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Abstract: This paper presents an improved algorithm for retrieving ocean surface currents from
X-band marine radar images. The original polar current shell (PCS) method begins with a 3D fast
Fourier transform (FFT) of the radar image sequence, followed by the extraction of the dispersion shell
from the 3D image spectrum, which is then transformed into a PCS using polar coordinates. Building
on this foundation, the improved approach is to analyze all data points corresponding to different
wavenumber magnitudes in the PCS domain rather than analyzing each specific wavenumber
magnitude separately. In addition, kernel density estimation (KDE) to identify high-density directions,
interquartile range filtering to remove outliers, and symmetry-based filtering to further reduce noise
by comparing data from opposite directions are also utilized for further improvement. Finally, a
single curve fitting is applied to the filtered data rather than conducting multiple curve fittings as
in the original method. The algorithm is validated using simulated data and real radar data from
both the Decca radar, established in 2008, and the Koden radar, established in 2017. For the 2008
Decca radar data, the improved PCS method reduced the root-mean-square deviation (RMSD) for
speed estimation by 0.06 m/s and for direction estimation by 3.8° while improving the correlation
coefficients (CCs) for current speed by 0.06 and direction by 0.07 compared to the original PCS
method. For the 2017 Koden radar data, the improved PCS method reduced the RMSD for speed by
0.02 m/s and for direction by 4.6°, with CCs being improved for current speed by 0.03 and direction
by 0.05 compared to the original PCS method.

Keywords: ocean current measurement; PCS algorithm; X-band marine radar; signal processing

1. Introduction

The retrieval of ocean surface currents plays a crucial role in a variety of marine
applications, including navigation, coastal monitoring, Search-and-Rescue (SR) missions,
oil spill response, and marine debristracking [1,2]. Traditional methods for measuring
ocean surface currents, such as drifting buoys [3,4], acoustic doppler current profilers
(ADCPs) [5,6], and current meters [7], although useful for providing localized current data,
have significant limitations. These methods are often costly to deploy, complex to maintain,
limited in spatial coverage, and challenging to operate continuously in harsh marine
environments. The data they collect are typically point-based, which fail to capture the
broader dynamics of ocean currents over large areas [8]. With advancements in technology,
remote sensing offers the capability to provide large-scale, real-time, and continuous
surface current data, allowing researchers to gather comprehensive flow information
without direct contact with the ocean [9]. This significantly enhances the efficiency and
spatial coverage of data acquisition [10]. Several types of sensors, such as high-frequency
(HF) radars [11–13], X-band marine radars [14], satellite altimeters [15], and synthetic
aperture radars (SAR) [16], have commonly been used in remote sensing to measure ocean
surface currents in recent years. Compared to other remote sensing sensors, X-band radars
hold significant advantages when monitoring ocean surfaces within a range of several
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kilometres [17]. Their high spatial and temporal resolution allows for the precise tracking of
small-scale current [18], wind [19,20], and wave dynamics [21–24]. The ease of deployment,
lower maintenance requirements, and cost-effectiveness of X-band radars further enhance
their practicality for ocean surface measurements [25].

When an X-band radar transmits electromagnetic waves, they interact with the ocean
surface waves that match the Bragg scattering condition, where the radar wavelength is
twice that of the ocean waves. This scattering mechanism amplifies the backscatter signal,
which can provide detailed information about the sea surface. It is found that the motion of
the surface waves influenced by currents will cause an extra Doppler shift in the frequency
of the backscattered signals [9]. Based on this principle, several algorithms have been
developed for retrieving ocean currents from X-band radar data. Traditional approaches
include the least-squares (LS) curve-fitting technique [9], the iterative LS (ILS) approach [26],
the weighted least-squares (WLS) method [27], the dispersive surface classificator (DiSC)
method [28], and the normalized scalar product (NSP) procedure [14]. A more recent
development is the polar current shell (PCS) method [29], which transforms radar image
spectra into polar coordinates for surface current retrieval. This method offers a robust
alternative to previous approaches by providing a more structured framework for current
estimation. Dual-polarized radar systems have also been shown to improve current retrieval
accuracy, with certain sea state conditions benefiting from vertical polarization [30]. Chen
et al. [31] demonstrated an improved cross-spectral correlation approach for deriving sea
surface currents from X-band marine radar images, providing another robust method
comparable to traditional fast Fourier transform (FFT)-based methods. In a recent study by
Wu et al. [32], the local phase gradient-based method is employed to effectively estimate
spatial currents despite the complex circulation patterns inherent to bay areas. Moreover,
Wang et al. [33] demonstrated the application of machine learning algorithms, including
linear regression and neural networks, to enhance the estimation of surface current from
radar data. With the maturation of technology, X-band marine radars have also developed
several commercial applications for current measurements, such as WaMos II [34]. This
system provides real-time, high-resolution current data under various weather conditions
and is widely used in marine engineering. For instance, Derkani et al. [35] utilized WaMoS
II during the Antarctic Circumnavigation Expedition to collect wave spectra and surface
current data, applying calibration methods to improve data accuracy and validating the
results with satellite observations.

