Autonomous Extraction Technology for Aquaculture Ponds in Complex Geological Environments Based on Multispectral Feature Fusion of Medium-Resolution Remote Sensing Imagery
Abstract
:1. Introduction
- To address the interference of extraneous features such as saltwater fields within some aquaculture pond areas, we analyzed the spectral differences between saltwater pans and aquaculture ponds across different seasons. This analysis led to the development of the DIAS. By incorporating the DIAS as a new band in remote sensing imagery, we constructed the CHN-LN4-ISAPs-9 dataset, which encompasses ISAPs across four coastal aquaculture areas in Liaoning Province, China.
- A MEA-FM was designed, which is capable of adaptively selecting channel receptive fields of various scales, thoroughly mixing information between channels, and capturing multiscale spatial information.
- A novel adaptive attention U-Net (MAFU-Net) was proposed for the segmentation of independent aquaculture ponds from medium-resolution remote sensing imagery, achieving satisfactory results compared with traditional classic segmentation networks.
2. Materials
2.1. Study Area
2.2. Data Used
- Visible light bands: blue (B2)—490 nm, green (B3)—560 nm, and red (B4)—665 nm;
- Near-infrared bands: NIR (B8)—842 nm;
- Shortwave infrared bands: SWIR1 (B11)—1610 nm and SWIR2 (B12)—2190 nm;
- Other bands: B1—443 nm, B5—705 nm, B6—740 nm, B7—783 nm, B8A—865 nm, B9—935 nm, and B10—1375 nm.
3. Methodology
3.1. Difference Index for Saltwater Field Aquaculture Areas (DIAS)
3.2. Dataset Construction
3.3. Adaptive Attention U-Shaped Network (MAFU-Net)
3.4. Median-Enhanced Adaptive Fusion Module (MEA-FM)
3.4.1. Channel Self-Attention Module
3.4.2. Multiscale Spatial Attention Module
3.5. Loss Function
4. Experiments
4.1. Experimental Setup
4.2. Evaluation Metrics
4.3. Ablation Experiments
4.4. Comparative Experiments
5. Discussion
5.1. Different Band Combinations and Their Impacts on the Experimental Results
- Group 1 includes the B2, B3, and B4 bands (visible light) from Sentinel-2 imagery.
- Group 2 includes the B1, B2, B3, B4, B5, B6, B7, B8, B8a, B9, B10, B11, and B12 bands from Sentinel-2 imagery.
- Group 3 includes the B2, B3, B4, B8, B11, and B12 bands from Sentinel-2 imagery.
- Group 4 includes the B2, B3, and B4 bands from Sentinel-2 imagery, as well as the NDWI, EWI, and DIAS index bands.
- Group 5 includes the B1, B2, B3, B4, B5, B6, B7, B8, B8A, B9, B10, B11, and B12 bands from Sentinel-2 imagery, as well as the NDWI, EWI, and DIAS index bands.
- Group 6 includes the B2, B3, B4, B8, B11, and B12 bands from Sentinel-2 imagery, with the NDWI, EWI, and DIAS index bands.
