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Abstract: Due to channel noise and random atmospheric turbulence, retrieved satellite images are
always distorted and degraded and so require further restoration before use in various applications.
The latest quaternion-based weighted nuclear norm minimization (QWNNM) model, which utilizes
the idea of low-rank matrix approximation and the quaternion representation of multi-channel
satellite images, can achieve image restoration and enhancement. However, the QWNNM model
ignores the impact of noise on similarity measurement, lacks the utilization of residual image in-
formation, and fixes the number of iterations. In order to address these drawbacks, we propose
three adaptive strategies: adaptive noise-resilient block matching, adaptive feedback of residual
image, and adaptive iteration stopping criterion in a new adaptive QWNNM model. Both simu-
lation experiments with known noise/blurring and real environment experiments with unknown
noise/blurring demonstrated that the effectiveness of adaptive QWNNM models outperformed the
original QWNNM model and other state-of-the-art satellite image restoration models in very different
technique approaches.

Keywords: satellite images; image restoration and enhancement; adaptive noise-resilient block
matching; adaptive feedback of residual images; adaptive iteration stopping criterion

1. Introduction

Hundreds of imaging satellites are orbiting the earth, and every day they beam vast
oceans of information to databases on the ground. Satellite images, captured by various
satellite platforms equipped with different types of sensors, have become invaluable large-
scale resources for the observation of Earth’s surface, possibly in a (near) real-time manner.
They can provide powerful insights in monitoring environmental changes, supporting
suitable urban planning and natural resource management, and ultimately helping to
achieve United Nations Sustainable Development Goals. However, these satellite images
are always distorted and degraded due to channel noise and random atmospheric turbu-
lence. Therefore, the retrieved images require restoration to satisfy the need for appropriate
visual quality before use in different applications. The whole process of satellite image
restoration uses prior knowledge of degradation to recover an image’s original quality.
However, restoring images can be challenging due to information loss in degraded images,
so it is necessary to search for an optimal compromise among noise elimination, distortion
correction, and maintaining true image contents.

Low complexity and repetitive patterns in satellite images make the combination of
similar patches in these images generate a low-rank matrix in mathematics, so the low-rank
matrix approximation (LRMA) approach, which recovers the underlying low rank matrix
from its degraded observation, has been used in image restoration and enhancement [1–3].
Direct minimization of matrix rank is a challenging duty in mathematics, so Candès
and Recht [4] introduced a nuclear norm of matrices as a convex surrogate for such a
minimization. Candès and Tao [5] further showed that nuclear norm minimization (NNM)
is the optimal convex approximation for matrix rank. The NNM can efficiently implement
the minimization by using various algorithms like singular value thresholding [6]. However,
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when viewing satellite image patches as matrices, the larger singular values are always
more important than the smaller ones since they represent the energy of major structures
and textures in satellite images. Since the NNM model overlooks differences among
singular values, leading to the loss of important information, Gu et al. [7] proposed the
matrix weighted nuclear norm (WNNN) model, where weights decrease as singular values
increase, allowing for better handling of image features such as edges and textures. This
results in improved noise and blur removal while preserving important details, enhancing
the overall quality of restored images.

For the issue of multi-channel satellite image restoration, in order to overcome subop-
timal results that may arise from independently processing different channels [8], strategies
such as color space conversion or multi-channel joint processing can be employed to
optimize the multi-channel satellite image processing workflow. The well-known block-
matching and 3D filtering (CBM3D) model [9] first projects the sRGB color space to a
luminance–chrominance space and then applies BM3D to each channel separately. The use
of quaternion representation to encode image channels is another approach to preserving
the interrelationships among color channels. Carmelil & Turek [10] and Xu et al. [11]
proposed the generalized quaternion singular value decomposition K-means clustering
(K-QSVD) in image presentation. Wang et al. [12] and Jia et al. [13] used the quaternion
non-local means (QNLM) model, which integrates quaternion theory with non-local means
(NL-means) filtering, to denoise satellite images. Yu et al. [14] extended the weighted
nuclear norm minimization (WNNM) model to the quaternion domain, introducing the
quaternion-based weighted nuclear norm minimization (QWNNM) model for color image
denoising. Huang et al. [15,16] further advanced the QWNNM model by representing the
2D blur matrix in the quaternion domain and introducing a corresponding quaternion
blur operator. Additionally, quaternion-based representation can restore missing data in
color images [17], detect salient regions [18], facilitate facial recognition classification [19],
perform color image deblurring [20], smooth and segment color images [21], and denoise
images [22,23].