Despite these advancements, challenges remain in current retrieval, especially when
dealing with noisy datasets or outliers that can degrade the accuracy of the results. In
low-sea-state conditions, traditional radar methods (e.g., ILS and NSP) struggle due to the
lower signal-to-noise ratios of radar backscatter from calm sea surfaces, as noted by Huang
et al. [36]. The original PCS method, while robust in many scenarios, can produce inaccurate
results when the number of valid data points for curve fitting is insufficient or when
noise is prevalent. Moreover, inaccurate current estimation may affect subsequent wave
parameter estimations [37,38]. This limitation underscores the necessity for an improved
PCS algorithm that addresses these issues. In response, this paper introduces an improved
PCS algorithm with several key enhancements. The improved algorithm incorporates an
outlier rejection process to filter noise before curve fitting, as well as a unified fitting method
that considers the entire dataset collectively, reducing localized errors. Symmetry-based
noise filtering is also introduced according to the symmetry of Doppler-shifted dispersion
shells, further refining the results. These improvements have been validated using both
simulated and real radar data, showing significant gains in accuracy without adding to the
computational complexity.

The structure of this paper is as follows: Section 2 details the original PCS method,
followed by Section 3, which presents the specific improvements made to the PCS algo-
rithm. Section 4 provides performance validation through simulations, while Section 5
applies the improved method to real-world radar data. Finally, Section 6 concludes with
recommendations for further research and potential future improvements.
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2. The PCS Current Algorithm

The PCS algorithm [29] provides an efficient approach for estimating ocean surface
currents using X-band marine radar data by transforming radar image spectra into polar
coordinates. The detailed current retrieval processes are described as follows.

2.1. Image Spectrum Generation

The process starts by selecting a sequence of sub-regions (I ∈ Rx×y×t) from the original
radar images, where x × y defines the spatial dimensions of each sub-image, and t is the
number of images in the sequence, representing the temporal dimension. In this work, x, y,
and t are equal to 128, 128, and 32. To enhance contrast and minimize background noise,
the mean intensity of each sub-region is subtracted from the pixel values. Next, to reduce
the Gibbs phenomenon, a tapering function is applied. The frequency resolution is then
improved by applying zero-padding, expanding the data dimensions to 256 × 256 × 256.
This zero-padding size was chosen based on balancing the computational load spectral
resolution. The power spectrum, P0(kx, ky, ω), is finally derived by squaring the spectral
amplitude obtained from the three-dimensional (3D) FFT.

2.2. Dispersion Shell Identification

The dispersion shell is identified based on the linear (fundamental) wave dispersion
relationship, assuming deep water conditions. The dispersion relation, including the effect
of ocean currents, is given by

ω =
√

gk + k⃗ · U⃗ (1)

where ω is the angular frequency, which includes the Doppler shift from the current, g
is the gravitational acceleration, k =

√
k2

x + k2
y is the wavenumber magnitude, U⃗ is the

surface current velocity vector, and k⃗ · U⃗ = kU cos(θ) is the Doppler shift caused by the
ocean current, with θ being the angle between the current direction and the wave vector
direction.

For each wavenumber vector (kx, ky) in the wavenumber plane, a series of angular
frequencies (ω1, ω2, . . . , ω128) is associated. If the maximum energy within this set is lower
than a predefined threshold, P, the corresponding set (ω1, ω2, . . . , ω128) is discarded. For
wavenumber vectors where the maximum energy exceeds the threshold, P, only one specific
triplet (kx, ky, ωi) corresponds to the ocean wave component that lies on the dispersion
shell. This angular frequency, ωi, is identified by detecting the most prominent energy
peak in the series of frequencies for each wavevector. This procedure is applied to all
wavenumber vectors (kx, ky), ultimately extracting the dispersion shell, ω(kx, ky).

2.3. Conversion to Polar Coordinates

Based on the fundamental relation, the frequency shift caused by the surface current
is given by

ωU = k⃗ · U⃗ = kU cos(θ) (2)

where ωU is the Doppler-shifted angular frequency due to the current, k is the wavenumber
magnitude, U is the magnitude of the surface current speed, and θ is the angle between the
wave vector and the current direction.

Next, the Cartesian current shell, ωU(kx, ky), is transformed into polar coordinates

to form the polar current shell, denoted as ωU(k, θk), where k =
√

k2
x + k2

y is the radial
wavenumber, and θk represents the direction of the wave vector in polar coordinates. This
transformation allows for easier analysis of the surface current effects by examining the
data along specific radii and angular directions.
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2.4. Current Estimation Through Curve Fitting

To estimate the surface current, Grubbs’ test [39] is applied to remove outliers along
each radial direction. After eliminating the outliers, least-squares curve fitting is performed
along the circumferential direction for each fixed radial wavenumber k. The fitting uses
a sinusoidal model to determine the current speed, U, and direction, ϕU , minimizing the
error cost function. The model function for curve fitting is given by

f (U, θ) =
ωU
k

= U cos θ = U cos(θk − ϕU) (3)

The error cost function, which is minimized during the fitting process, is expressed as

E =
Nd

∑
d=1

[ωUd

k
− U cos(θkd

− ϕU)
]2

(4)

where Nd is the number of points on the shell extracted in the circumferential direction for
a specific k, θkd

is the wavevector direction, and ϕU is the surface current direction.
If the number of extracted shell points, Nd, for a specific wavenumber k is less than

10, the curve-fitting process for that k is terminated, and no results are retrieved for that
wavenumber. The angle corresponding to the maximum value of the estimated function,
f (U, θ), is taken as the current direction, and the amplitude of the sinusoidal function
represents the current speed. Finally, by averaging the results across different wavenumber
magnitudes, a robust estimate of the current parameters is obtained.

