

Furthermore, our method achieves remarkable results compared to several other SAR
image processing approaches. The core metrics of CenterNet + SSE [50], such as AP50 and
AP50-95, while superior to the results of CenterNet, still fall short of those achieved by
our proposed method. Although FS-YOLO [51], GLC-DET [52], and S2D [53] have shown
improvements based on their chosen YOLO backbone, their performance still does not
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match that of our approach. Therefore, in comparison with the latest SAR object detection
methods, our method continues to deliver outstanding results.

Similarly, based on the comparative experiments on the SAR-Ship-Dataset shown
in Table 5, we focused on different object detection models’ performance metrics such as
precision, recall, F1 Score, AP50, and AP50-95. Traditional methods like Faster R-CNN and
SSD demonstrate stable performance but fall short compared to the YOLO series, achieving
an AP50 of 90.6% and 92.3%, respectively. Modern methods including CenterNet, YOLOv3,
YOLOv4, YOLOv5, and YOLOX exhibit higher performance levels, achieving an AP50
of 92.6%, 93.9%, 94.2%, 94.7%, and 94.4%, respectively. However, our proposed method
outperforms all others across all key metrics, achieving 92.5% precision, 90.3% recall, 91.5%
F1 Score, as well as an AP50 of 95.4% and AP50-95 of 58.3%, significantly surpassing all
other models. Meanwhile, the proposed method surpasses the latest SAR object detection
methods [50–53] across a range of metrics, including F1 Score, AP50, and AP50-95. This
highlights the exceptional performance of our method on the SAR-Ship-Dataset.

Table 5. Detection results on SAR-Ship-Dataset.

Method Precision (%) Recall (%) F1 Score (%) AP50 (%) AP50-95 (%)

Faster R-CNN 85.2 88.1 86.6 90.6 47.2
SSD 87.3 87.7 87.5 92.3 49.8
YOLOv3 89.8 88.7 89.2 93.9 54.4
CenterNet 88.1 87.9 88.0 92.6 54.2
CenterNet+SSE 89.3 88.4 88.8 93.5 55.1
YOLOv4 90.2 89.3 89.7 94.2 55.4
YOLOv5 90.6 89.8 90.2 94.7 56.1
FS-YOLO 91.2 90.0 90.6 94.9 56.9
GLC-DET 92.0 89.7 90.8 95.0 57.1
YOLOX 90.7 90.2 90.4 94.4 56.6
S2D 91.4 90.3 90.8 95.0 57.4
Proposed Method 92.5 90.3 91.5 95.4 58.3

3.6. Comparison Experiment Visualization

Figure 6 below compares the performance of YOLOX, baseline YOLOv5, and the
proposed algorithm in dense and complex scenes, highlighting distinct advantages of
the proposed algorithm. The first row of the images depicts results from complex dock
scenes in the HRSID dataset, where many port facilities resemble ships in shape and
exhibit strong electromagnetic scattering, leading to false alarms and missed detections.
All three algorithms incorrectly identify a ship facility as a ship, but besides that mistake,
YOLOX also detects a noise signal false alarm as a ship target, while YOLOv5 misses
a small ship in the bottom left corner. The second row shows detection in dense target
scenes within the HRSID dataset, where the proposed algorithm exhibits fewer false
alarms compared to YOLOv5 and YOLOX. In the SAR-Ship-Dataset, the advantages of the
proposed algorithm are more pronounced. In the third row, YOLOv5 and YOLOX show
severely missed detections in dense ship scenes, whereas the proposed algorithm achieves
a better detection of dense vessels. In the fourth row, amid noisy conditions, YOLOv5 as
the baseline incorrectly identifies many noise signals as ships. Lastly, in the complex port
data, the proposed algorithm demonstrates the least false alarms and mistaken detections.
This comparative demonstration has proved the effectiveness of our proposed approach to
be superior to both the baseline YOLOv5 and methods such as YOLOX.
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(a) (b) (c) (d)
Figure 6. Comparison figures of algorithm detection performance for SAR ship targets with various
algorithms: (a) column represents the ground truth (GT), (b) column shows the performance of
YOLOX algorithm, (c) column shows the performance of YOLOv5 as the baseline algorithm and
(d) column displays the effectiveness of the proposed approach. Here the green box represents the
targets of GT, while the red box represents the detected targets.

