Identification of Global Extended Pseudo Invariant Calibration Sites (EPICS) and Their Validation Using Radiometric Calibration Network (RadCalNet)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Classification of Pixels on a Global Scale
2.1.1. Data Cube Generation and Clustering Process
2.1.2. Classification Using a K-Means Clustering Algorithm
2.2. Validation of EPICS
2.2.1. Study Areas
RadCalNet Gobabeb Site
GONA-EPICS
2.2.2. Sensors Used for Validation
Landsat 8 and Landsat 9
Sentinel-2A and Sentinel-2B
RadCalNet
2.2.3. Data Processing for Validation
TOA Reflectance Retrieval
- Landsat 8 and Landsat 9
- Sentinel-2A and Sentinel-2B
- RadCalNet
Cloud Filtering
BRDF Normalization
2.2.4. Validation Methodology
Statistical Analysis for Validation
- Reduced Chi Square Test
- Welch’s t-Test
- Modified Savitzky–Golay (MSG) Filter
- GONA Cluster Uncertainty
3. Results and Analysis
3.1. Classification Results
Cluster 13-GTS (Global Temporally Stable) vs. Cluster 13-G (Original Global Class)
3.2. Validation of EPICS Results
3.2.1. GONA-EPICS
3.2.2. RCN TOA Reflectance
3.2.3. Statistical Analysis Results
GONA-EPICS vs. RadCalNet Uncertainty
Reduced Chi-Square Results
Welch’s t-Test Results
Difference Between the RCN-GONA and the GONA-EPICS
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Czapla-Myers, J.S.; Thome, K.J.; Anderson, N.J.; Leigh, L.M.; Pinto, C.T.; Wenny, B.N. The Ground-Based Absolute Radiometric Calibration of the Landsat 9 Operational Land Imager. Remote Sens. 2024, 16, 1101. [Google Scholar] [CrossRef]
- Xiong, X.; Angal, A.; Chang, T.; Chiang, K.; Lei, N.; Li, Y.; Sun, J.; Twedt, K.; Wu, A. MODIS and VIIRS calibration and characterization in support of producing long-term high-quality data products. Remote Sens. 2020, 12, 3167. [Google Scholar] [CrossRef]
- Gascon, F.; Cadau, E.; Colin, O.; Hoersch, B.; Isola, C.; Fernández, B.L.; Martimort, P. Copernicus Sentinel-2 mission: Products, algorithms and Cal/Val. In Proceedings of the Earth Observing Systems XIX, San Diego, CA, USA, 18–20 August 2014; pp. 455–463. [Google Scholar]
- Thorne, K.; Markharn, B.; Barker, P.S.; Biggar, S. Radiometric calibration of Landsat. Photogramm. Eng. Remote Sens. 1997, 63, 853–858. [Google Scholar]
- Markham, B.; Barsi, J.; Kvaran, G.; Ong, L.; Kaita, E.; Biggar, S.; Czapla-Myers, J.; Mishra, N.; Helder, D. Landsat-8 operational land imager radiometric calibration and stability. Remote Sens. 2014, 6, 12275–12308. [Google Scholar] [CrossRef]
- Kaewmanee, M. Pseudo Invariant Calibration Sites: PICS Evolution. 2018. Available online: https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1296&context=calcon (accessed on 15 January 2022).