2.5. Limitation Analysis

Based on our experiment, it was found that the original PCS method has some lim-
itations. First, while Grubbs’ test is used to detect outliers, not all instances of noise or
aliasing appear as clear outliers. Second, curve fitting in the original method for a specific
wavenumber k will be terminated if the number of data points available is less than 10,
leading to a loss of potentially valuable data. This is not favorable, especially for sparse
datasets. Since no fitting results are generated for these k-values, the accuracy of the
method may be reduced. Moreover, if a specific k-value is strongly affected by noise, the
fit result may be significantly biased. Then, during the final averaging step, these biased
results can significantly affect the overall estimation, leading to a deviation from the true
current parameters.

3. Improved PCS Method

Considering the potential issues with the original method, the improved PCS method
incorporates several enhancements to increase the algorithm’s accuracy and robustness.
The original PCS method also has certain limitations, as discussed in Section 4. It is worth
noting that the improved method performs an analysis for all wavenumber magnitudes
within the polar current shell rather than conducting filtering and curve fitting for each
wavenumber magnitude separately. The key improvements include better noise filtering,
outlier rejection, and single curve fitting. These advancements address limitations in the
original method, improving the precision of ocean current estimation.

3.1. Kernel Density Estimation-Based Direction Filtering

The kernel density estimation (KDE) technique [40] is applied to estimate the density of
the initial unfiltered data (zi) across all values of k in a specific direction, i, i = 1, 2, 3, . . . , 360.
As for the observed data points zi in the ith direction, the estimated density, f̂i(x), at a any
point x within the domain of input data can be expressed as

f̂i(x) =
1

nh

Ns

∑
s=1

K
(

x − zis
h

)
(5)
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where zis is the sth data point in zi, zi = [zi1 , zi2 , . . . , ziNs
], Ns is the number of points in

zi, h is the bandwidth parameter obtained by Silverman’s rule [41], which can control the
smoothness of the density estimate, and K is the Gaussian kernel function in this study.
After calculating the density in each direction, data points, denoted as z′i, within the range
where the density in each direction exceeds half of the maximum density ( f̂ max

i (x) =

max( f̂i(x))) are retained for further processing. Thus, the filtered data in all directions can
be expressed as

Z′ = [z′1; z′2; z′3; . . . ; z′360], (6)

and the mean max density in all directions can be given by

f̄ max(x) =
∑360

i=1( f̂ max
i (x))

360
(7)

Then, those directions in f̂ max
i (x) where the corresponding density value exceeds 60%

of f̄ max(x) are identified, and all data along these selected directions are extracted from Z′.
The selected data can be denoted as Z′

f 1 and utilized and analyzed for the following steps.
This filtering step significantly reduces the influence of outliers and noise before the

next filtering stage. By focusing on high-density regions, the algorithm ensures that the
most reliable data are retained, improving the overall accuracy of current estimation.

3.2. Interquartile Range Noise Filtering

Once the high-density directions are identified from the filtered dataset, Z′
f 1, obtained

from the KDE process, interquartile range (IQR) filtering [42] is applied as the next step to
further refine the dataset. This filtering technique is used to remove outliers from the data
in each direction, ensuring that the data better represent the underlying distribution.

For each direction, the interquartile range is calculated as

IQR = Q3 − Q1 (8)

where Q1 is the 25th percentile (lower quartile) and Q3 is the 75th percentile (upper quartile)
of the data points Z′

f 1. Data points are considered outliers if they fall below the lower
bound or above the upper bound, defined as

Lower bound = Q1 − 1.5 × IQR (9)

Upper bound = Q3 + 1.5 × IQR (10)

Any data points Z′
i from Z′

f 1 that fall outside the range [Lower bound, Upper bound]
are considered noise or outliers and are removed. The resulting filtered dataset after
applying IQR filtering is denoted as Z′

f 2.
This step ensures that outliers within the high-density regions are removed, further

refining the dataset. Since the noise is significantly reduced, the filtered result Z′
f 2 can

improve the accuracy of subsequent curve fitting.

3.3. Symmetry-Based Opposite-Direction Noise Reduction

After the interquartile range (IQR) filtering in step 3.2, which identified and removed
outliers from the dataset Z′

f 1, symmetry-based opposite-direction noise reduction is applied.
This step aims to reuse data points that may have been filtered out in the previous steps but
are deemed reliable due to their symmetric counterparts in the data. At the same time, it
also filters out data that do not satisfy the symmetry conditions, further refining the dataset.

The symmetry principle dictates that wavevectors that are symmetric around the
origin should experience Doppler shifts of equal magnitude but with opposite signs [43].
For each pair of wavevectors k⃗(kx, ky), its symmetric counterpart can be expressed as
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k⃗′(−kx,−ky). According to Equation (2), the Doppler shift of the symmetric counterpart
k⃗′(−kx,−ky) becomes

ω′
u = −kU cos(θ) (11)

In an ideal, noise-free scenario, the sum of the Doppler shifts for symmetric wavevec-
tors should be zero, i.e.,

ωu + ω′
u = 0 (12)

Figure 1 shows an example of the (a) intrinsic and (b) Doppler-shifted dispersion shells
in the (kx, ky, ω) domain. A and B are two spectral points for two wavevectors symmetric
about the origin of the wavenumber plane. In Figure 1a, their angular frequencies are
shown to be the same, which are both ω0. In Figure 1b, the Doppler shift of A is ωuA , and
the Doppler shift of B is ωuB . In addition, the sum of ωuA and ωuB should be zero under
ideal conditions.

Figure 1. An example of the (a) intrinsic and (b) Doppler-shifted dispersion shells in the (kx, ky, ω)
domain. Different colors represent the different ω values.

