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Abstract: Utilizing magnetic anomaly data for effective edge detection of source bodies can provide
crucial evidence for the delineation of geological units and the division of fault structures. However,
the existing edge detection methods of source bodies from magnetic anomalies are influenced by
factors such as the source bodies’ burial depth, magnetization direction, and mutual interference of
magnetic anomalies, leading to errors in subsequent interpretation tasks. The advanced convolutional
neural network possesses robust capabilities for feature representation and deep learning, prompting
this paper to introduce an edge detection method for source bodies based on convolutional neural
networks. The issue is initially framed as a semantic segmentation problem, and four network
architectures aimed at edge detection of a source body from magnetic anomaly are designed and
modified based on the U-Net and ResNet. Subsequently, a multitude of high-quality sample data sets
are constructed using models with varying locations, scales, quantities, and physical properties to
train the network. This paper then details model experiments that escalate from simple to complex,
taking into account the combined effects of burial depth and inclined magnetization on edge detection.
Compared to conventional edge detection methods, the method proposed in this paper is shown
to accurately identify edges of source bodies at various depths with little impact from inclined
magnetization and can automatically extract edge information without manual intervention. The
method’s efficacy is corroborated through real data tests.

Keywords: magnetic anomaly; edge detection; deep learning; convolutional neural networks;
residual networks

1. Introduction

Edge detection of a source body from magnetic anomaly is a method for the identi-
fication of the boundary positions of magnetic targets. It fully leverages the high lateral
resolution advantage of magnetic anomaly data, and is the core of magnetic anomaly data
processing and interpretation. Existing edge detection methods can be broadly classified
into three main categories based on technical principles: numerical calculation, mathemati-
cal statistics, and others [1].

Edge detection based on numerical calculation involves processing anomaly data or
its gradient data through numerical computations, revealing boundary information as
extreme or zero values. This approach is also one of the most extensively studied and
widely applied methods to date [2–9]. These methods identify boundary positions by
calculating the modulus from potential field or gradient tensor data, and their common
shortcoming is inaccurate edge detection for targets at greater depths. To address this
issue, many methods [10–12] have been developed to more evenly detect the boundaries
of target bodies at various depths, capable of identifying targets with significant ampli-
tude differences, but their resolution tends to be lower. To enhance the resolution of
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detection results, higher-order derivatives have been incorporated into edge detection
methods [13–16]. Although edge detection methods based on higher-order derivatives
can effectively improve the resolution of detection results, the noise is also amplified after
higher-order derivative operations, which can affect the effectiveness of edge detection.
Statistical-based edge detection methods utilize sliding windows and probability statistics
to extract the edge information of target bodies [17–19]. These statistical edge detection
methods, while capable of suppressing noise interference, tend to identify edges with
broader features and lower resolution. Other edge detection methods are primarily used in
some specific issues of edge detection like imaging or enhancement [20–22]. In recent years,
novel edge detection methods have been proposed [23–27]. However, with the number
of edge detection methods and their applications becoming overwhelming, errors and
misinterpretations of edge detection filters have multiplied [28]. Liu et al. [29] proposed
another classification of potential field edge detectors/filters, including derivative-based,
phase- or ratio-based and statistical/sliding window-based methods.

With the development of artificial intelligence, convolutional neural networks (CNNs),
with their strong feature extraction and nonlinear fitting capabilities, have been widely
applied in the field of geophysical denoising [30–34] and geophysical inversion [35–41].
Currently, there are relatively few studies in the field of edge detection of a source body
from magnetic anomaly based on deep learning [42]. However, deep learning is extensively
applied in the field of remote sensing object recognition [43,44]. Li et al. [45] used the
AlexNet network to detect buildings in high-resolution images of hollow villages. Pan
et al. [46] improved the fully convolutional neural network for extracting residential areas
from “Gaofen-1” remote sensing imagery. Wang et al. [47] enhanced the feature extraction
capability of lightweight networks through a dual-path semantic segmentation structure.
Lan et al. [48] proposed the GD-DCNN for road segmentation and confirmed that the
network reduces the effects of noise and occlusions.

Remote sensing object recognition based on deep learning involves using deep neural
networks to learn the mapping relationship between target bodies and their correspond-
ing spectral features, thereby achieving intelligent recognition of remote sensing objects.
Similarly, the deep learning-based edge detection of a source body from magnetic anomaly
proposed in this paper is about using deep neural networks to learn the mapping relation-
ship between the boundaries of magnetic target bodies and their corresponding magnetic
anomaly features. This introduces a new perspective to the field of edge detection of a
source body from magnetic anomaly. Exploring the application of deep learning in this
area can harness unique advantages over traditional edge detection methods.

2. Edge Detection Method by Deep Learning

Edge detection is an important technique in potential field data processing. Con-
ventional edge detection methods (e.g., vertical derivative method [6], total horizontal
derivative method [7], analytic signal method [9], tilt angle method [10] and theta map
method [12], etc.) tend to produce blurred or distorted results when dealing with deep
anomaly targets. Although improved methods using higher-order derivatives can identify
the edges of deep anomalies more effectively, they are computationally complex and prone
to noise interference. In contrast, deep learning methods employ deep neural networks to
extract and learn the end-to-end mapping relationships between magnetic anomaly features
and the edges of magnetic susceptibility model’s horizontal projection. This process does
not require human intervention, significantly reducing the influence of subjective factors.

2.1. The Feasibility of Edge Detection by Deep Learning

The deep learning edge detection method for magnetic anomalies presented in this
paper is achieved by the neural network directly learning the end-to-end mapping function
from the magnetic anomaly data to the horizontal projection edge of the magnetization
model, and its function is as follows:
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p = F(∆T), (1)

where p represents the horizontal projection edge of the model; ∆T represents the magnetic
anomaly data; F is the mapping function.

Typically, regardless of how the magnetization angle of the model changes, the frame
of its projection boundary only exists near the magnetic anomaly extremes or inflection
points. Its horizontal position corresponds well to the ground reality, and there is no need
to enclose an infinitely large range of magnetic anomalies for the projection boundary (as
would be the case in one-dimensional space). These two have a certain spatial correlation
and local existence [42], and the convolution operations commonly used in deep learning
can precisely learn the locality and spatiality of the input image and the output label [49].
This provides feasibility for deep learning to identify the edges of magnetic anomaly
source bodies.