- Bacour, C.; Briottet, X.; Bréon, F.-M.; Viallefont-Robinet, F.; Bouvet, M. Revisiting Pseudo Invariant Calibration Sites (PICS) over sand deserts for vicarious calibration of optical imagers at 20 km and 100 km scales. Remote Sens. 2019, 11, 1166. [Google Scholar] [CrossRef]
- Helder, D.; Thome, K.J.; Mishra, N.; Chander, G.; Xiong, X.; Angal, A.; Choi, T. Absolute radiometric calibration of Landsat using a pseudo invariant calibration site. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1360–1369. [Google Scholar] [CrossRef]
- Teillet, P.; Barsi, J.; Chander, G.; Thome, K. Prime candidate earth targets for the post-launch radiometric calibration of space-based optical imaging instruments. In Proceedings of the Earth Observing Systems XII, San Diego, CA, USA, 26–28 August 2007; pp. 304–315. [Google Scholar]
- Angal, A.; Xiong, X.; Choi, T.; Chander, G.; Wu, A. Using the Sonoran and Libyan Desert test sites to monitor the temporal stability of reflective solar bands for Landsat 7 enhanced thematic mapper plus and Terra moderate resolution imaging spectroradiometer sensors. J. Appl. Remote Sens. 2010, 4, 043525. [Google Scholar]
- Khadka, N.; Teixeira Pinto, C.; Leigh, L. Detection of change points in pseudo-invariant calibration sites time series using multi-sensor satellite imagery. Remote Sens. 2021, 13, 2079. [Google Scholar] [CrossRef]
- Tuli, F.T.Z.; Pinto, C.T.; Angal, A.; Xiong, X.; Helder, D. New approach for temporal stability evaluation of pseudo-invariant calibration sites (PICS). Remote Sens. 2019, 11, 1502. [Google Scholar] [CrossRef]
- Markham, B.L.; Barker, J.L.; Barsi, J.A.; Kaita, E.; Thome, K.J.; Helder, D.L.; Palluconi, F.D.; Schott, J.R.; Scaramuzza, P. Landsat-7 ETM+ radiometric stability and absolute calibration. In Proceedings of the Sensors, Systems, and Next-Generation Satellites VI, Pelagia, Crete, 23–27 September 2002; pp. 308–318. [Google Scholar]
- Shrestha, M.; Leigh, L.; Helder, D. Classification of north Africa for use as an extended pseudo invariant calibration sites (EPICS) for radiometric calibration and stability monitoring of optical satellite sensors. Remote Sens. 2019, 11, 875. [Google Scholar] [CrossRef]
- Hasan, M.N.; Shrestha, M.; Leigh, L.; Helder, D. Evaluation of an Extended PICS (EPICS) for calibration and stability monitoring of optical satellite sensors. Remote Sens. 2019, 11, 1755. [Google Scholar] [CrossRef]
- Fajardo Rueda, J.; Leigh, L.; Teixeira Pinto, C.; Kaewmanee, M.; Helder, D. Classification and Evaluation of Extended PICS (EPICS) on a Global Scale for Calibration and Stability Monitoring of Optical Satellite Sensors. Remote Sens. 2021, 13, 3350. [Google Scholar] [CrossRef]
- Fajardo Rueda, J.; Leigh, L.; Pinto, C.T. A Global Mosaic of Temporally Stable Pixels for Radiometric Calibration of Optical Satellite Sensors Using Landsat 8. Remote Sens. 2024, 16, 2437. [Google Scholar] [CrossRef]
- Czapla-Myers, J.; McCorkel, J.; Anderson, N.; Thome, K.; Biggar, S.; Helder, D.; Aaron, D.; Leigh, L.; Mishra, N. The ground-based absolute radiometric calibration of Landsat 8 OLI. Remote Sens. 2015, 7, 600–626. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Bouvet, M.; Thome, K.; Berthelot, B.; Bialek, A.; Czapla-Myers, J.; Fox, N.P.; Goryl, P.; Henry, P.; Ma, L.; Marcq, S. RadCalNet: A radiometric calibration network for Earth observing imagers operating in the visible to shortwave infrared spectral range. Remote Sens. 2019, 11, 2401. [Google Scholar] [CrossRef]
- Jing, X.; Leigh, L.; Teixeira Pinto, C.; Helder, D. Evaluation of RadCalNet output data using Landsat 7, Landsat 8, Sentinel 2A, and Sentinel 2B sensors. Remote Sens. 2019, 11, 541. [Google Scholar] [CrossRef]
- Marcq, S.; Meygret, A.; Bouvet, M.; Fox, N.; Greenwell, C.; Scott, B.; Berthelot, B.; Besson, B.; Guilleminot, N.; Damiri, B. New RadCalNet site at Gobabeb, Namibia: Installation of the instrumentation and first satellite calibration results. In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 6444–6447. [Google Scholar]
- RadCalNet. RadCalNet Quick Start Guide. Available online: https://www.radcalnet.org/resources/RadCalNetQuickstartGuide_20180702.pdf (accessed on 18 June 2023).