In addition, Doppler shifts per unit wavenumber can be expressed by dividing both
terms by k:

ωu

k
+

ω′
u

k
= 0 (13)

In this step, the algorithm calculates the difference in Doppler shifts per unit wavenum-
ber between each pair of symmetric wavevectors:

Sω (⃗k, k⃗′) =
∣∣∣∣ωu

k
+

ω′
u

k

∣∣∣∣ (14)

If the calculated difference, Sω (⃗k, k⃗′), is below a predefined threshold, the data point is
retained. Specifically, the range of k values filtered out in Section 3.2 is within the bounds
of [Lower bound, Upper bound]. Therefore, for the wavevector k⃗′ symmetric to k⃗, the
threshold for k′ is set within the bounds of [−Upper bound,−Lower bound]. This ensures
that the symmetry between k⃗ and k⃗′ is maintained, and that only data points satisfying this
condition are retained for further analysis.

This step ensures that any data points conforming to the symmetry principle are
retained, while noise and inconsistencies are further filtered out. The final filtered dataset
after applying this symmetry-based noise reduction is denoted as Z′

f 3. This refined dataset
provides a more reliable basis for subsequent curve fitting.
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3.4. Unified Curve Fitting for Filtered Data

After the data have been filtered, the improved PCS method applies a unified curve-
fitting process to all the filtered data points, k1, k2, . . . , km, which is the same as the curve-
fitting process explained in Section 2.4. Unlike the original PCS method, where curve
fitting was performed separately for different radii k, the improved method fits a single
sinusoidal curve to the entire filtered dataset, Z′

f 3. This approach minimizes the potential
for localized fitting errors and ensures that the final current speed and direction estimates
are more consistent and accurate across the entire wave spectrum. Unified fitting also helps
to reduce the impact of aliasing by incorporating a broader range of reliable data into the
curve-fitting process.

4. Experiments and Results
4.1. Experiment on Simulated Data

In this section, experiments were conducted using radar data simulated under two
different antenna rotation speeds (RPM: 24 and 48). The simulated radar data are generated
using a modified Pierson–Moskowitz (P-M) wave spectrum [44] integrated with a cardioid
directional spreading function [45]. The PM spectrum models a fully developed sea, and it
has been widely used [46,47].

To simulate ocean current effects, additional parameters were introduced into the
dataset to include surface currents with specific speeds and directions. The simulated
dataset includes two files: one corresponding to an antenna rotation speed of 24 RPM,
along with a current speed range between 0.5 and 10 m/s with a current direction of 150°,
and another file with a 48 RPM rotation speed, covering a current speed range from 0.5
to 15 m/s and a current direction of 180°. Since the experiment considers simulations of
radar measurements under different vessel speeds, the range of input current speeds in
this experiment is larger than that of the usual current speed. These files were processed
using three different methods, PCS, improved PCS, and NSP, to evaluate each method’s
performance under different sea state conditions.

4.1.1. Limitation Analysis and Improvement

To analyze the limitations of the original PCS method and demonstrate the improve-
ments introduced by the improved PCS method, one radar image file from the 24 RPM
simulated data series, as shown in Figures 2 and 3, is selected as an example. The current
speed in this simulation is 7.5 m/s, and the current direction is 150°.

(a) Analysis of Original PCS Results

Figure 2a shows all the data after being converted to the PCS domain, plotted against
different k values. This represents the raw data before any outlier removal or filtering is
applied. The spread of data points indicates significant noise and aliasing, especially at
higher k values. Figure 2b presents the data after applying the original PCS method’s outlier
removal process. Here, some of the noise has been removed by the original PCS method,
but outliers are still present, particularly in regions with higher variability, suggesting that
the original outlier removal process is not fully effective. Figure 2c shows the curve-fitting
results for different k vectors after applying the original PCS method. The curve fitting
is highly impacted by the remaining outliers and noise, leading to significant deviations
in current speed and direction estimations. Although averaging all the fitted results can
improve the results a little bit, the overall poor fit highlights the limitations of the original
PCS method in handling low-RPM scenarios and noisy data.

(b) Analysis of Improved PCS Results

Figure 3a shows all the data after being converted to the PCS domain, similar to
Figure 2a. This serves as the starting point before applying any filtering or noise reduction
techniques in the improved PCS method. The data still exhibit significant noise and
variability, particularly at higher k values. Figure 3b presents the data after applying
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KDE-based direction filtering. KDE helps to highlight the most probable directions by
reducing the influence of extreme outliers, resulting in a more concentrated and reliable
data distribution compared to the unfiltered data in Figure 3a. Figure 3c shows the data
after applying interquartile range (IQR) noise filtering. The IQR filtering process further
refines the data by removing points that fall outside the interquartile range, which are likely
to be noise or outliers. The data appear more consistent and aligned, indicating a significant
reduction in noise. Figure 3d shows the data after restoring certain points filtered out by
the IQR method. Specifically, points that had been removed due to their low density but
satisfy the symmetry with high-density directional values are recovered. This results in a
dataset that is both clean and retains important symmetric information, making it more
comprehensive than the one shown in Figure 3c.

Finally, Figure 3e presents the unified curve fitting for the filtered data. After applying
all the filtering techniques, the final curve-fitting process is applied, resulting in a smooth,
well-fitted curve that accurately represents the current speed and direction. The improved
PCS method’s curve fitting is much more precise compared to the original method, as
shown by the reduced deviation and noise.