In the field of deep learning-based remote sensing image object recognition, one of
the most common methods is image semantic segmentation, which classifies each pixel
in the image based on the spectral and spatial structural features of the remote sensing
images [45,46]. In the study of deep learning-based edge detection for magnetic anomalies,
the input is the observed magnetic anomaly data, which is similar to two-dimensional
continuously varying image data, and the output is the horizontal projection edge m of
the magnetization model, resembling two-dimensional binary label data composed of
0 s and 1 s, akin to a pixel classification problem. Essentially, edge detection can also be
viewed as a kind of image semantic segmentation problem, requiring each pixel in the
magnetic anomaly image to be classified, with those belonging to the horizontal projection
boundary of the source body as one category; and the non-boundary ones as another
category. Thus, the edge detection problem transforms into an image semantic segmentation
problem, for which the network structure can adopt commonly used semantic segmentation
network models.

2.2. Network Structure Design

At present, the mainstream semantic segmentation model is the encoder–decoder
structure. The U-Net network proposed by Ronneberger et al. [50] in 2015 is a completely
symmetric encoder–decoder structure, which has been proven to achieve better prediction
results with fewer training samples. This is very important for geophysical fields with less
training data and has become one of the most commonly used deep learning networks in the
field of geophysics. This paper selects the original U-Net as the basic network. In order to
apply it to edge detection problems, this paper simplifies and modifies it to obtain a network
suitable for edge detection problems. Four types of edge detection networks (EDNs) are
obtained by secondary modification of the network using convolutional block stacking
and residual connection blocks. These four types of networks are as follows: (1) U-Net
EDN, mainly modified to reduce the number of channels to adapt to magnetic anomaly
data; (2) convolution block stacking EDN, which increases the depth of the network by
stacking convolutional blocks to improve performance; (3) the ResNet-34 EDN and (4) the
ResNet-50 EDN introduce conventional residual blocks and bottleneck residual blocks [51],
respectively, to solve the problem of network degradation caused by the excessive depth of
the network.

To design a CNN base on U-net, we usually consider the convolution, activation
function, BN (batch normalization) [52], down-sampling, up-sampling, etc. Convolution
is a special linear operation for extracting local features of input data. The convolution
kernel slides over the input data, computing the dot product with the overlapping region
at each step and then summing these values. Different kernel size, stride and padding will
produce different results. The activation function is the addition of nonlinear factors to
neural networks. It is also sometimes able to normalize the data, and map the input data
to a certain range. The BN layer normalizes the input of each batch of data, and induces
scaling and shifting parameters for the network to learn the optimal feature distribution.
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The BN makes the distribution of input data in each layer of the network relatively stable,
accelerating model training and convergence speed. Down-sampling and up-sampling
refer to the spatial size variation operations of feature maps. Down-sampling, also known
as pooling, often selects the maximum or mean value as the sampling point in each region
of the feature map, in order to reduce the spatial size of the feature map. Up-sampling
includes deconvolution/transpose convolution and interpolation, where deconvolution
operation up-samples by learning a reversible convolution kernel, while the interpolation
operation fills and interpolates the feature map through interpolation algorithms such as
nearest neighbor interpolation, bilinear interpolation, etc., thereby increasing the size of the
feature map.

2.3. U-Net Edge Detection Network

Based on the network architecture of U-net, this paper designs and builds a U-net
EDN to realize the deep learning edge detection of a magnetic anomaly. The magnetic
anomaly data obtained by forward calculation are used as the training data of the input
layer. Since there is only one layer of magnetic anomaly data on the ground, the number
of RGB channels of the original input layer is reduced to one channel. The output layer is
the boundary of the horizontal projection of the magnetic field source body. Whether it is
the boundary is indicated by 1 and 0. It is a single classification problem, so the number of
channels is also 1.

There are a total of 15 layers in the network that use convolutional operations, as
excessive convolutional kernel dimensions can lead to an increase in training parameters,
resulting in a slower operation speed. However, if the convolutional kernel is too small, it
will cause the receptive field to be too small. Therefore, the dimension of the convolutional
kernel in this article is 3 × 3. The 3-layer down-sampling layer adopts maximum pooling
operation, while the 3-layer up-sampling layer adopts transposed convolution operation.
Except for the output layer, the activation functions of all other layers use the ReLU
(Rectified Linear Unit) function [53]. Compared with other activation functions, the ReLU
function is computationally simple, requiring only positive and negative inputs to obtain
the activation value, which improves the speed of operation. Moreover, the ReLU function,
in the area where the input is greater than zero, will not have the problems of gradient
explosion and gradient disappearance. The sigmoid function is used as the output layer
activation function [54].

The U-net EDN is mainly composed of encoding and decoding stages. The encoding
stage is a contraction path to extract the characteristics of the input data. With the increase
in the number of down-sampling layers, the data dimension is gradually reduced. After
each down-sampling, the data dimension is reduced by half, but the corresponding number
of convolution kernels becomes twice as large. In the U-net EDN, the shallow network
layer extracts local information, and the deeper network layer extracts global information.
Its overall architecture is shown in Figure 1.
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As shown in Figure 1, the black number above the feature map represents the number
of channels, and the light blue layer represents the convolution layer of convolution, BN and
ReLU operation. The green layer represents the down-sampling layer using the maximum
pooling operation, and the black dotted line represents the “skip-connection”. In the coding
stage, in order to extract the global features, the receptive field is often increased by down-
sampling, but the high-level feature dimension is reduced. In order to achieve end-to-end
mapping, it is necessary to restore the high-level feature dimension to the size of the input
data dimension. This process is called up-sampling in the neural network, and the brown
layer represents the up-sampling layer using transpose convolution operation. While
down-sampling lost lots of information in coding stage, skip connection can introduce
feature information at corresponding scales into the up-sampling process.