- Acharya, T.D.; Yang, I. Exploring landsat 8. Int. J. IT Eng. Appl. Sci. Res. (IJIEASR) 2015, 4, 4–10. [Google Scholar]
- Barsi, J.A.; Lee, K.; Kvaran, G.; Markham, B.L.; Pedelty, J.A. The spectral response of the Landsat-8 operational land imager. Remote Sens. 2014, 6, 10232–10251. [Google Scholar] [CrossRef]
- Knight, E.J.; Kvaran, G. Landsat-8 operational land imager design, characterization and performance. Remote Sens. 2014, 6, 10286–10305. [Google Scholar] [CrossRef]
- Gross, G.; Helder, D.; Begeman, C.; Leigh, L.; Kaewmanee, M.; Shah, R. Initial Cross-Calibration of Landsat 8 and Landsat 9 Using the simultaneous underfly event. Remote Sens. 2022, 14, 2418. [Google Scholar] [CrossRef]
- Masek, J.G.; Wulder, M.A.; Markham, B.; McCorkel, J.; Crawford, C.J.; Storey, J.; Jenstrom, D.T. Landsat 9: Empowering open science and applications through continuity. Remote Sens. Environ. 2020, 248, 111968. [Google Scholar] [CrossRef]
- Revel, C.; Lonjou, V.; Marcq, S.; Desjardins, C.; Fougnie, B.; Coppolani-Delle Luche, C.; Guilleminot, N.; Lacamp, A.-S.; Lourme, E.; Miquel, C. Sentinel-2A and 2B absolute calibration monitoring. Eur. J. Remote Sens. 2019, 52, 122–137. [Google Scholar] [CrossRef]
- Gascon, F.; Bouzinac, C.; Thépaut, O.; Jung, M.; Francesconi, B.; Louis, J.; Lonjou, V.; Lafrance, B.; Massera, S.; Gaudel-Vacaresse, A. Copernicus Sentinel-2A calibration and products validation status. Remote Sens. 2017, 9, 584. [Google Scholar] [CrossRef]
- RadCalNet. RadCalNet site questionnaire: QA4EO-WGCV-RadCalNet-GONA-Q-v2. 2022. [Google Scholar]
- USGS. Landsat 8 (L8) Data Users Handbook. Available online: https://www.usgs.gov/media/files/landsat-8-data-users-handbook (accessed on 1 June 2024).
- Farhad, M.M.; Kaewmanee, M.; Leigh, L.; Helder, D. Radiometric cross calibration and validation using 4 angle BRDF model between landsat 8 and sentinel 2A. Remote Sens. 2020, 12, 806. [Google Scholar] [CrossRef]
- Pinto, C.T. Uncertainty Evaluation for In-Flight Radiometric Calibration of Earth Observation Sensors; Instituto Nacional de Pesquisas Espaciais (INPE): San Jose Dos Campos, Brazil, 2016. [Google Scholar]
- Bevington, P.R.; Robinson, D.K. Data Reduction and Error Analysis; McGraw Hill: New York, NY, USA, 2003. [Google Scholar]
- Lu, Z.; Yuan, K.-H. Welch’st test. Encycl. Res. Des. 2010, 1, 1620–1623. [Google Scholar]
- Savitzky, A.; Golay, M.J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- TaubenbockTaubenbock, H.; Habermeyer, M.; Roth, A.; Dech, S. Automated allocation of highly structured urban areas in homogeneous zones from remote sensing data by Savitzky–Golay filtering and curve sketching. IEEE Geosci. Remote Sens. Lett. 2006, 3, 532–536. [Google Scholar] [CrossRef]
- Shah, R.; Leigh, L.; Kaewmanee, M.; Pinto, C.T. Validation of Expanded Trend-to-Trend Cross-Calibration Technique and Its Application to Global Scale. Remote Sens. 2022, 14, 6216. [Google Scholar] [CrossRef]
- JCGM 100:2008; Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement. International Organization for Standardization: Geneva, Switzerland, 2008; Volume 50, p. 134.