The improved PCS method significantly reduces the influence of outliers and noise, as
evidenced by the tighter clustering of data points and the smoother curve fitting observed
in the final result. The aliasing effects seen in the original method have also been largely
mitigated, providing a more accurate representation of the current speed and direction.
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Figure 2. (a) Description of all the data after converting to the polar current shell (PCS) domain.
(b) Description of the data after applying the original PCS method’s outlier removal process. (c) De-
scription of the curve-fitting results for different k vectors. Different colors correspond to different
values of wavenumber k.
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Figure 3. Description of (a) all the data after converting to the PCS domain, (b) kernel density estima-
tion (KDE)-based direction-filtering result, (c) interquartile range noise filtering result, (d) symmetry-
based opposite direction noise reduction result, and (e) unified curve fitting for filtered data.

4.1.2. Analysis of the Results

The results are shown in Figure 4 and Table 1, which illustrate the performance of the
original and improved PCS methods under two different RPM conditions (24 and 48 RPM).

In Figure 4, different methods are represented by distinct markers: a blue * indicates
the results of the NSP method, a black x represents the results of the original PCS method,
and red circles stand for the results of the improved PCS method. The solid line represents
the true values. The graphs depict the retrieved current speed and direction against the
input speed for two different rotation speeds, 24 RPM and 48 RPM. Table 1 presents the
error analysis of the simulated data, including the correlation coefficient (CC) and RMSD
for speed and direction estimates. It shows the performance of each method in terms
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of speed and direction accuracy across different RPM values. A noticeable observation
from Figure 4 and Table 1 is that the original PCS method exhibits significant errors at
24 RPM, particularly in current speed estimation. The improved PCS method, in contrast,
consistently delivers better accuracy, as reflected in the smaller RMSD values and higher
correlation with the true values.
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Figure 4. (a) Retrieved current speed versus input speed at revolutions per minute (RPM) = 24.
(b) Retrieved current direction versus input speed at RPM = 24. (c) Retrieved current speed versus
input speed at RPM = 48. (d) Retrieved current direction versus input speed at RPM = 48.

Table 1. Error analysis of simulated data.

File RPM Method
CC RMSD

Current Speed Range [m/s] Current Direction [°]
Speed Direction Speed [m/s] Direction [°]

1 24

PCS 0.93 1 0.86 2.8

0.5–10 150Improved PCS 1 1 0.07 0.8

NSP 0.96 1 0.09 0.9

2 48

PCS 1 1 0.06 0.7

0.5–15 180Improved PCS 1 1 0.04 0.4

NSP 1 1 0.08 1.1

(a) Estimated Result Comparison at 24 RPM

At 24 RPM, as shown in Figure 4a,b, the original PCS method suffers from noticeable
deviations in both speed and direction estimates. Specifically, the speed estimate tends
to diverge significantly as the input speed increases beyond 5 m/s, as illustrated by the
blue x in Figure 4a. The improved PCS method, represented by red circles, significantly
reduces these deviations, providing results much closer to the true values (the solid line).
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This is further confirmed in Table 1, where the speed RMSD of the improved PCS method
is 0.07 m/s and 0.86 m/s for the original PCS.

For current direction, as shown in Figure 4b, the original PCS method still maintains
relatively consistent direction estimates, but deviations become more pronounced at higher
input speeds. The improved PCS method also performs better than the original, with an
RMSD of 0.8° compared to 2.8° for the original PCS. The green x representing the NSP
method also provides more accurate estimates than the original PCS but is less accurate
than the improved PCS method.

The increased error in the original PCS method at 24 RPM can be attributed to the
lower temporal resolution associated with the slower antenna rotation speed. At 24 RPM,
fewer radar sweeps are performed per second, which reduces the temporal frequency of
the data collection. This limitation particularly affects high-speed currents, where rapid
changes in current speed and direction are harder to capture with fewer data points. As
the input current speed increases beyond 5 m/s, the original PCS method struggles to
accurately track these rapid variations, leading to significant deviations in both speed and
direction estimates.

(b) Estimated Result Comparison at 48 RPM

At 48 RPM, the performance of the original PCS method improves, as depicted in
Figure 4c,d. The speed and direction estimates become more reliable compared to the
results at 24 RPM, with an RMSD of 0.06 m/s for speed and 0.7° for direction. However, the
improved PCS method still shows less error, with an RMSD of 0.04 m/s for speed and 0.4°
for direction, as shown in Table 1. The green x representing the NSP method also provides
reasonable accuracy but remains less effective than the improved PCS method.

Overall, the improved PCS method consistently outperforms both the original PCS
and NSP methods, particularly at lower RPMs. The improved PCS method demonstrates
higher accuracy in both speed and direction estimates, with significantly lower RMSD
values across different conditions. These results suggest that the improved PCS method is
more robust and reliable for retrieving ocean currents from X-band radar data, especially
in low-RPM scenarios.

4.2. Experiment on Real Data

This section provides an overview of the real-world validation performed using radar
data from various sea trials.

4.2.1. Analysis of Decca Radar Data
(a) Data Description

The first dataset analyzed in this study was provided by Defence Research and Devel-
opment Canada (DRDC) and collected during a sea trial from 25 November to 4 December
2008, approximately 220 km off the coast of Halifax. The experiment utilized HH-polarized
shipborne Decca marine radars, operating at a frequency of 9.41 GHz and covering a full
360° azimuth. For the purpose of this study, the radar data had a maximum range of 2160 m
and a resolution of 7.5 m. Excluding the completely black images with no wave signature
caused by system errors, a total of 2041 radar images were analyzed. The radar signals
were processed using the Wave Monitoring System II (WaMoS II), which digitized them
into 8-bit image intensities. The surface current data obtained from the WaMoS II system
serve as a reference for validating the accuracy of our algorithm in estimating ocean surface
currents.