2.4. Convolution Block Stacking Edge Detection Network

The simplest and most effective way to further improve the network’s ability to
learn complex mappings is to stack convolutional layers to increase the depth of the
network. This article modifies the encoding stage structure of the EDN by expanding the
convolutional layer from the original convolution–convolution-pooling structure, as shown
in Figure 2. Comparing Figure 1 with Figure 2, it can be observed that the EDN with
stacked convolutional blocks has expanded some convolutional modules. In the feature
extraction stage before the first down-sampling, the convolutional layers have expanded
by one layer and three convolutional modules. The number of convolutional layers in
the feature extraction stage before the second down-sampling is expanded into one layer
convolution and four layer convolution modules. The number of convolution layers in
the feature extraction stage before the third down-sampling is expanded into one layer
convolution and six layer convolution modules. The convolutional layers in the feature
extraction stage before up-sampling are expanded into one layer convolution and three
layer convolution modules.
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2.5. ResNet Edge Detection Network

The stacking of convolution blocks is the most direct way to improve network perfor-
mance, but an excessive increase in network depth can degrade network performance. The
best way to solve this problem is to convert convolution block stacking into residual block
stacking. Due to the residual characteristics between any residual blocks, residual block
stacking will not cause gradient instability and the network will not experience degradation.
At present, residual blocks can be divided into two categories based on ResNet-50: the
one before ResNet-50 is the conventional residual block; the bottleneck residual block



Remote Sens. 2024, 16, 4139 6 of 21

after ResNet-50 is shown in Figure 3. Figure 3a shows the conventional residual block,
with each residual block consisting of two convolutional layers. The output of the second
convolutional layer and the input of the residual block are added and activated using the
ReLU function to obtain the output of the residual block, with a parameter size of 18,432.
As shown in Figure 3b, the bottleneck residual block deepens the network depth without
significant differences in parameter quantities.
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The convolution blocks of the convolution block stack EDN described above are
all replaced by the conventional residual module, that is, the improved EDN based on
ResNet-34 is obtained. The conventional residual module of ResNet-34 EDN is replaced
by the bottleneck residual block, and the number of characteristic diagrams of each layer
is increased by four times, that is, the improved EDN based on ResNet-50 is obtained.
The structure and parameters of ResNet-50 EDN are the same, except that the structure of
characteristic graph channel and residual block is different from ResNet-34 EDN.

3. Dataset and Network Training
3.1. Establishment of Magnetic Anomaly Dataset

In this task, the design of the observation system includes two parts: the design of
the surface survey grid and the design of the subsurface half space mesh. The details
of the design standard are shown in Table 1. In this paper, the input data are obtained
by magnetic anomaly forward modeling. The boundary of the magnetic anomaly source
body projected on the horizontal plane is taken as the label data. The input data and
label data form a training data pair, and then a large number of training data pairs form
a training data set. The acquisition process of input data is divided into two steps: the
construction of the subsurface model and forward modeling of the magnetic anomaly.
In this paper, the subsurface model is constructed by using parameters such as quantity,
location, scale and physical properties, and some of these parameters are shown in Table 1.
Firstly, the coordinate of the model center point is determined in the variation range. And
then the model extension length (the length, width and height of model) is randomly
generated within the range. The subsurface model is formed by the combination of various
parameters, including a single block model and combined block model. The random
variation process of the model is shown in Figure 4. In addition, considering the actual rock
magnetic susceptibility, the variation range of residual magnetic susceptibility of each block
is set as −0.3~0.8 SI. In order to prevent the influence of edge data on the experimental
error, we discard the model close to the 20 m edge of the mesh in the subsurface half space.
The perspective view of the single block and combined block model is shown in Figure 5.
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Table 1. Establishment standard of mesh, grid and model.

Parameter
Value

X Y Z

Mesh number of subsurface 64 64 32
Mesh size of subsurface (m) 10 10 10
Grid number of observation 64 64 /

Coordinate of model center point (m) 40–600 40–600 30–125
Model extension length (m) 40–450 40–450 80–200
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The dataset of the network consists of two parts, one is input data and the other is
label data. In this paper, the input data are the magnetic anomaly of the magnetic target
with the forward process [55]. And 20,000 models are randomly generated according
to the distribution range of various model parameters proposed in the model design,
including a single block model and a combined block model. The geomagnetic field and
magnetization direction remain consistent, with a magnetic inclination of 3◦ within the
range of (0–90◦), divided into 30 categories. The magnetic declination is also divided into
30 categories within the range of (0–90◦), and a random combination of magnetic inclination
and magnetic declination generates a total of 900 different combinations. We randomly
select types from the combination of magnetic inclination and magnetic declination angle,
and performs forward calculation on the block model designed in the previous section
based on a total magnetic field strength of 50,000 nT to obtain forward magnetic anomalies.
The quality of label data affects the training results of the network, so labels must be
designed strictly according to the requirements of the task. The research task of this article
is to use deep learning networks for edge detection of magnetic target bodies, so the label
data are designed as the boundaries of the magnetic field source body projected on a
horizontal plane. Figure 6a shows the input data, namely magnetic anomalies. Figure 6b
shows the labeled data, where the yellow pixel shows the horizontal projection boundary
of the magnetic field source.
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3.2. Training Process

We wrote the code based on Tensorflow (version 2.12.0) and trained the network by
GPU (NVIDIA GeForce RTX 3080). The training of a network is the process of updating
the weight parameters of the network through the backpropagation mechanism under the
constraint of the loss function. This process requires appropriate hyperparameters in order
to obtain the optimal network model parameters through continuous iteration. This article
mainly selects the parameters shown in Table 2 for training. We chose the mean square
error (MSE) as the loss function. The formula of MSE is as follows:

MSE = 1
n

n
∑

i=1
(yi − ŷi)

2, (2)

where n is the total number of labels, yi is the predicted label, ŷi is the real label, and i is the
order number of the label.

Table 2. Parameter of training networks.

U-Net EDN Convolution Block
Stacking EDN ResNet-34 EDN ResNet-50 EDN

Training set 17,000 17,000 17,000 17,000
Test set 3000 3000 3000 3000

Learning rate 0.0001 0.0001 0.0001 0.0001
Optimizer Adam Adam Adam Adam
Batch size 32 32 32 32

Epoch 100 100 100 100
Loss function MSE MSE MSE MSE

The training process of the network is shown in Figure 7.
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The training process loss function is shown in Figure 8, and the network model is well
trained and basically converges.
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3.3. Evaluation Indicator

The trained network can be used to quickly predict the boundary position of magnetic
anomaly field sources. Six sets of experiments are designed in this paper to test and
compare the results of four EDNs and traditional edge detection methods. In terms of
result evaluation, this article uses accuracy, precision, recall, and F1 score as four evaluation
indicators for the predicted results. For the prediction results of the EDNs, there are only
two classifications: boundary and background. Therefore, we can consider the problem
as a binary classification problem. For a binary classification problem, there are only four
combinations between the predicted values and the true values: True Positive (TP), False
Positive (FP), False Negative (FN) and True Negative (TN). These four types of combinations
are shown in Table 3.