- Karki, P.B.; Kaewmanee, M.; Leigh, L.; Pinto, C.T. The Development of Dark Hyperspectral Absolute Calibration Model Using Extended Pseudo Invariant Calibration Sites at a Global Scale: Dark EPICS-Global. Remote Sens. 2023, 15, 2141. [Google Scholar] [CrossRef]
Day of the Cycle | Path | Rows | Day of the Cycle | Path | Rows |
---|---|---|---|---|---|
1 | 37 | 38, 41 | 10 | 173 | 47 |
190 | 43, 44 | 189 | 46, 48, 48 | ||
2 | 181 | 73 | 205 | 43 | |
3 | 172 | 39 | 11 | 43 | 33 |
188 | 45, 47 | 100 | 80, 82 | ||
204 | 43, 46, 47 | 132 | 32 | ||
4 | 99 | 79 | 164 | 42 | |
163 | 37, 43 | 180 | 75 | ||
179 | 42, 45, 76 | 196 | 41, 43 | ||
5 | 33 | 38 | 12 | 171 | 41 |
170 | 39, 42 | 187 | 43 | ||
202 | 44, 46 | 203 | 43, 46 | ||
6 | 40 | 33 | 13 | 162 | 48 |
177 | 39 | 178 | 39, 41, 79 | ||
193 | 37 | 194 | 41 | ||
7 | 152 | 43 | 14 | 185 | 43 |
168 | 51 | 201 | 43, 47 | ||
184 | 43 | 233 | 77 | ||
200 | 47, 48 | ||||
8 | 38 | 37, 38 | 15 | 39 | 37 |
127 | 32 | 128 | 31, 32 | ||
159 | 40, 46 | 160 | 47 | ||
175 | 46 | 176 | 40 | ||
191 | 37, 42 | 192 | 37, 42, 44 | ||
9 | 166 | 41 | 16 | 30 | 38 |
182 | 46 | 167 | 40, 51 | ||
198 | 42 | 183 | 46, 48 |
CA | Blue | Green | Red | NIR | SWIR1 | SWIR2 | |
---|---|---|---|---|---|---|---|
Mean TOA reflectance | 0.20 | 0.20 | 0.23 | 0.30 | 0.36 | 0.42 | 0.35 |
Temporal std. | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 |
CV (%) | 5.7 | 6.3 | 5.3 | 4.8 | 3.9 | 4.4 | 6.1 |
CA | Blue | Green | Red | NIR | SWIR1 | SWIR2 | |
---|---|---|---|---|---|---|---|
Mean TOA reflectance | 0.19 | 0.19 | 0.23 | 0.31 | 0.35 | 0.42 | 0.35 |
Temporal std. | 0.009 | 0.009 | 0.012 | 0.015 | 0.016 | 0.017 | 0.017 |
CV(%) | 4.8 | 4.7 | 5.1 | 5.0 | 4.4 | 4.1 | 4.7 |
Sensor | CA | Blue | Green | Red | NIR | SWIR1 | SWIR2 | |
---|---|---|---|---|---|---|---|---|
Temporal std. | L8 | 5.4 | 5.9 | 4.9 | 4.2 | 3.5 | 3.9 | 5.5 |
L9 | 5.5 | 5.9 | 5.0 | 4.3 | 3.6 | 4.1 | 5.6 | |
S2A | 6.2 | 6.4 | 5.4 | 4.7 | 3.7 | 4.3 | 5.3 | |
S2B | 5.9 | 5.9 | 4.5 | 4.2 | 2.9 | 2.6 | 4.4 | |
BRDF | L8 | 5.3 | 5.8 | 4.8 | 4.3 | 3.4 | 4.0 | 5.6 |
L9 | 5.3 | 5.8 | 4.9 | 4.4 | 3.5 | 4.2 | 5.8 | |
S2A | 6.1 | 6.3 | 5.4 | 4.9 | 3.7 | 4.5 | 5.4 | |
S2B | 5.6 | 5.7 | 4.5 | 4.4 | 2.9 | 2.6 | 4.6 | |
Sensor’s unc. | L8 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 |
L9 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | |
S2A | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | |
S2B | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | |
Total uncertainty | L8 | 8.1 | 8.8 | 7.5 | 6.7 | 5.7 | 6.4 | 8.4 |