(b) Comparison of Encounter Current Velocity Estimation

Since the radar data were collected from a moving ship in this study, the encounter
current is analyzed first. Encounter current refers to the relative current experienced by the
moving ship, as it moves through the sea. This is the combined effect of the actual surface
current and the movement of the ship itself. The comparison of the encounter current
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estimation results between the improved PCS, PCS, and NSP methods is shown in Figure 5.
The range of −40° to 400° in Figure 5b is set to avoid oscillations or abrupt changes in the
estimated direction near the 0° and 360° boundaries. Directional data often wrap around at
0° or 360°, which can cause sudden jumps or oscillations when visualized. By extending
the range beyond the typical 0–360° range, this issue is mitigated, allowing for a smoother
representation of the directional estimates.
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Figure 5. (a) Comparison of encounter current speed and (b) encounter current direction obtained
from Decca radar data.

According to Table 2, the CC between the speed estimates from the improved PCS
method and the reference WaMos data is 0.99, which is higher than that (0.92) of the original
PCS method and that (0.91) of the NSP method. The improved PCS algorithm has an RMSD
of 0.38 m/s, whereas the original PCS and NSP methods show higher RMSD values of
0.51 m/s and 1.14 m/s, respectively. The improved PCS estimates are closely aligned
with the reference WaMos data, while the original PCS and NSP methods shows higher
deviations, particularly in areas with significant speed changes. Higher CC and lower
RMSD values were obtained for the improved PCS method.

Table 2. Error analysis of encounter current estimation based on 2008 radar data.

Method
CC RMSD

Speed Direction Speed [m/s] Direction [°]

Improved PCS 0.99 0.93 0.38 20.3

PCS 0.92 0.90 0.51 24.6

NSP 0.91 0.91 1.14 25.2

The improved PCS method has a CC of 0.93 for current direction and is superior to
the PCS (0.90) and NSP (0.91) methods. For RMSD, the improved PCS algorithm has the
lowest error of 20.3°, compared to 24.6° for PCS and 25.2° for NSP. Figure 5b demonstrates
that the original PCS method shows some deviation in sections with directional shifts. In
contrast, the improved PCS method aligns with the WaMos reference.
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(c) Motion Compensation

To accurately estimate the surface current from the radar data, it is essential to account
for the ship’s motion by subtracting the ship’s speed from the encounter current (Uen).
However, as noted by Bell et al. [48], inconsistencies in the ship’s speed within certain
radar image sequences can create difficulties in determining the true ship speed. Figure 6
shows an example of these inconsistencies in ship speed data recorded during the radar
data collection process.

Figure 6. Ship speed recorded during the radar data collection process.

Bell et al., proposed a method for georeferencing radar data by correcting ship heading
errors using high-resolution GPS and heading data, synchronized with the ship’s network.
Lund et al. [49,50] expanded this approach by applying georeferencing to each radar
pulse individually, accounting for ship motion and heading variations. Gangeskar [25]
demonstrated the effectiveness of real-time motion compensation using vessel motion
data (e.g., GPS, gyroscope) to ensure accurate radar-derived surface current estimates,
even in moving installations. Together, these methods greatly enhance radar accuracy in
dynamic environments.

Building on these methods, the starting position, ship speed, and heading for each
radar image sequence are used in our approach. Each radar pixel is mapped to a geographic
reference frame, from which sub-image sequences are extracted to enhance the accuracy of
motion compensation during surface current estimation.

Figure 7 shows the effect of motion compensation. In Figure 7a, the sub-region is
extracted from the radar image before motion compensation, where distortions are visible
due to vessel movement. In contrast, Figure 7b presents the same sub-region after applying
motion compensation, showing a clearer and more stable region. The compensation process
corrects the distortions caused by the ship’s movement, providing more accurate data for
further analysis.
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(a) (b)
Figure 7. (a) The extracted sub-region (framed in yellow square) before motion compensation. (b) The
extracted sub-region (framed in yellow square) after motion compensation.

(d) Surface Current Estimation Analysis

After applying motion compensation to eliminate the effects of ship movement, the sur-
face current was directly extracted from the motion-compensated radar imagery. Figure 8a
shows the comparison of surface current speed, and Figure 8b displays the comparison
of surface current direction. The results are based on sub-regions of the radar image that
have been motion-compensated, ensuring that errors caused by ship movement have been
minimized. In Figure 8a, the improved PCS method closely follows the true values, with
fewer fluctuations and deviations, especially in regions where the surface current speed
changes rapidly, while the original PCS method and NSP method exhibit larger discrepan-
cies. Similarly, in Figure 8b, the improved PCS method delivers a more precise estimation
of surface current direction, particularly in regions with sharp directional changes. The
original PCS and NSP methods, even after motion compensation, struggle to maintain the
same level of accuracy in these areas.

Figure 9a,c,e show the distribution of the differences in the east (x) and north (y)
components of the current vector obtained by WaMos and the improved PCS, PCS, and
NSP methods. The colour intensity of each scatter point represents the corresponding
WaMos-measured surface current speed. Moreover, Figure 9b,d,f present the relationship
between the WaMos current directions (indicated by different colour intensities) and the
error distribution for different methods. The improved PCS method exhibits minimal error
dispersion. This tight clustering highlights the method’s reliability across different speed
conditions, with errors remaining small even at high speeds. The PCS method shows
a relatively wider error spread, indicating that it may be more sensitive to variations in
current speed compared to the improved PCS method. In contrast, the NSP method has
the broadest error range for the data used in this study. The spread increases, particularly
for high-speed conditions.