Table 3. Binary confusion matrix.

True Value\Predict Value Positive Negative

Positive TP FN
Negative FP TN

The accuracy formula is as follows:

accuracy = TP+TN
TP+TN+FP+FN , (3)

The precision formula is as follows:

precision = TP
TP+FP , (4)

The recall formula is as follows:

recall = TP
TP+FN , (5)

The F1 score formula is as follows:

F1 Score = 2×precision×recall
precision+recall , (6)
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4. Data Tests

In this chapter, we are going to test four types of networks (U-net EDN, Convolution
block stacking EDN, ResNet-34 EDN, and ResNet-50 EDN) trained by the training set and
parameters in Table 2. And the data tests consist of a double combined model, quadruple
combined model, overlap model, sphere model and real data.

4.1. Double Combined Model

To consider the comprehensive influence of buried depth and inclined magnetization,
two isolated block models are designed, and the parameters of the double combined models
are shown in Table 4. The perspective view of the model is shown in Figure 9. Under the
background magnetic susceptibility of 0, magnetic inclination and magnetic declination of
60◦ and 45◦, magnetic anomalies were obtained through forward modeling, as shown in
Figure 10.

Table 4. The parameters of the double combined models.

Number 1 2

Coordinate of model center point in X, Y, Z direction (m) (200, 450, 100) (420, 200, 150)
Model extension length in X, Y and Z direction (m) (160, 160, 100) (160, 160, 100)

Magnetic susceptibility (SI) 0.2 0.2
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Figure 10. Inclined magnetization anomaly.

The magnetic anomalies are identified using three conventional edge detection meth-
ods and four EDNs, and the results are shown in Figure 11. The average evaluation
indicators of identified results are shown in Table 5. The properties of the conventional
edge detection methods in Figure 11b–d are affected by the comprehensive factors of buried
depth and inclination magnetization. In Figure 11e, it can be seen that the convolution
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block stacking EDN has poorly identified results for the left and lower boundaries of Model
2 with a deeper burial depth, while the upper and right boundaries are more accurate.
In Figure 11f, it can be seen that the U-Net EDN performs well in predicting the overall
boundary of Model 2 with a deeper burial depth. It can predict the location and scale of
the boundary, but the prediction results are relatively divergent. In Figure 11g,h, it can
be seen that the ResNet-50 EDN and ResNet-34 EDN have better prediction results, both
of which can accurately identify the boundary positions of anomaly bodies with different
burial depths. In comparison, it can be seen from Table 5 that the ResNet-34 EDN still has
better prediction results with the highest accuracy and recall.
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Figure 11. Edge detection results of the double combined model. (a) Ground truth. The yellow
boxes present horizontal projection boundaries of the models, while the dark blue pixels present non-
boundaries. (b) Analytic signal method. (c) Tilt angle method. (d) Theta map method. (e) Convolution
block stacking EDN. (f) U-Net EDN. (g) ResNet-50 EDN. (h) ResNet-34 EDN.

Table 5. Average evaluation indicators of the double combined model in complex situations.

Accuracy Precision Recall F1 Score

Convolution block stacking EDN 0.9734 0.8939 0.4917 0.6344
U-Net EDN 0.9849 0.7499 0.7250 0.7372

ResNet-50 EDN 0.9873 0.8544 0.7543 0.8012
ResNet-34 EDN 0.9924 0.9376 0.8312 0.8811

4.2. Quadruple Combined Model

From the results above, it can be concluded that the EDN method for identifying the
edge of magnetic anomaly sources is less affected by burial depth and inclined magnetiza-
tion, and can accurately identify the model boundary position in double combined models.
Next, it is necessary to establish a complex model that conforms to the combination of
geological bodies to further verify the effectiveness of the EDN method.

A model with four blocks is constructed, considering buried depth, inclined magneti-
zation, magnetic susceptibility and scale. The model parameters are shown in Table 6, and
the perspective view of the model is shown in Figure 12. Under the background magnetic
susceptibility of 0, magnetic inclination and magnetic declination of 27◦ and 33◦, magnetic
anomalies were obtained through forward modeling, as shown in Figure 13.
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Table 6. The parameters of the quadruple combined model.

Number Coordinate of Model Center Point (m) Model Extension Length (m) Magnetic Susceptibility (SI)

1 (200, 200, 150) (200, 200, 100) 0.4
2 (440, 220, 120) (120, 200, 100) 0.4
3 (250, 470, 100) (200, 100, 100) 0.3
4 (520, 470, 60) (100, 100, 100) 0.2
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Figure 13. Complex magnetization anomaly.

The magnetic anomalies are identified using three conventional edge detection meth-
ods and four EDNs, and the results are shown in Figure 14. The average evaluation indica-
tors of identified results are shown in Table 7. Due to the mutual influence between the
magnetic anomalies of each model and the deviation of magnetic anomaly features caused
by inclined magnetization, conventional edge detection methods are affected. Therefore,
the three conventional edge detection methods have extremely poor identified perfor-
mance for the quadruple combined model, and the extracted edge information is greatly
deviational and distorted from the actual edge in Figure 14b–d.

Compared with single model and double combined model, the identified effect of
EDNs for complex model is reduced, but the approximate location and scale of the model
can still be determined in Figure 14e–h. It can be seen that the identified results are
gradually improving from Figure 14e to Figure 14h, where ResNet-34 EDN, with the best
result, identifies the most accurate and clearest edge of the model. From Table 7, it can also
be seen that the evaluation indicators of the ResNet-34 EDN are at the highest level among
the four EDNs, with both accuracy and accuracy reaching 0.9. Although the identified
result of the ResNet-34 EDN shows a deviation, the small deviation had little effect on
determining the boundary position of the model. Therefore, the network can still accurately
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identify the boundary positions of magnetic anomaly sources with different burial depths
under oblique magnetization.
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Figure 14. Edge detection results of the quadruple combined model. (a) Ground truth. The yellow
boxes present horizontal projection boundaries of the models, while the dark blue pixels present non-
boundaries. (b) Analytic signal method. (c) Tilt angle method. (d) Theta map method. (e) Convolution
block stacking EDN. (f) U-Net EDN. (g) ResNet-50 EDN. (h) ResNet-34 EDN.