L9 | 8.2 | 8.8 | 7.7 | 6.9 | 5.9 | 6.6 | 8.6 | |
S2A | 10.0 | 10.3 | 9.1 | 8.4 | 7.3 | 8.0 | 9.1 | |
S2B | 9.5 | 9.6 | 8.0 | 7.8 | 6.5 | 6.2 | 8.1 |
Sensor | p-Value | ||||||
---|---|---|---|---|---|---|---|
Band | CA | Blue | Green | Red | NIR | SWIR1 | SWIR2 |
L8 | 0.987 | 0.925 | 0.764 | 0.467 | 0.992 | 0.926 | 0.968 |
L9 | 0.986 | 0.953 | 0.770 | 0.589 | 0.904 | 0.979 | 0.822 |
S2A | 0.856 | 0.874 | 0.836 | 0.734 | 0.993 | 0.926 | 0.783 |
S2B | 0.842 | 0.955 | 0.744 | 0.688 | 0.961 | 0.975 | 0.817 |
Sensor | CA | Blue | Green | Red | NIR | SWIR1 | SWIR2 | |
---|---|---|---|---|---|---|---|---|
ME | L8 | −0.0003 | 0.001 | 0.006 | 0.017 | 0.001 | 0.004 | −0.0005 |
L9 | 0.001 | 0.003 | 0.008 | 0.017 | 0.003 | 0.005 | −0.005 | |
S2A | −0.004 | −0.004 | 0.005 | 0.010 | −0.0002 | −0.002 | −0.008 | |
S2B | 0.002 | −0.0001 | 0.006 | 0.010 | −0.003 | −0.001 | −0.006 | |
MAE | L8 | 0.009 | 0.010 | 0.011 | 0.018 | 0.011 | 0.014 | 0.018 |
L9 | 0.009 | 0.010 | 0.012 | 0.018 | 0.012 | 0.014 | 0.019 | |
S2A | 0.011 | 0.011 | 0.011 | 0.014 | 0.011 | 0.016 | 0.018 | |
S2B | 0.009 | 0.009 | 0.009 | 0.013 | 0.009 | 0.011 | 0.015 | |
RMSE | L8 | 0.011 | 0.012 | 0.014 | 0.022 | 0.015 | 0.019 | 0.022 |
L9 | 0.011 | 0.013 | 0.015 | 0.022 | 0.015 | 0.019 | 0.023 | |
SA | 0.014 | 0.014 | 0.013 | 0.018 | 0.015 | 0.020 | 0.022 | |
S2B | 0.012 | 0.011 | 0.011 | 0.016 | 0.012 | 0.013 | 0.019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fajardo Rueda, J.; Leigh, L.; Teixeira Pinto, C. Identification of Global Extended Pseudo Invariant Calibration Sites (EPICS) and Their Validation Using Radiometric Calibration Network (RadCalNet). Remote Sens. 2024, 16, 4129. https://doi.org/10.3390/rs16224129
Fajardo Rueda J, Leigh L, Teixeira Pinto C. Identification of Global Extended Pseudo Invariant Calibration Sites (EPICS) and Their Validation Using Radiometric Calibration Network (RadCalNet). Remote Sensing. 2024; 16(22):4129. https://doi.org/10.3390/rs16224129
Chicago/Turabian StyleFajardo Rueda, Juliana, Larry Leigh, and Cibele Teixeira Pinto. 2024. "Identification of Global Extended Pseudo Invariant Calibration Sites (EPICS) and Their Validation Using Radiometric Calibration Network (RadCalNet)" Remote Sensing 16, no. 22: 4129. https://doi.org/10.3390/rs16224129
APA StyleFajardo Rueda, J., Leigh, L., & Teixeira Pinto, C. (2024). Identification of Global Extended Pseudo Invariant Calibration Sites (EPICS) and Their Validation Using Radiometric Calibration Network (RadCalNet). Remote Sensing, 16(22), 4129. https://doi.org/10.3390/rs16224129