Table 3 provides the error analysis of surface current estimation based on the 2008
radar data. The improved PCS method, which includes motion compensation, achieves the
highest CC in both speed (0.85) and direction (0.88), along with the lowest RMSD values
for speed (0.08 m/s) and direction (26.9°). In comparison, the original PCS method exhibits
slightly lower CCs and higher RMSD values.
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Figure 8. (a) Comparison of surface current speed and (b) surface current direction obtained from
Decca radar data.
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Figure 9. Cont.
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Figure 9. Scatter plot of the difference in the east (x) and north (y) components of the current vector
measured by WaMos and the radar along with the corresponding surface current speed using the
(a) improved PCS, (c) PCS, and (e) NSP methods, along with the corresponding surface current
direction using the (b) improved PCS, (d) PCS, and (f) NSP methods.

Table 3. Error analysis of surface current estimation based on Decca radar data.

Method
CC RMSD

Speed Direction Speed [m/s] Direction [°]

Improved PCS 0.85 0.88 0.08 26.9

PCS 0.79 0.81 0.14 30.7

NSP 0.74 0.76 0.18 34.3

4.2.2. Analysis of Koden Radar Data
(a) Data Description

The radar data for this study were acquired from an X-band Koden marine radar
system mounted on a 106-foot mobile tower at Guadalupe Dunes, CA, USA [51]. The data
were collected between 15 September and 23 October 2017. The radar system operates at a
frequency of 9.45 GHz, utilizing horizontal polarization (HH) for both the transmission
and reception of radar pulses. Only radar images captured during periods with wind
speeds exceeding 3 m/s and moderate-to-high sea states were included in the analysis.
This filtering process resulted in a dataset comprising 2713 valid radar images, which
were used for surface current estimation. The reference data are the 30 s block-averaged
quality-controlled ADCP data [52].

(b) Surface Current Comparison

In the analysis of the 2017 radar data, shown in Table 4 and Figure 10, the improved
PCS method demonstrates superior performance in estimating surface current speed and
direction compared to both the PCS and NSP methods. It should be noted that after
applying a 3D FFT and subsequent energy filtering, the amount of data that remained
after being converted to the PCS domain was significantly reduced. This reduction is
primarily due to the relatively small variation in wave direction energy caused by the
surface current motion in this dataset. One possible reason for this small variation could
be the specific sea-state conditions during the data collection period, where lower wind
speeds or calmer seas resulted in less pronounced wave-current interactions. As a result,
the surface current-induced changes in wave direction energy were not as pronounced as
in other datasets, leading to fewer effective data points in the PCS domain. Due to this
limitation, the overall accuracy of the surface current estimations from this dataset was
lower compared to the Decca radar data. Data points with poor quality, where the PCS
algorithm fails to estimate results, are excluded from the error analysis. As illustrated in
Figure 10a, the retrieved current speed using the improved PCS method closely aligns with
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the ADCP data, particularly in regions where the current undergoes significant dynamic
changes. The RMSD for the improved PCS method is 0.09 m/s, which is slightly lower than
for the PCS (0.11 m/s) and NSP (0.12 m/s) methods, as shown in Table 4. Similarly, the
surface current direction estimates shown in Figure 10b reflect the improved PCS method’s
better performance. The RMSD for current direction is reduced to 30.1° for the improved
PCS method, compared to 34.7° for PCS and 35.1° for NSP. The scatter plots shown in
Figure 11 provide a visual comparison of the retrieved current speed and direction against
the reference ADCP data for three different methods: improved PCS, PCS, and NSP. In
Figure 11a,b, the improved PCS method demonstrates a high degree of correlation between
the retrieved current speed and direction and the ADCP reference values, as evidenced
by the close clustering of data points along the 1:1 line. This suggests that the improved
algorithm yields more accurate results in both speed and direction estimations.
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Figure 10. (a) Comparison of surface current speed and (b) surface current direction obtained from
Koden radar data.

Table 4. Error analysis of surface current estimation based on Koden radar data.

Method
CC RMSD Bias

Speed Direction Speed [m/s] Direction [°] Speed [m/s] Direction [°]

Improved PCS 0.75 0.82 0.09 30.1 0.01 −2.8

PCS 0.72 0.77 0.11 34.7 0.04 −3.9

NSP 0.70 0.73 0.12 35.1 0.06 −4.3

For the PCS method, shown in Figure 11c,d, a larger spread of points is observed,
particularly in the current direction plot (d), indicating greater discrepancies between the
retrieved values and the ADCP reference values, which implies lower accuracy compared
to the improved PCS method.

In the NSP method’s results, illustrated in Figure 11e,f, an even wider spread is
noticeable, especially in the plot (f) for the current direction, where data points are signifi-
cantly scattered, further highlighting the poorer performance of this method in accurately
estimating the current direction when compared to both PCS and improved PCS.
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Figure 11. (a) Scatter plot comparing ADCP current speed to the retrieved current speed using the
improved PCS method. (b) Scatter plot comparing ADCP current direction to the retrieved current
direction using the improved PCS method. (c) Scatter plot comparing ADCP current speed to the
retrieved current speed using the PCS method. (d) Scatter plot comparing ADCP current direction
to the retrieved current direction using the PCS method. (e) Scatter plot comparing ADCP current
speed to the retrieved current speed using the NSP method. (f) Scatter plot comparing ADCP current
direction to the retrieved current direction using the NSP method.