Table 7. Average evaluation indicators of the quadruple combined model.

Accuracy Precision Recall F1 Score

Convolution block stacking EDN 0.9519 0.5648 0.59210 0.5781
U-Net EDN 0.9585 0.6495 0.5526 0.5971

ResNet-50 EDN 0.9599 0.6495 0.6096 0.6289
ResNet-34 EDN 0.9751 0.9072 0.6769 0.7752

4.3. Overlap Model

Before applying the EDN method to real data, it is necessary to test some special
models that are more different from the training set. As the ResNet-34 EDN performed
best in the tests above, we will only focus on ResNet-34 EDN and choose overlap models
and sphere models to test it. Also, we add noise in the magnetization anomaly to test the
robustness.

The overlap model is constructed by two blocks, which overlap vertically. The param-
eters of the model are shown in Table 8 and the perspective view of the model is shown in
Figure 15.

Table 8. The parameters of the overlap model.

Number Coordinate of Model Center Point (m) Model Extension Length (m) Magnetic Susceptibility (SI)

1 (250, 250, 50) (100, 100, 50) 0.3
2 (320, 320, 125) (200, 200, 100) 0.3

Under the background magnetic susceptibility of 0, magnetic inclination and magnetic
declination is set to 90◦ and 0◦ for forward modeling. And we add 5% Gaussian noise to
magnetic anomalies. The magnetic anomalies, horizontal projection boundary and Edge
detection results are shown in Figure 16.
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Figure 16. The magnetic anomalies, horizontal projection boundary and edge detection results of the
overlap model under magnetic inclination and declination of 90◦ and 0◦. (a) Magnetization anomaly.
(b) Magnetization anomaly with 5% Gaussian noise. (c) Ground truth. The yellow boxes present
horizontal projection boundaries of the models, while the dark blue pixels present non-boundaries.
(d) Edge detection results of (a). (e) Edge detection results of (b).

Next, magnetic inclination and magnetic declination are set to 60◦ and 45◦, while the
other parameters are same. The magnetic anomalies, horizontal projection boundary and
edge detection results are shown in Figure 17.

From Figure 16d, we can see that the edge of the upper block is detected clearly, while
the edge of the lower block is only half displayed. This may be because there was no
overlap horizontal projection boundary as the label in the training set and the EDN could
not output a result with a crossing line. However, the position prediction of the two blocks
is basically accurate. Even if the magnetization anomaly occurs with noise, the detection
result is not significantly affected, as shown in Figure 16e.

After the inclination and declination is set to 60◦ and 45◦, the edge of the upper block is
detected well as shown in Figure 17d, while the lower one is blurry. In Figure 17e, the edge
of the upper block is still clearly visible, while the lower one is very incomplete. Overall,
noise has little impact on the results, but the inclination and declination are significantly
affected in the overlap situation.
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overlap model under magnetic inclination and declination of 60◦ and 45◦. (a) Magnetization anomaly.
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boundary. (d) Edge detection results of (a). (e) Edge detection results of (b).

4.4. Sphere Model

In the real world, the boundaries of the magnetic source are not always ideally rectan-
gular. We chose a sphere model to test the performance of the EDN with a non-block model.

The parameters of the sphere model are shown in Table 9. The perspective view of the
model is shown in Figure 18.
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Table 9. The parameters of the sphere model.

Number Coordinate of Model Center Point (m) The Radius of The Sphere (m) Magnetic Susceptibility (SI)

1 (200, 200, 100) 50 0.4
2 (400, 400, 100) 50 0.4

Magnetic inclination and magnetic declination are set to 90◦ and 0◦ for forward
modeling and 5% Gaussian noise is added to magnetic anomalies. The magnetic anomalies,
horizontal projection boundary and edge detection results are shown in Figure 19.
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Figure 19. The magnetic anomalies, horizontal projection boundary and edge detection results of
sphere model. (a) Magnetization anomaly. (b) Magnetization anomaly with 5% Gaussian noise.
(c) Ground truth of horizontal projection boundary. (d) Edge detection results of (a). (e) Edge
detection results of (b).

From Figure 19d,e, we can observe that the results show the correct position of two
spheres, with a minimal effect of noise, but the boundary is presented as rectangular. When
applying the EDN to real data, it is necessary to teach the EDN to draw curved lines. We
fine-tuned the ResNet-34 EDN by turning half of the models to spheres in the training set.
We trained it for 20 epochs based on the original network parameters while keeping other
training parameters in Section 3.2 unchanged. And we tested the ResNet-34 EDN again
after fine-tuning. The edge detection results are shown in Figure 20.
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detection results of Figure 19a. (b) Edge detection results of Figure 19b.

From Figure 20a, it can be seen that the boundaries of two sphere models are detected
in the correct position and presented by curved lines, which recovered the circle projection
boundaries. It can still roughly identify the boundary positions from a magnetic anomaly
with noise, as shown in Figure 20b. The robustness of the EDN has been verified. Following
fine-tuning, the EDN can output curves and has a certain ability to detect the irregular
shape, which could be applied to real data.

4.5. Real Data

The real data are the residual magnetic anomaly data in the South China Sea, which
is a Cenozoic marginal sea formed by the expansion of the Mesozoic continental margin
background, with widely developed geological structures. The survey area is located in
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the north central part of the Pearl River Mouth Basin in the north of the South China
Sea, with a longitude range of (112.1–113.3◦) and a latitude range of (19.9–21.1◦). As
shown in Figure 21, this area is the location where igneous rocks are encountered during
drilling. Previous research [56] has shown the presence of basic/intermediate-basic and
intermediate/intermediate-acid igneous rocks in this area. The horizontal distribution
ranges of rocks are shown in the red or green ellipse in Figure 21. This distribution range is
similar to that of high-amplitude anomalies. So, we use the data from this survey area to
verify the practicality of the EDN method.
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Figure 21. Distribution map of igneous rocks in the northern South China Sea. The smaller black box
represents the range of survey area.