3.7. Visualization of Test Results in Complex Situations

Further tests are conducted to assess the robustness of the proposed method in complex
scenarios, including an analysis of the model’s robustness under challenging conditions.
We selected high noise situations, dense ship scenarios, and complex background cases.
The visualization of the experimental test results is shown below. From Figure 7, it can be
seen that our method achieves excellent results in complex scenarios. The first row depicts
high noise conditions; by comparing it with the ground truth, we find that our method
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can overcome high noise interference and correctly detect the targets. The second row
illustrates dense and small target situations. From the comparison of (e) and (f), we can see
that, out of 120 ship targets, we only miss one, and this missed detection was due to two
ship targets being too close to distinguish. In (g) and (h), our main errors are also due to the
excessive density of ship targets, making it difficult to discern the exact number of targets.
Additionally, some targets are too small to differentiate from floating objects in the river,
contributing to some of our errors. Nevertheless, our method successfully detects the vast
majority of targets (79 targets, with 75 correctly detected and 1 false alarm). In such overly
complex situations, corresponding optical remote sensing images are needed for assistance,
which will be a focus of our future research. The third row depicts a situation where targets
of varying sizes coexist in a complex nearshore environment, and our method successfully
and accurately detects all ship targets here. The superior performance of our method in
complex scenarios also demonstrates its strong robustness in handling such conditions.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 7. Test results displayed in complex scenarios. The first row shows high noise conditions,
where (a,c) are the ground truth, and (b,d) are the corresponding test results; the second row presents
dense and small target situations, with (e,g) as the ground truth, and (f,h) as the corresponding test
results; the third row illustrates complex scenarios with multiple scales, where (i,k) are the ground
truth, and (j,l) are the corresponding test results. Here the green and the red box represents the target
of GT and the detected target, while the yellow circle represents the missed or incorrect detection.
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4. Discussion
4.1. Attention Mechanism

The integration of shuffle attention serves as a critical enhancement in feature represen-
tation. Unlike traditional attention mechanisms that often prioritize spatial or channel-wise
features in isolation, shuffle attention dynamically adjusts the attention weights across
both dimensions simultaneously. This dual approach enables the model to effectively cap-
ture contextual relationships among objects and their surroundings, which is particularly
beneficial in cluttered environments. By concentrating on relevant spatial features while
maintaining a holistic view of the input data, the model’s ability to infer object categories
and their contextual significance is markedly improved. Furthermore, the adaptability of
shuffle attention to multi-scale objects allows for a more nuanced understanding of features,
thereby enhancing the model’s overall performance across varying object sizes.

In this part, we conducted extensive experiments applying various attention mech-
anisms on the HRSID dataset and the SAR-Ship-Dataset, analyzing their effectiveness in
object detection tasks.

Concerning the HRSID dataset, the comparative experiment results are shown in
Table 6. Among the various attention mechanisms examined, shuffle attention demon-
strated outstanding performance in enhancing recall, getting precision and recall rates of
92.4% and 89.4%, along with an F1 Score of 90.9%. Furthermore, it attained high levels of
94.5% and 72.1% on the AP50 and AP50-95 evaluation metrics, respectively. These results
indicate that, compared with many other attention mechanisms, shuffle attention effectively
elevates the network’s capabilities to identify ship targets in object detection tasks.

Table 6. Detection results on HRSID.

Method Precision (%) Recall (%) F1 Score (%) AP50 (%) AP50-95 (%)

+SE 93.7 87.4 90.4 94.1 71.5
+CBAM 92.7 87.7 90.1 94.2 71.2
+ECA 93.1 87.6 90.3 94.1 71.1
+Coordinate attention 93.2 86.9 89.9 94.3 71.3
+sim attention 92.5 87.2 89.8 94.1 70.9
+shuffle attention 92.4 89.4 90.9 94.5 72.1