5.2. Application of the MAFU-Net Model
5.3. Limitations of the Method and Future Directions for Improvement
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ISAPs | Individually separable aquaculture ponds |
MEA-FM | Median augmented adaptive fusion module |
MAFU-Net | Adaptive attention U-Net |
DIAS | Difference index for saltwater field aquaculture areas |
References
- Bank, M.S.; Metian, M.; Swarzenski, P.W. Defining seafood safety in the Anthropocene. Environ. Sci. Technol. 2020, 54, 8506–8508. [Google Scholar] [CrossRef]
- Béné, C.; Barange, M.; Subasinghe, R.; Pinstrup-Andersen, P.; Merino, G.; Hemre, G.I.; Williams, M. Feeding 9 billion by 2050–Putting fish back on the menu. Food Secur. 2015, 7, 261–274. [Google Scholar] [CrossRef]
- Jiang, Q.; Bhattarai, N.; Pahlow, M.; Xu, Z. Environmental sustainability and footprints of global aquaculture. Resour. Conserv. Recycl. 2022, 180, 106183. [Google Scholar] [CrossRef]
- Action, S. World fisheries and aquaculture. Food Agric. Organ. 2020, 2020, 1–244. [Google Scholar]
- Xu, Z.; Wu, S.; Christie, P.; Gao, X.; Xu, J.; Xu, S.; Liang, P. Impacts of estuarine dissolved organic matter and suspended particles from fish farming on the biogeochemical cycling of mercury in Zhoushan island, eastern China Sea. Sci. Total Environ. 2020, 705, 135921. [Google Scholar] [CrossRef]
- Zhang, H.; Xiao, Y.; Deng, Y. Island ecosystem evaluation and sustainable development strategies: A case study of the Zhoushan Archipelago. Glob. Ecol. Conserv. 2021, 28, e01603. [Google Scholar] [CrossRef]
- Prasad, K.A.; Ottinger, M.; Wei, C.; Leinenkugel, P. Assessment of coastal aquaculture for India from Sentinel-1 SAR time series. Remote Sens. 2019, 11, 357. [Google Scholar] [CrossRef]
- Wang, D.; Wan, B.; Liu, J.; Su, Y.; Guo, Q.; Qiu, P.; Wu, X. Estimating aboveground biomass of the mangrove forests on northeast Hainan Island in China using an upscaling method from field plots, UAV-LiDAR data and Sentinel-2 imagery. Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 101986. [Google Scholar] [CrossRef]
- Higgins, S.; Overeem, I.; Tanaka, A.; Syvitski, J.P. Land subsidence at aquaculture facilities in the Yellow River delta, China. Geophys. Res. Lett. 2013, 40, 3898–3902. [Google Scholar] [CrossRef]
- Zhou, S.; Zhu, H.; Huang, S.; Zhou, J.; Zhang, S.; Wang, C. Biomagnification and risk assessment of polychlorinated biphenyls in food web components from Zhoushan fishing ground, China. Mar. Pollut. Bull. 2019, 142, 613–619. [Google Scholar] [CrossRef]
- Macusi, E.D.; Estor, D.E.P.; Borazon, E.Q.; Clapano, M.B.; Santos, M.D. Environmental and socioeconomic impacts of shrimp farming in the Philippines: A critical analysis using PRISMA. Sustainability 2022, 14, 2977. [Google Scholar] [CrossRef]
- Hall, G.M. Impact of climate change on aquaculture: The need for alternative feed components. Turk. J. Fish. Aquat. Sci. 2015, 15, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Barange, M.; Bahri, T.; Beveridge, M.; Cochrane, K.L.; Funge-Smith, S.; Poulain, F. Impacts of climate change on fisheries and aquaculture. United Nations’ Food Agric. Organ. 2018, 12, 628–635. [Google Scholar]
- Ahmed, N.; Thompson, S.; Glaser, M. Global aquaculture productivity, environmental sustainability, and climate change adaptability. Environ. Manag. 2019, 63, 159–172. [Google Scholar] [CrossRef]