The original data are sourced from the compilation materials of the National geological
data Museum, with an original scale of 1:200,000. We extracted and processed data in the
survey area and gridded the residual magnetic anomaly data into regular data with a size
of 64 × 64. The contour map is shown in Figure 22. Four methods, including the tilt angle
method, theta map method, ResNet-34 EDN and ResNet-34 EDN (after fine-tuning), were
used to identify the boundaries of anomalies. The identified results are shown in Figure 23.
From the identified results of the conventional edge detection methods, they can identify
the boundaries of shallower buried field sources. Both of them can evenly identify the
boundaries of source bodies with different burial depths, but the identified resolution is
relatively low. The results of ResNet-34 EDN are similar to those of the tilt angle method and
theta map method, but the resolution is relatively higher than conventional edge detection
methods. The results of ResNet-34 EDN after fine tuning present more closed curves and
less discontinuous or dotted lines. The improvement after fine-tuning is not much but the
image looks cleaner in appearance. This is in line with our previous conclusion in the tests
of different models, that is, the edge detection of a source body from magnetic anomaly
based on CNNs is less affected by the burial depth of the source body, and has higher
resolution compared to conventional edge detection methods.
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Figure 23. Identified results of residual magnetic anomaly. (a) Tilt angle method. (b) Theta map
method. (c) ResNet-34 EDN. Pixel values represent the probability of boundaries. (d) ResNet-34 EDN
(after fine tuning). The white line represents the boundary of igneous rocks drawn by predecessors.

5. Conclusions

This paper introduces the image semantic segmentation algorithm and residual block
module into the edge detection of magnetic anomaly field bodies. Based on U-Net, four
types of EDNs were designed by using convolutional block stacking and residual block
module for replacement and modification. The model is parameterized by the number,
location, scale, physical properties and other parameters. The magnetic susceptibility
model is formed by combining randomly generated parameters, and the forward magnetic
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anomaly is generated by forward modeling. The magnetic anomaly is defined as the input
data, and the horizontal projection boundary of the field source body is defined as the
label data, forming a deep learning dataset. Then, the mapping relationship between the
magnetic anomaly and the horizontal projection boundary of the magnetic field source
body is studied by the four EDNs.

By establishing six groups of model tests from simple to complex, the effects of buried
depth, inclined magnetization and the combination of the two are considered. Firstly,
the prediction results of four EDNs are compared with three conventional edge detection
methods. The results show that all EDN methods have good performance compared to
conventional methods, and are less affected by the burial depth of the field source body.
EDNs are able to identify the boundaries of field source bodies with different burial depths
more evenly. The influence of inclined magnetization is also relatively small, and the
boundary position of the field source body can be identified from magnetic anomalies with
shifting. Secondly, the prediction results of four EDNs were evaluated and analyzed using
accuracy, precision, recall, and F1 score. The results show that the ResNet-34 EDN based on
the conventional residual module performed the best among the four EDNs in model tests.
In addition, the robustness of ResNet-34 EDN is verified by a special model with noise.
In order to satisfy practical applications of outputting curved lines, the ResNet-34 EDN is
fine-tuned using a training set with sphere models. Finally, the effectiveness of this EDN
method is further verified by the real data in the Pearl River of the northern South China
Sea. The EDN method can present clearer boundaries of igneous rocks directly and does
not require manual delineation of the boundaries from the filtered image, which is more
convenient for researchers without professional knowledge of geophysics.

Although the ResNet-34 EDN performs well in this paper, there are some obvious
limitations of the method. In the test of the overlap model, the method presented the
proper location but had difficulty in displaying cross boundaries of an untrained style.
Consequently, when applied in real data, the EDN may output unclosed curves, which
introduces potential interpretation bias. Furthermore, the results detected by fine-tuning
EDN did not show significant improvements. We can infer that the method exhibits a
deficiency in the deep optimization of the network. The selection of architecture and
hyperparameters is based on human experience and is a locally optimal choice. There is
more room for improvement in the future, such as using attention mechanism modules to
improve the network architecture. In future work, it is necessary to consider the changes
in the shape of the models and add more complex shape models such as ellipsoidal,
trapezoidal, crossing, dipping and bishop models.

Author Contributions: Conceptualization, H.C.; methodology, X.Z. and H.C.; software, X.Z. and
H.C.; validation, X.Z.; formal analysis, X.Z.; investigation, X.Z.; resources, Z.C.; data curation, X.Z.;
writing—original draft preparation, X.Z. and H.C.; writing—review and editing, Z.C., S.W. and
Z.O.K.; visualization, X.Z.; supervision, Z.C.; project administration, X.Z.; funding acquisition, Z.C.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China
(No. 42274183).

Data Availability Statement: The code can be found at the link https://github.com/forninezexy/
edge_detection_of_magnetic_source_by_resnet, accessed on 20 August 2024.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Wang, W.; Qiu, Z.; Yang, Y.; Shi, W. Some advances in the edge recognition of the potential field. Prog. Geophys. 2010, 25, 196–210.
2. Hood, P.; McClure, D. Gradient measurements in ground magnetic prospecting. Geophysics 1965, 30, 403–410. [CrossRef]
3. Bhattacharyya, B. Two-dimensional harmonic analysis as a tool for magnetic interpretation. Geophysics 1965, 30, 829–857.

[CrossRef]
4. Hood, P.J.; Teskey, D.J. Aeromagnetic gradiometer program of the Geological Survey of Canada. Geophysics 1989, 54, 1012–1022.