The known QWNNM model for satellite image restoration has notable limitations.
Firstly, while it employs block matching to group image patches with similar features in
degraded images, it does not account for potential noise interference. This oversight can
introduce bias into the matching results, ultimately affecting the accuracy of subsequent
processing tasks. Next, the residual image, which represents the pixel-wise difference be-
tween the original and restored images, contains valuable information for analyzing image
quality. The QWNNM model lacks an effective feedback mechanism for utilizing such
information during its iterative process and then limits its ability to optimize restoration
results. Finally, due to the inherent diversity of land use, the number of iterations required
for optimal restoration varies. However, the QWNNM model adopts a fixed iteration
number, which may lead to suboptimal or over-restoration outcomes.

To address these drawback issues in the original QWNNM model, in this study, we
designed three brand-new adaptive strategies: (a) Adaptive Noise-Resilient Block Matching:
quaternion DCT is used to convert each satellite image patch from the quaternion domain
to the frequency domain, and then quaternion soft thresholding is used to shrink the
frequency coefficients for initial denoising. After that, block matching is then performed
using these truncated frequency coefficients. This strategy to measure the similarity in
the frequency domain after soft thresholding can mitigate the impact of noise on block
similarity measurements. (b) Adaptive Feedback of Residual Images: An adaptive proportion of
the residual satellite image is incorporated into the input satellite image for the subsequent
iteration. This feedback mechanism enables our improvement to dynamically adjust its
restoration strategy by utilizing useful information in the residual image, finally enhancing
restoration performance. (c) Adaptive Iteration Stopping Criterion: A stopping criterion
during the iterative process is proposed, which utilizes the specific characteristics of the
image being restored, ensuring that the iteration halts at the optimal iteration number for
each image.
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Our proposed multi-strategy solution comprehensively addresses the limitations of
the original QWNNM model, thereby enhancing performance, robustness, and adaptability
in satellite image restoration and enhancement. Experimental results on satellite images
demonstrated that our proposed model outperformed the original QWNNM model and
other state-of-the-art restoration models in very different technique approaches.

2. Related Work

The weighted nuclear norm minimization (WNNM) model was first proposed by Gu
et al. [7] for grayscale image denoising. It uses non-local self-similarity to collect similar
patches of a given reference patch to form a group. Various similarity tools, such as K-means
clustering [24], self-organizing maps [25], fuzzy clustering [26], and vector quantization [27],
can be applied for grouping. The design of the WNNM model only adopts a simple
grouping technique known as matching, which is accomplished by pairwise calculating
the Euclidean-distance based similarity between the reference patch and candidate patches
located at different spatial locations. These similar image patches can form a matrix with
low rank, so the use of low-rank matrix minimization algorithms in mathematics can
recover a noise-free reference patch from similar noisy patches. However, it is a non-convex
NP-hard problem [6,28].

The nuclear norm minimization (NNM) [6,28,29] model, as a convex relaxation of
the low-rank matrix approximation problem, has garnered significant research interest in
recent years. The nuclear norm of a matrix is defined as the sum of its singular values, i.e.,

||D||∗ = ∑
i
|σi(D)| (1)

where σi(D) is the i-th singular value of the matrix D. The NNM problem can be de-
scribed as

^
D = argmin

Dj
||R − D||2F + λ||D||∗ (2)

where R is the observation matrix and λ is a positive constant. Cai et al. [6] proved that the
solution of the NNM problem can be estimated by using the soft thresholding operation on
the singular values:

^
D = USλ(Σ)VT (3)

where R = UΣVT and Sλ(Σ) is the soft thresholding operator on the diagonal matrix Σ.
Although the NNM model is the tightest convex relaxation of the non-convex low-rank

matrix approximation problem through incorporating the data fidelity term, it regularizes
each singular value equally to maintain the convexity of the objective function, which
significantly limits its capability and flexibility. To overcome these limitations, Gu et al. [7]
proposed the Weighted Nuclear Norm Minimization (WNNM) model, in which different
weights are assigned to different singular values. The WNNM model adopts a weighted
nuclear norm:

||R||w,∗ = ∑
i
|wiσi(R)|, (4)

where w = [w1, w2, · · ·wn] and σi(R) is the i-th singular value of D. And

Sw(Σii) = max(Σii − wi, 0) (5)

where Σii is the diagonal element of Σ. The denoising performance of the WNNM model
demonstrated that it cannot only lead to visible PSNR improvements over state-of-the-art
models such as BM3D but also preserve much better the image local structures and generate
fewer visual artifacts [7].
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In order to avoid the suboptimal results that may arise from independently processing
different channels of images [8], it is feasible to use a pure quaternion matrix to represent
multi-channel images:

D =
(
dij
)
∈ Hm×n (6)

where each pixel within a multi-channel image is encoded as a quaternion dij [30]:

dij = dr
iji + dg

ijj + db
ijk (7)

and {i, j, k} constitutes three imaginary units of the quaternion algebra satisfying

i2 = j2 = k2 = ijk = −1

ij = k = −ji, jk = i = −kj, ki = j = −ik

The conjugate operator D⋇, the transpose operator DT , and the conjugate transpose
operator D∆ are defined as:

D∗ =
(

d∗ij = dr
iji − dg

ijj − db
ijk
)

,DT =
(
dji
)

(8)

The Unitary Quaternion Matrix D ∈ Hm×m is called a unitary quaternion matrix if

D∆D = DD∆ = Im (9)

where Im is the quaternion identity matrix. Chen et al. [31] established the quaternion
singular value decomposition (QSVD): For any quaternion matrix Q ∈ Hm×n of rank r,
there exist two unitary quaternion matrices U ∈ Hm×m and V ∈ Hn×n such that

Q = U
(

∑
r

0

0 0

)
V∗, (10)

where ∑
r
=diag(σ1, . . . , σr) ∈ Rr×r, and all singular values σi > 0, i = 1, . . . , r.

Since the real-valued WNNM model often introduces color distortions and artifacts
when used for color image denoising [7], Yu et al. [14] innovatively incorporated the
quaternion representation of color images into the WNNM model. Such an integration leads
to the development of the quaternion weighted nuclear norm minimization (QWNNM)
model. Huang et al. [15] further expanded the application of the QWNNM model to tackle
the challenge of color image deblurring problem:

min
D

λ

2
|AD −R|2F + ||D||w,∗ (11)

where D ∈ Hm×n and R ∈ Hm×n are the quaternion-encoded counterparts of clean and
degraded color images, respectively, A ∈ Hm×n is the quaternion-encoded blur matrix, and
||·||w,∗ is the quaternion weighted nuclear norm:

||D||w,∗ = ∑
i
|wiσi(D)|, (12)

where the weight wi is set as:

wi = c
√

n/(σi(D) + ε)

σi(D) =
√

max
(
σ2

i (R)− nσ2
n , 0
)

(13)

where c > 0 is a positive constant, n is the number of similar patches, and ε = 10−16 is
a small positive number to prevent the denominator from being zero. By introducing



Remote Sens. 2024, 16, 4152 5 of 26

an auxiliary quaternion variable G and Lagrange multiplier L ∈ Hm×n, the augmented
Lagrangian function of the color image deblurring problem can be formulated by

L(D,G,L) = λ

2
||AD −R||2F + ||G||w,∗ +

β

2
||D − G||2F+ < L,D −Z > (14)

The quaternion alternating direction method of multipliers (QADMM) [15] is used to
obtain the solver as follows:

D(k+1) = argmin
D

L(D,G(k),L(k)),

G(k+1) = argmin
G

L(D(k+1),G,L(k)),

L(k+1) = L(k) +
(
D(k) − G(k)

)
.

(15)

3. The Proposed Model: Adaptive QWNNM

The quaternion weighted nuclear norm minimization (QWNNM) model demonstrates
superior restoration performance, but it has three significant drawbacks. First, its patch
matching relies on noisy data, increasing the risk of mismatched patches. Second, it neglects
the residual image—the difference between the original and the recovered image—by not
considering it as feedback in each iteration. This omission results in missing fine details in
the residual image that could enhance the quality of the restoration. Lastly, the number
of iterations in the QWNNM model remains constant regardless of the image content and
noise levels. To address these issues, we embedded three brand-new adaptive strategies
into the QWNNM model and developed a new adaptive QWNNM for satellite image
restoration and enhancement.