Apart from shuffle attention, other attention mechanisms exhibited relatively weaker
performances in recall. For instance, SE, CBAM, and Efficient Channel Attention (ECA)
achieved recall rates of 87.4%, 87.7%, and 87.6%, respectively, much lower than shuffle
attention’s 89.4%. Additionally, coordinate attention and sim attention achieved recall rates
of 86.9% and 87.2%, respectively, also lower than shuffle attention. Besides recall, other
performance metrics (F1 Score, AP50, and AP50-95) also failed to surpass shuffle attention.
Specifically, shuffle attention achieved relatively high levels of 90.9%, 94.5%, and 72.1% on
the F1 Score, AP50, and AP50-95, respectively. In comparison, the performance of other
attention mechanisms on these metrics was slightly inferior. For instance, the performance
of SE, CBAM, and ECA on these metrics were 90.4%, 90.1%, and 90.3% (F1 Score), 94.1%,
94.2%, and 94.1% (AP50), and 71.5%, 71.2%, and 71.1% (AP50-95), respectively. Although
their performance remains respectable, they cannot match the overall performance of
shuffle attention. Thus, shuffle attention not only excels in recall rate but also achieves high
levels on other crucial performance metrics, further demonstrating its superiority in object
detection tasks.

Furthermore, the results in Table 7 indicate that shuffle attention also performs op-
timally on the SAR-Ship-Dataset. It surpasses other attention mechanisms in key perfor-
mance indicators such as precision (92.5%), recall (90.5%), F1 Score (91.5%), AP50 (95.5%),
and AP50-95 (58.3%). This underscores the significant advantage of shuffle attention in
object detection tasks, particularly in improving recall and overall performance.
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Table 7. Detection results on SAR-Ship-Dataset.

Method Precision (%) Recall (%) F1 Score (%) AP50 (%) AP50-95 (%)

+SE 91.7 89.6 90.6 94.8 56.7
+CBAM 91.8 89.6 90.7 94.9 57.3
+ECA 91.9 89.8 90.8 95.1 56.7
+Coordinate attention 91.2 90.1 90.7 94.8 56.4
+Sim attention 92.3 90.2 91.2 95.2 58.0
+Shuffle attention 92.5 90.5 91.5 95.5 58.3

Consequently, we conclude that shuffle attention is the optimal choice among many
attention mechanisms for achieving object detection on the SAR-Ship-Dataset.

4.2. Decoupled Head

In object detection, classification and localization are two main sub-tasks, but there
is an inconsistency in their requirements for feature context. The localization task focuses
more on boundary features to accurately regress bounding boxes, while the classification
task tends to rely on a rich semantic context. Existing methods typically employ decoupled
heads to address this issue, attempting to learn different feature contexts for each task.
However, these decoupled heads still operate based on the same input features, resulting
in an unsatisfactory balance between classification and localization. Specifically, bounding
box regression requires more texture details and edge information to precisely locate the
object’s boundaries, whereas the classification task necessitates a stronger semantic context
to identify the object’s category.

This situation means that traditional decoupled head detectors cannot effectively
meet the demands of these two tasks because they still share the same input feature maps,
limiting their ability to select task-specific contexts. Although traditional decoupling
designs achieve parameter decoupling by learning independent parameters, they still fail
to fully resolve the issue, as the semantic context is largely determined by the shared
input features. This leads to the phenomenon of feature redundancy in the classification
task, while the localization task relies on more detailed texture and boundary information,
making it difficult to achieve accurate corner predictions.

In order to demonstrate that designing decoupled heads based on different contextual
semantics for classification and regression branches achieves better target detection results
in SAR ship target detection than simple decoupled heads, we conducted comparative
experiments using the simple decoupled head and Context Decoupled head.

The Tables 8 and 9 below present the performance metrics of the two different heads,
simple decoupled head and Context Decoupled head, on the HRSID and SAR-Ship-Datasets.
These methods were evaluated based on precision (Pre), recall (Rec), AP50, AP50-95, and
Giga Floating-point Operations (GFLOPs).

Table 8. Comparative detection result on HRSID.

Method Pre (%) Rec (%) AP50 (%) AP50-95 (%) GFLOPs

+simple decoupled head 91.6 88.4 94.2 70.1 7.1
+Context Decoupled head 92.4 89.4 94.5 72.1 9.8

Table 9. Comparative detection result on SAR-Ship-Dataset.