[CrossRef]

https://github.com/forninezexy/edge_detection_of_magnetic_source_by_resnet
https://github.com/forninezexy/edge_detection_of_magnetic_source_by_resnet
https://doi.org/10.1190/1.1439592
https://doi.org/10.1190/1.1439658
https://doi.org/10.1190/1.1442726


Remote Sens. 2024, 16, 4139 20 of 21

5. Sertcelik, I.; Kafadar, O. Application of edge detection to potential field data using eigenvalue analysis of structure tensor. J. Appl.
Geophys. 2012, 84, 86–94. [CrossRef]

6. Evjen, H. The place of the vertical gradient in gravitational interpretations. Geophysics 1936, 1, 127–136. [CrossRef]
7. Cordell, L. Gravimetric expression of graben faulting in Santa Fe country and the Espanola basin, New Mexico. In Proceedings of

the Guidebook to Santa Fe Country, 30th Field Conference, Santa Fe, NM, USA, 4–6 October 1979; pp. 59–64.
8. Nabighian, M.N. The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: Its properties and use for

automated anomaly interpretation. Geophysics 1972, 37, 507–517. [CrossRef]
9. Nabighian, M.N. Toward a three-dimensional automatic interpretation of potential field data via generalized Hilbert transforms:

Fundamental relations. Geophysics 1984, 49, 780–786. [CrossRef]
10. Miller, H.G.; Singh, V. Potential field tilt—A new concept for location of potential field sources. J. Appl. Geophys. 1994, 32, 213–217.

[CrossRef]
11. Verduzco, B.; Fairhead, J.D.; Green, C.M.; MacKenzie, C. New insights into magnetic derivatives for structural mapping. Lead.

Edge 2004, 23, 116–119. [CrossRef]
12. Wijns, C.; Perez, C.; Kowalczyk, P. Theta map: Edge detection in magnetic data. Geophysics 2005, 70, L39–L43. [CrossRef]
13. Hsu, S.-K.; Sibuet, J.-C.; Shyu, C.-T. High-resolution detection of geologic boundaries from potential-field anomalies: An enhanced

analytic signal technique. Geophysics 1996, 61, 373–386. [CrossRef]
14. Wang, W.; Pan, Y.; Qiu, Z. A new edge recognition technology based on the normalized vertical derivative of the total horizontal

derivative for potential field data. Appl. Geophys. 2009, 6, 226–233. [CrossRef]
15. Ma, G.; Huang, D.; Yu, P. Application of improved balancing filters to edge identification of potential field data. Chin. J. Geophys.

2012, 55, 4288–4295.
16. Yuan, Y.; Huang, D.N.; Yu, Q.L. Using enhanced directional total horizontal derivatives to detect the edges of potential-field full

tensor data. Chin. J. Geophys. 2015, 58, 2556–2565.
17. Yang, G. A new technique for potential-field data processing: Small subdomain filtering. Oil Geophys. Prospect. 1995, 30, 240–244.

(In Chinese)
18. Cooper, G.R.; Cowan, D.R. Edge enhancement of potential-field data using normalized statistics. Geophysics 2008, 73, H1–H4.

[CrossRef]
19. Wang, Y.; Wang, Z.; Zhang, F.; Zhang, J.; Tai, H.; Guo, C. Edge detection of potential field based on normalized vertical gradient

of mean square error ratio. J. China Univ. Pet. 2012, 36, 86–90.
20. Blakely, R.J.; Simpson, R.W. Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics 1986, 51,

1494–1498. [CrossRef]
21. Sykes, M.P.; Das, U.C. Directional filtering for linear feature enhancement in geophysical maps. Geophysics 2000, 65, 1758–1768.

[CrossRef]
22. Cordell, L.; Grauch, V. Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico. In

The Utility of Regional Gravity and Magnetic Anomaly Maps; Society of Exploration Geophysicists: Houston, TX, USA, 1985; pp.
181–197.

23. Dwivedi, D.; Chamoli, A. Source Edge Detection of Potential Field Data Using Wavelet Decomposition. Pure Appl. Geophys. 2021,
178, 919–938. [CrossRef]

24. Li, Q.; Li, Z.; Shi, Z.; Fan, H. Application of Helbig integrals to magnetic gradient tensor multi-target detection. Measurement 2022,
200, 111612. [CrossRef]

25. Prasad, K.N.D.; Pham, L.T.; Singh, A.P.; Eldosouky, A.M.; Abdelrahman, K.; Fnais, M.S.; Gómez-Ortiz, D. A Novel Enhanced
Total Gradient (ETG) for Interpretation of Magnetic Data. Minerals 2022, 12, 1468. [CrossRef]

26. Cutaneo, C.; Vitale, A.; Fedi, M. Unsupervised boundary analysis of potential field data: A machine learning method. Geophysics
2023, 88, G57–G65. [CrossRef]

27. Pham, L.T. A Stable Method for Detecting the Edges of Potential Field Sources. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–7.
[CrossRef]

28. Núñez-Demarco, P.; Bonilla, A.; Sánchez-Bettucci, L.; Prezzi, C. Potential-field filters for gravity and magnetic interpretation: A
review. Surv. Geophys. 2023, 44, 603–664. [CrossRef]

29. Liu, J.; Li, S.; Jiang, S.; Wang, X.; Zhang, J. Tools for Edge Detection of Gravity Data: Comparison and Application to Tectonic
Boundary Mapping in the Molucca Sea. Surv. Geophys. 2023, 44, 1781–1810. [CrossRef]

30. Gao, H. Study of Seismic Data Residual Statics and AI Denoising. Ph.D. Thesis, University of Science and Technology of China,
Hefei, China, 2018.

31. Wang, Y.; Lu, W.; Liu, J.; Zhang, M.; Miao, Y. Random seismic noise attenuation based on data augmentation and CNN. Chin. J.
Geophys. 2019, 62, 421–433.

32. Chen, B. Research on Denoising of Potential Field Data Based on Deep Convolutional Neural Network. Master’s Thesis, China
University of Geosciences, Beijing, China, 2020.

33. Aydogan, D. CNNEDGEPOT: CNN based edge detection of 2D near surface potential field data. Comput. Geosci. 2012, 46, 1–8.
[CrossRef]

34. Deng, H.; Hu, X.; Cai, H.; Liu, S.; Peng, R.; Liu, Y.; Han, B. 3D Inversion of Magnetic Gradient Tensor Data Based on Convolutional
Neural Networks. Minerals 2022, 12, 566. [CrossRef]

https://doi.org/10.1016/j.jappgeo.2012.06.005
https://doi.org/10.1190/1.1437067
https://doi.org/10.1190/1.1440276
https://doi.org/10.1190/1.1441706
https://doi.org/10.1016/0926-9851(94)90022-1
https://doi.org/10.1190/1.1651454
https://doi.org/10.1190/1.1988184
https://doi.org/10.1190/1.1443966
https://doi.org/10.1007/s11770-009-0026-x
https://doi.org/10.1190/1.2837309
https://doi.org/10.1190/1.1442197
https://doi.org/10.1190/1.1444860
https://doi.org/10.1007/s00024-021-02675-5
https://doi.org/10.1016/j.measurement.2022.111612
https://doi.org/10.3390/min12111468
https://doi.org/10.1190/geo2022-0146.1
https://doi.org/10.1109/TGRS.2024.3388294
https://doi.org/10.1007/s10712-022-09752-x
https://doi.org/10.1007/s10712-023-09784-x
https://doi.org/10.1016/j.cageo.2012.04.026
https://doi.org/10.3390/min12050566