In addition, the scatter plot of the differences in the east (x) and north (y) components
of the current vector obtained by ADCP and the radar are presented in Figure 12, along with
the ADCP-derived surface current speed and direction. The improved PCS method shows
errors that are closest to zero in both the x and y components. The original PCS method
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has a broader error range, especially along the x-axis. In contrast, the NSP method has the
largest error scope. Overall, it can be observed that the improved PCS is the most accurate.
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Figure 12. Scatter plot of the difference in the east (x) and north (y) components of the current
vector measured by ADCP and the radar along with the corresponding surface current speed using
the (a) improved PCS, (c) PCS, and (e) NSP methods, as well as the corresponding surface current
direction using the (b) improved PCS, (d) PCS, and (f) NSP methods.

This analysis underscores the higher accuracy of the improved PCS method in estimat-
ing both current speed and direction, as reflected by the tighter clustering of points around
the ADCP reference line. Even for a dataset with lower overall precision, the improved PCS
method consistently maintains the highest level of accuracy compared to other methods.
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5. Discussion

The analysis of the simulated data reveals that the improved PCS algorithm signif-
icantly enhances the accuracy of surface current retrieval, particularly at lower rotation
speeds (RPM = 24). This improvement highlights the effectiveness of extracting reliable
data points from the overall dataset, minimizing the influence of errors caused by curve
fitting for individual wavenumber vectors. The substantial improvement in accuracy for
the Decca radar dataset, which operates at 24 RPM, further demonstrates the algorithm’s
practical effectiveness in real-world scenarios. The increased precision achieved with the
Decca data provides strong evidence of the improved PCS method’s success in addressing
the limitations of the original approach.

While the difference between the improved and original PCS algorithms is less pro-
nounced at higher rotation speeds (RPM = 48) in the simulated data, the Koden radar
dataset (also RPM = 48) still shows slight improvements with the improved PCS method.
The presence of noise and other real-world factors in the Koden data allows the improved
PCS algorithm to demonstrate the value of its individual steps, even in cases where the
overall dataset quality is low. The ability of the improved PCS method to maintain accuracy
in these conditions highlights its robustness against environmental noise and other data
inconsistencies that affect current estimation.

As previously noted, the initial PCS data from the Koden radar dataset are relatively
sparse, resulting in lower overall accuracy compared to the Decca radar data. This under-
scores a key area for future improvement: enhancing the algorithm’s ability to maintain
high precision in current extraction when the dispersion shell contains fewer data points.
The challenge lies not only in removing noise interference but also in preserving the extrac-
tion accuracy even when the available data are limited. Addressing this limitation will be
crucial for further advancing the PCS algorithm’s performance in real-world applications
with less-than-ideal data conditions.

According to [2,53], wind-driven Ekman flows strongly influence currents within the
top 10 m, and the current gradually changes direction and its speed decreases as depth
increases. Thus, the ADCP current direction and speed depend on the depth of measure-
ments. X-band radars provide an estimation of current close to the surface. Unfortunately,
ADCP data for the top 10 m were unavailable. As a result, only the ADCP data at a depth
of 11.2 m were utilized for comparison in this experiment, although the ADCP data from
depths ranging from 10 m to 150 m were analyzed. A depth of 11.2 m was chosen since
the data at such a depth showed the closest alignment with the radar-derived results. The
difference between the radar-derived current and ADCP sub-surface data can be partially
attributed to the difference in the depths of their measurement.

6. Conclusions

This paper presents an improved PCS algorithm for retrieving surface currents from
X-band marine radar images. The improvements address several limitations of the original
PCS method, particularly in the presence of noise, aliasing, and data outliers. By introducing
filtering techniques and leveraging directional symmetry for noise reduction, the improved
PCS method provides more accurate and reliable current estimates.

The results from the simulated radar data demonstrate that the improved PCS method
consistently outperforms both the original PCS and NSP methods. The tests performed
under different radar RPMs also prove the robustness of the improved method, which was
less sensitive to aliasing effects compared to the original PCS.

In real data applications, both the Decca radar data and the Koden radar data further
validated the improved PCS algorithm. The comparison with ADCP reference data con-
firmed that the improved method achieved a higher CC and lower RMSD than the original
method. Specifically, the improved PCS method has a speed CC of 0.85 and an RMSD of
0.08 m/s for the Decca data and a 15% reduction in the RMSD and a 12% improvement in
the CC compared to the original PCS methods for the data collected by the Koden radar,
which are better results than for the original PCS and NSP methods.
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In conclusion, the improved PCS method represents an advancement over traditional
methods. It is more robust in real-world applications, where environmental noise and data
anomalies are more common. This method may experience reduced effectiveness when the
data quality is poor or when there is a lack of significantly concentrated wave energy. In
such cases, the algorithm’s ability to accurately retrieve ocean currents can be diminished,
as it relies heavily on the presence of strong and coherent wave signatures to filter noise and
perform accurate estimations. However, even under these conditions, its accuracy remains
superior to other methods. Nevertheless, it is crucial to develop improved algorithms
to better mitigate these limitations and further enhance performance in such challenging
scenarios. Further improvements might focus on handling low-quality data and testing the
robustness of the proposed method under varying sea states.
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