Method Pre (%) Rec (%) AP50 (%) AP50-95 (%) GFLOPs

+simple decoupled head 91.3 90.2 94.8 57.1 7.1
+Context Decoupled head 92.5 90.5 95.5 58.3 9.8

For the simple decoupled head method, on the HRSID dataset, its precision is 91.6%, re-
call is 88.4%, AP50 is 94.2%, AP50-95 is 70.1%, and computational complexity is 7.1 GFLOPs.
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On the SAR-Ship-Dataset, its precision is 91.3%, recall is 90.2%, AP50 is 94.8%, and AP50-95
is 57.1%, with computational complexity remaining at 7.1 GFLOPs. In contrast, the Context
Decoupled head method demonstrates superior performance on both datasets. On the
HRSID dataset, its precision is 92.4%, rate of recall is 89.4%, AP50 is 94.5%, AP50-95 is 72.1%,
and computational complexity is 9.8 GFLOPs. On the SAR-Ship-Dataset, its precision is
92.5%, recall is 90.5%, AP50 is 95.5%, and AP50-95 is 58.3%, with computational complexity
still at 9.8 GFLOPs.

These results show that the Context Decoupled head approach outperforms the simple
decoupled head method regarding precision, recall, and AP on both datasets, albeit with
slightly higher computational complexity.

4.3. Wise IoU Loss

The Wise IoU loss introduces a sophisticated mechanism to mitigate the negative
impact of low-quality samples during training. Traditional loss functions often penal-
ize the model heavily for geometric discrepancies, which can disproportionately affect
generalization, especially in datasets with noisy annotations. By employing a distance
attention mechanism alongside a dynamic focus mechanism, our loss function alleviates the
penalty on well-aligned anchor boxes while downplaying the influence of poorly aligned
ones. This novel approach not only fosters better training dynamics but also enhances
the model’s robustness against false positives and negatives. The result is a model that
excels in precise localization, particularly in challenging scenarios where object overlap
and occlusion are prevalent.

The comparison experiments of the loss functions on HRSID and SAR-Ship-Dataset
are shown in Table 10 and Table 11, respectively.

The loss function used in the original baseline method is the CIoU loss function,
while the loss function used in this paper is the Wise IoU loss. We conducted comparative
experiments on the HRSID and SAR-Ship-Dataset, demonstrating the superiority of the
Wise IoU algorithm.

Table 10. Detection results on HRSID.

Method Precision (%) Recall (%) F1 Score (%) AP50 (%) AP50-95 (%)

Baseline (CIoU Loss) 91.4 86.5 88.9 93.4 68.1
+Wise IoU Loss 91.4 87.5 89.4 93.8 (+0.4) 69.5

Table 11. Detection results on SAR-Ship-Dataset.

Method Precision (%) Recall (%) F1 Score (%) AP50 (%) AP50-95 (%)

Baseline (CIoU Loss) 90.6 89.8 90.3 94.7 56.1
+Wise IoU Loss 90.7 90.2 90.5 95.0 (+0.3) 56.5

The results from the experiments clearly demonstrate that the use of Wise IoU leads to
improvements in various aspects of object detection on the HRSID and SAR-Ship-Dataset.

5. Conclusions

To sum up, this work introduces an innovative approach for ship detection in SAR
imagery, addressing key challenges faced by existing methods. The proposed SAR Ship
Context Decoupled Head leverages both positioning and semantic information, enhancing
the network’s ability to recognize multi-scale objects with greater accuracy. Also by incorpo-
rating a shuffle attention module and a Wise IoU loss function, the proposed method attains
superior performance in object detection tasks, as demonstrated through extensive exper-
iments on benchmark datasets. These contributions represent significant advancements
in SAR-based ship detection algorithms, with promising implications for applications in
maritime surveillance and security. While our method demonstrates promising results,
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it is worth noting that our proposed method comes with a higher computational cost. In
later studies, we will delve into more lightweight network designs to mitigate this issue.
Additionally, considerations for deploying the network on hardware devices should also
be incorporated into future research efforts.
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