Remote Sens. 2024, 16, 4139 21 of 21

35. Araya-Polo, M.; Dahlke, T.; Frogner, C.; Zhang, C.; Poggio, T.; Hohl, D. Automated fault detection without seismic processing.
Lead. Edge 2017, 36, 208–214. [CrossRef]

36. Wu, X.; Liang, L.; Shi, Y.; Fomel, S. FaultSeg3D: Using synthetic data sets to train an end-to-end convolutional neural network for
3D seismic fault segmentation. Geophysics 2019, 84, IM35–IM45. [CrossRef]

37. Puzyrev, V. Deep learning electromagnetic inversion with convolutional neural networks. Geophys. J. Int. 2019, 218, 817–832.
[CrossRef]

38. Liu, B.; Guo, Q.; Li, S.; Liu, B.; Ren, Y.; Pang, Y.; Guo, X.; Liu, L.; Jiang, P. Deep learning inversion of electrical resistivity data.
IEEE Trans. Geosci. Remote Sens. 2020, 58, 5715–5728. [CrossRef]

39. Wu, B.; Meng, D.; Wang, L.; Liu, N.; Wang, Y. Seismic impedance inversion using fully convolutional residual network and
transfer learning. IEEE Geosci. Remote Sens. Lett. 2020, 17, 2140–2144. [CrossRef]

40. Zhang, Z.; Lu, R.; Liao, X.; Xu, Z.; Qiao, Z.; Fan, X.; Yao, Y.; Shi, Z.; Liu, P.; Lu, S. Inversion of magnetic anomaly and magnetic
gradient anomaly based on fully convolution network. Prog. Geophys. 2021, 36, 325–337.

41. Zhang, Z.; Liao, X.; Cao, Y.; Hou, Z.; Fan, X.; Xu, Z.; Lu, R.; Feng, T.; Yao, Y.; Shi, Z. Joint gravity and gravity gradient inversion
based on deep learning. Chin. J. Geophys. 2021, 64, 1435–1452.

42. Zhang, Z.; Yao, Y.; Shi, Z.; Wang, H.; Qiao, Z.; Wang, S.; Qin, L.; Du, S.; Luo, F.; Liu, W. Deep learning for potential field edge
detection. Chin. J. Geophys. 2022, 65, 1785–1801.

43. Zhang, J.; Lin, S.; Ding, L.; Bruzzone, L. Multi-scale context aggregation for semantic segmentation of remote sensing images.
Remote Sens. 2020, 12, 701. [CrossRef]

44. Guo, M.; Liu, H.; Xu, Y.; Huang, Y. Building extraction based on U-Net with an attention block and multiple losses. Remote Sens.
2020, 12, 1400. [CrossRef]

45. Li, Z.; Li, Y.; Wu, X.; Liu, G.; Lu, H.; Tang, M. Hollow village building detection method using high resolution remote sensing
image based on CNN. Trans. Chin. Soc. Agric. Mach 2017, 48, 160–165.

46. Pan, X.; Yang, F.; Pan, G. Extraction of Residential Areas in GF-1 Remote Sensing Images Based on Improved Fully Convolutional
Network. Telecommun. Eng. 2018, 58, 119–125.

47. Wang, Y.; Chen, C.; Ding, M.; Li, J. Real-time dense semantic labeling with dual-Path framework for high-resolution remote
sensing image. Remote Sens. 2019, 11, 3020. [CrossRef]

48. Lan, M.; Zhang, Y.; Zhang, L.; Du, B. Global context based automatic road segmentation via dilated convolutional neural network.
Inf. Sci. 2020, 535, 156–171. [CrossRef]

49. Shi, Y.; Wu, X.; Fomel, S. SaltSeg: Automatic 3D salt segmentation using a deep convolutional neural network. Interpretation 2019,
7, SE113–SE122. [CrossRef]

50. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of
the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich,
Germany, 5–9 October 2015; Part III 18. pp. 234–241.

51. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

52. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings
of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456.

53. Xu, B.; Wang, N.; Chen, T.; Li, M. Empirical evaluation of rectified activations in convolutional network. arXiv 2015,
arXiv:1505.00853.

54. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef]

55. Guo, Z.H.; Guan, Z.N.; Xiong, S.Q. Cuboid ∆T and its gradient forward theoretical expressions without analytic odd points. Chin.
J. Geophys. 2004, 47, 1277–1285.

56. Wu, X. Study Igneous Rock Distribution of Northern South China Sea by Using Gravity and Magnetic Method. Master’s Thesis,
Chengdu University of Technology, Chengdu, China, 2016.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1190/tle36030208.1
https://doi.org/10.1190/geo2018-0646.1
https://doi.org/10.1093/gji/ggz204
https://doi.org/10.1109/TGRS.2020.2969040
https://doi.org/10.1109/LGRS.2019.2963106
https://doi.org/10.3390/rs12040701
https://doi.org/10.3390/rs12091400
https://doi.org/10.3390/rs11243020
https://doi.org/10.1016/j.ins.2020.05.062
https://doi.org/10.1190/INT-2018-0235.1
https://doi.org/10.1109/TPAMI.2016.2644615

	Introduction 
	Edge Detection Method by Deep Learning 
	The Feasibility of Edge Detection by Deep Learning 
	Network Structure Design 
	U-Net Edge Detection Network 
	Convolution Block Stacking Edge Detection Network 
	ResNet Edge Detection Network 

	Dataset and Network Training 
	Establishment of Magnetic Anomaly Dataset 
	Training Process 
	Evaluation Indicator 

	Data Tests 
	Double Combined Model 
	Quadruple Combined Model 
	Overlap Model 
	Sphere Model 
	Real Data 

	Conclusions 
	References