- Gentry, R.R.; Froehlich, H.E.; Grimm, D.; Kareiva, P.; Parke, M.; Rust, M.; Gaines, S.D.; Halpern, B.S. Mapping the global potential for marine aquaculture. Nat. Ecol. Evol. 2017, 1, 1317–1324. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Li, X.; Zhang, L.; Liu, W.; Chen, D.; Ji, H. Detecting spatiotemporal changes of large-scale aquaculture ponds regions over 1988–2018 in Jiangsu Province, China using Google Earth Engine. Ocean Coast. Manag. 2020, 188, 105144. [Google Scholar] [CrossRef]
- Chen, C.; Liang, J.; Xie, F.; Hu, Z.; Sun, W.; Yang, G.; Yu, J.; Chen, L.; Wang, L.; Wang, L.; et al. Temporal and spatial variation of coastline using remote sensing images for Zhoushan archipelago, China. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102711. [Google Scholar] [CrossRef]
- Peterson, K.T.; Sagan, V.; Sloan, J.J. Deep learning-based water quality estimation and anomaly detection using Landsat-8/Sentinel-2 virtual constellation and cloud computing. GISci. Remote Sens. 2020, 57, 510–525. [Google Scholar] [CrossRef]
- Stiller, D.; Ottinger, M.; Leinenkugel, P. Spatio-temporal patterns of coastal aquaculture derived from Sentinel-1 time series data and the full Landsat archive. Remote Sens. 2019, 11, 1707. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, S.; Su, C.; Shang, Y.; Wang, T.; Yin, J. Coastal oyster aquaculture area extraction and nutrient loading estimation using a GF-2 satellite image. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4934–4946. [Google Scholar] [CrossRef]
- Rajandran, A.; Tan, M.L.; Samat, N.; Chan, N.W. A review of Google Earth Engine application in mapping aquaculture ponds. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022; Volume 1064, p. 012011. [Google Scholar]
- Hou, Y.; Zhao, G.; Chen, X.; Yu, X. Improving satellite retrieval of coastal aquaculture pond by adding water quality parameters. Remote Sens. 2022, 14, 3306. [Google Scholar] [CrossRef]
- Xia, Z.; Guo, X.; Chen, R. Automatic extraction of aquaculture ponds based on Google Earth Engine. Ocean Coast. Manag. 2020, 198, 105348. [Google Scholar] [CrossRef]
- Hou, T.; Sun, W.; Chen, C.; Yang, G.; Meng, X.; Peng, J. Marine floating raft aquaculture extraction of hyperspectral remote sensing images based decision tree algorithm. Int. J. Appl. Earth Obs. Geoinf. 2022, 111, 102846. [Google Scholar] [CrossRef]
- Duan, Y.; Li, X.; Zhang, L.; Chen, D.; Ji, H. Mapping national-scale aquaculture ponds based on the Google Earth Engine in the Chinese coastal zone. Aquaculture 2020, 520, 734666. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, Z.; Zhang, Y.; Wang, J.; Yin, Y.; Wu, G. Mapping aquaculture areas with Multi-Source spectral and texture features: A case study in the pearl river basin (Guangdong), China. Remote Sens. 2021, 13, 4320. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.; Yang, X.; Zhang, Y.; Yang, F.; Liu, B.; Cai, P. Satellite-based monitoring and statistics for raft and cage aquaculture in China’s offshore waters. Int. J. Appl. Earth Obs. Geoinf. 2020, 91, 102118. [Google Scholar] [CrossRef]
- Ottinger, M.; Clauss, K.; Kuenzer, C. Large-scale assessment of coastal aquaculture ponds with Sentinel-1 time series data. Remote Sens. 2017, 9, 440. [Google Scholar] [CrossRef]
- Minaee, S.; Boykov, Y.; Porikli, F.; Plaza, A.; Kehtarnavaz, N.; Terzopoulos, D. Image segmentation using deep learning: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 3523–3542. [Google Scholar] [CrossRef]
- Chen, H.; He, Y.; Zhang, L.; Yao, S.; Yang, W.; Fang, Y.; Liu, Y.; Gao, B. A landslide extraction method of channel attention mechanism U-Net network based on Sentinel-2A remote sensing images. Int. J. Digit. Earth 2023, 16, 552–577. [Google Scholar] [CrossRef]
- Zhou, H.; Luo, F.; Zhuang, H.; Weng, Z.; Gong, X.; Lin, Z. Attention multihop graph and multiscale convolutional fusion network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–14. [Google Scholar] [CrossRef]
- Cui, B.G.; Zhong, Y.; Fei, D.; Zhang, Y.H.; Liu, R.J.; Chu, J.L.; Zhao, J.H. Floating raft aquaculture area automatic extraction based on fully convolutional network. J. Coast. Res. 2019, 90, 86–94. [Google Scholar] [CrossRef]
- Lu, Y.; Shao, W.; Sun, J. Extraction of offshore aquaculture areas from medium-resolution remote sensing images based on deep learning. Remote Sens. 2021, 13, 3854. [Google Scholar] [CrossRef]
- Zeng, Z.; Wang, D.; Tan, W.; Yu, G.; You, J.; Lv, B.; Wu, Z. RCSANet: A full convolutional network for extracting inland aquaculture ponds from high-spatial-resolution images. Remote Sens. 2020, 13, 92. [Google Scholar] [CrossRef]
- Su, H.; Wei, S.; Qiu, J.; Wu, W. RaftNet: A new deep neural network for coastal raft aquaculture extraction from Landsat 8 OLI data. Remote Sens. 2022, 14, 4587. [Google Scholar] [CrossRef]
- Dang, K.B.; Nguyen, M.H.; Nguyen, D.A.; Phan, T.T.H.; Giang, T.L.; Pham, H.H.; Nguyen, T.N.; Tran, T.T.V.; Bui, D.T. Coastal wetland classification with deep u-net convolutional networks and sentinel-2 imagery: A case study at the tien yen estuary of vietnam. Remote Sens. 2020, 12, 3270. [Google Scholar] [CrossRef]
- Gao, L.; Wang, C.; Liu, K.; Chen, S.; Dong, G.; Su, H. Extraction of floating raft aquaculture areas from Sentinel-1 SAR images by a dense residual U-Net model with pre-trained ResNet34 as the encoder. Remote Sens. 2022, 14, 3003. [Google Scholar] [CrossRef]
- Wang, J.; Sui, L.; Yang, X.; Wang, Z.; Liu, Y.; Kang, J.; Lu, C.; Yang, F.; Liu, B. Extracting coastal raft aquaculture data from landsat 8 OLI imagery. Sensors 2019, 19, 1221. [Google Scholar] [CrossRef]
- Cheng, B.; Liang, C.; Liu, X.; Liu, Y.; Ma, X.; Wang, G. Research on a novel extraction method using Deep Learning based on GF-2 images for aquaculture areas. Int. J. Remote Sens. 2020, 41, 3575–3591. [Google Scholar] [CrossRef]
- Fu, Y.; Ye, Z.; Deng, J.; Zheng, X.; Huang, Y.; Yang, W.; Wang, Y.; Wang, K. Finer resolution mapping of marine aquaculture areas using worldView-2 imagery and a hierarchical cascade convolutional neural network. Remote Sens. 2019, 11, 1678. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, X.; Wang, Z.; Lu, C.; Li, Z.; Yang, F. Aquaculture area extraction and vulnerability assessment in Sanduao based on richer convolutional features network model. J. Oceanol. Limnol. 2019, 37, 1941–1954. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.; Ji, Y.; Chen, J.; Deng, Y.; Chen, J.; Jie, Y. Combining segmentation network and nonsubsampled contourlet transform for automatic marine raft aquaculture area extraction from sentinel-1 images. Remote Sens. 2020, 12, 4182. [Google Scholar] [CrossRef]
- Ai, B.; Xiao, H.; Xu, H.; Yuan, F.; Ling, M. Coastal aquaculture area extraction based on self-attention mechanism and auxiliary loss. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 16, 2250–2261. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, W.; Bi, X.; Wang, P.; Gao, F. TCNet: A Transformer–CNN Hybrid Network for Marine Aquaculture Mapping from VHSR Images. Remote Sens. 2023, 15, 4406. [Google Scholar] [CrossRef]
- Deng, J.; Bai, Y.; Chen, Z.; Shen, T.; Li, C.; Yang, X. A convolutional neural network for coastal aquaculture extraction from high-resolution remote sensing imagery. Sustainability 2023, 15, 5332. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, L.; Du, Z.; Peng, D.; Hao, P.; Zhang, Y.; Gong, P. An overview of the applications of earth observation satellite data: Impacts and future trends. Remote Sens. 2022, 14, 1863. [Google Scholar] [CrossRef]
- Ren, C.; Wang, Z.; Zhang, Y.; Zhang, B.; Chen, L.; Xi, Y.; Xiao, X.; Doughty, R.B.; Liu, M.; Jia, M.; et al. Rapid expansion of coastal aquaculture ponds in China from Landsat observations during 1984–2016. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101902. [Google Scholar] [CrossRef]
- Duan, Y.; Tian, B.; Li, X.; Liu, D.; Sengupta, D.; Wang, Y.; Peng, Y. Tracking changes in aquaculture ponds on the China coast using 30 years of Landsat images. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102383. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, L.; Chen, B.; Zuo, J. An Object-Based Approach to Extract Aquaculture Ponds with 10-Meter Resolution Sentinel-2 Images: A Case Study of Wenchang City in Hainan Province. Remote Sens. 2024, 16, 1217. [Google Scholar] [CrossRef]
- Sridhar, P.; Surendran, A.; Ramana, I. Auto-extraction technique-based digital classification of saltpans and aquaculture plots using satellite data. Int. J. Remote Sens. 2008, 29, 313–323. [Google Scholar] [CrossRef]
- Ma, Z.; Li, H.; Ye, Z.; Wen, J.; Hu, Y.; Liu, Y. Application of modified water quality index (WQI) in the assessment of coastal water quality in main aquaculture areas of Dalian, China. Mar. Pollut. Bull. 2020, 157, 111285. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Mao, D.; Xiao, X.; Song, K.; Jia, M.; Ren, C.; Wang, Z. Interannual changes of coastal aquaculture ponds in China at 10-m spatial resolution during 2016–2021. Remote Sens. Environ. 2023, 284, 113347. [Google Scholar] [CrossRef]
- Wang, H.; Xu, X.; Zhu, G. Landscape changes and a salt production sustainable approach in the state of salt pan area decreasing on the Coast of Tianjin, China. Sustainability 2015, 7, 10078–10097. [Google Scholar] [CrossRef]
- Rajitha, K.; Mukherjee, C.; Vinu Chandran, R.; Prakash Mohan, M. Land-cover change dynamics and coastal aquaculture development: A case study in the East Godavari delta, Andhra Pradesh, India using multi-temporal satellite data. Int. J. Remote Sens. 2010, 31, 4423–4442. [Google Scholar] [CrossRef]
- Liu, C.; Jiang, T.; Zhang, Z.; Sui, B.; Pan, X.; Zhang, L.; Zhang, J. Extraction method of offshore mariculture area under weak signal based on multisource feature fusion. J. Mar. Sci. Eng. 2020, 8, 99. [Google Scholar] [CrossRef]
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Wang, S.; Baig, M.H.A.; Zhang, L.; Jiang, H.; Ji, Y.; Zhao, H.; Tian, J. A simple enhanced water index (EWI) for percent surface water estimation using Landsat data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 90–97. [Google Scholar] [CrossRef]
- Ruby, U.; Yendapalli, V. Binary cross entropy with deep learning technique for image classification. Int. J. Adv. Trends Comput. Sci. Eng. 2020, 9, 5393–5397. [Google Scholar]
- Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 1–48. [Google Scholar] [CrossRef]
- Goutte, C.; Gaussier, E. A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In European Conference on Information Retrieval; Springer: Berlin/Heidelberg, Germany, 2005; pp. 345–359. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar]
- Li, X.; Wang, W.; Hu, X.; Yang, J. Selective kernel networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 510–519. [Google Scholar]
- Cui, B.; Fei, D.; Shao, G.; Lu, Y.; Chu, J. Extracting raft aquaculture areas from remote sensing images via an improved U-net with a PSE structure. Remote Sens. 2019, 11, 2053. [Google Scholar] [CrossRef]
- Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and efficient design for semantic segmentation with transformers. Adv. Neural Inf. Process. Syst. 2021, 34, 12077–12090. [Google Scholar]
- Boyd, C.E. Bottom Soils, Sediment, and Pond Aquaculture; Springer Science & Business Media: Philadelphia, PA, USA, 2012. [Google Scholar]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Liu, H.Q.; Huete, A. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. [Google Scholar] [CrossRef]
Area | Image Size | Image Extent | Image Data |
---|---|---|---|
Study area A | 4710—×1935 | E N | January and December 2022 |
Study area B | 4938—×3002 | E N | January and December 2022 |
Study area C | 4221—×3838 | E N | January and December 2022 |
Study area D | 4633—×2244 | E N | January and December 2022 |
Dataset | Model | Precision (%) | Recall (%) | IoU (%) | F1 Score (%) |
---|---|---|---|---|---|
CHN-LN4-ISAPs-6 | U-Net1 | 82.74 | 85.87 | 72.68 | 83.84 |
U-Net2 | 85.48 | 87.36 | 76.29 | 86.94 | |
U-Net3 | 83.51 | 86.53 | 73.91 | 84.97 | |
U-Net4 (ours) | 88.05 | 89.78 | 81.13 | 89.12 | |
CHN-LN4-ISAPs-8 | U-Net1 | 83.22 | 86.21 | 73.55 | 84.35 |
U-Net2 | 86.13 | 87.69 | 77.86 | 87.33 | |
U-Net3 | 84.01 | 87.31 | 74.46 | 85.77 | |
U-Net4 (ours) | 88.69 | 90.26 | 82.11 | 89.75 | |
CHN-LN4-ISAPs-9 | U-Net1 | 83.69 | 86.57 | 73.94 | 84.99 |
U-Net2 | 87.62 | 88.14 | 78.29 | 87.68 | |
U-Net3 | 84.37 | 87.43 | 74.75 | 85.84 | |
U-Net4 (ours) | 89.29 | 91.03 | 83.93 | 90.67 |
Method | Precision (%) | Recall (%) | IoU (%) | F1 Score (%) |
---|---|---|---|---|
U-Net | 83.69 | 86.57 | 73.94 | 84.99 |
DeepLabV3+ | 79.01 | 88.67 | 71.66 | 82.58 |
SegNet | 81.06 | 84.05 | 71.02 | 81.81 |
PSPNet | 87.95 | 89.84 | 81.55 | 88.54 |
SKNet | 87.01 | 88.13 | 80.67 | 87.97 |
UPS-Net | 82.96 | 86.11 | 74.01 | 84.52 |
SegFormer | 78.69 | 82.16 | 70.12 | 79.31 |
MAFU-Net | 89.29 | 91.03 | 83.93 | 90.67 |
Group | Bands | Precision (%) | Recall (%) | IoU (%) | F1 Score (%) |
---|---|---|---|---|---|
Group 1 | 3 | 86.92 | 88.04 | 80.81 | 87.01 |
Group 2 | 13 | 86.57 | 87.38 | 79.51 | 86.49 |
Group 3 | 6 | 88.05 | 89.78 | 81.13 | 89.12 |
Group 4 | 6 | 88.12 | 90.06 | 82.76 | 89.27 |
Group 5 | 16 | 87.15 | 88.75 | 81.22 | 87.89 |
Group 6 | 9 | 89.29 | 91.03 | 83.93 | 90.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Z.; Wang, F.; Zhu, J.; Li, P.; Xie, F.; Zhao, Y. Autonomous Extraction Technology for Aquaculture Ponds in Complex Geological Environments Based on Multispectral Feature Fusion of Medium-Resolution Remote Sensing Imagery. Remote Sens. 2024, 16, 4130. https://doi.org/10.3390/rs16224130
Liang Z, Wang F, Zhu J, Li P, Xie F, Zhao Y. Autonomous Extraction Technology for Aquaculture Ponds in Complex Geological Environments Based on Multispectral Feature Fusion of Medium-Resolution Remote Sensing Imagery. Remote Sensing. 2024; 16(22):4130. https://doi.org/10.3390/rs16224130
Chicago/Turabian StyleLiang, Zunxun, Fangxiong Wang, Jianfeng Zhu, Peng Li, Fuding Xie, and Yifei Zhao. 2024. "Autonomous Extraction Technology for Aquaculture Ponds in Complex Geological Environments Based on Multispectral Feature Fusion of Medium-Resolution Remote Sensing Imagery" Remote Sensing 16, no. 22: 4130. https://doi.org/10.3390/rs16224130
APA StyleLiang, Z., Wang, F., Zhu, J., Li, P., Xie, F., & Zhao, Y. (2024). Autonomous Extraction Technology for Aquaculture Ponds in Complex Geological Environments Based on Multispectral Feature Fusion of Medium-Resolution Remote Sensing Imagery. Remote Sensing, 16(22), 4130. https://doi.org/10.3390/rs16224130