3.1. Adaptive Noise-Resilient Block Matching

To reduce the impact of noise on the block matching process, this strategy transforms
image patches from the traditional spatial domain to the quaternion frequency domain.
Since noise and signal typically exhibit distinct characteristics in the frequency domain, we
propose to apply a quaternion soft thresholding operation to shrink the frequency coeffi-
cients such that noise components can be effectively suppressed while preserving important
image information. Block matching was then performed using the processed truncated
frequency coefficients, improving the accuracy and robustness of the matching process.

Let P f be the f-th reference patch of size n × n in a degraded image, and Pi be the i-th
candidate similar patch of P f . In the context of the QWNNM model, the process can be
conceptualized as first engaging in image denoising during the initial step, followed by
a concentration on image restoration in subsequent iterations. Consequently, during the
phase of measuring similarity between image patches, we only consider the additive noise,
i.e., P f and Pi can be written as: {

P f = P0
f +N 0

f
Pi = P0

i +N 0
i

(16)

where P0
f and P0

i are the latent clean patches of P f and Pi respectively. N 0
f and N0

i are the

noise with mean 0 and standard deviation σ. The expectation of the similarity Sim
(
P f ,Pi

)
will be:

E
{

Sim
(
P f ,Pi

)}
= 1

n2 E
{∣∣∣∣∣∣P f −Pi

∣∣∣|2F} = 1
n2 E
{∣∣∣∣∣∣(P0

f +N 0
f

)
−
(
P0

i +N 0
i
)∣∣∣|2F}

= 1
n2 E
{∣∣∣∣∣∣(P0

f −P0
i

)
+
(
N 0

f −N 0
i

)∣∣∣|2F} (17)

Due to the fact that clean images and noise are uncorrelated, the above equation can
be written as:

E
{

Sim
(
P f ,Pi

)}
≈ Sim

(
P0

f ,P0
i

)
+ σ2 (18)
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This means that the similarity measure for degraded patches is a biased estimator of
the similarity for clean patches, which increases the likelihood of incorrectly classifying
dissimilar patches as similar.

Noticing that the majority of the energy in clear images is always concentrated in
the top-left corner in the frequency domain while the energy in the degraded image is
dispersed across the entire image plane due to the additive noise (e.g., Figure 1), we propose
to perform a soft-thresholding operation on the quaternion-based frequency coefficients to
effectively suppress noise and then minimize the bias in patch matching caused by noise.
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The soft thresholding operation is applied to the frequency domain of degraded
patches P f and Pi. Then the quaternion-DCT coefficient matrices after thresholding are

Z f = DλQDσ

(
QQD

(
P f

))
Zi = DλQDσ

(
QQD(Pi)

) (19)

where is QQD(·) a quaternion discrete cosine transform function, λQD is a fixed quaternion
threshold parameter, and Dτ(x) is a soft-thresholding operator defined by:

Dτ(x) ≡ sgn(x)max{x− τ, 0} (20)

where τ is a threshold, and the sign function sgn(x) of quaternion is defined as

sgn(x) =


x1
|x| i +

x2
|x| j +

x3
|x|k, |x|̸= 0

0, |x|= 0

(21)

and x1, x2, x3 are three components of x, respectively. The sign function for quaternions
aligns with how the visual system perceives salient objects in an image [32,33], and it also
helps in removing background clutter.

Finally, the similarity between degraded image patches can be defined as

SimQD

(
P f ,Pi

)
=

∣∣∣∣∣∣Z f −Zi

∣∣∣|2F
n2 (22)

3.2. Adaptive Feedback of Residual Images

The residual image, which represents the pixel-wise difference between the original
and restored images, contains valuable information for analyzing image quality. The
QWNNM model lacks an effective feedback mechanism for utilizing such information dur-
ing its iterative process and then limits its ability to optimize restoration results. Therefore,
we propose to use a portion of the residual image generated in the current iteration as
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feedback and incorporate it into the input image for the next iteration. This feedback mech-
anism allows the restoration model to continuously learn and adjust during the iterative
process, making better use of the useful information contained in the residual image to
optimize the denoising results. By gradually approximating the true noise-free image, this
approach enhances the overall denoising performance.

Let R be a degraded image and J be a simple restored operator. The restored image
D̂ can be written as D̂ = J (R) and the corresponding residual image is

∆D = R− D̂ (23)

The image restoration performance can be evaluated by a residual image. The fewer
visible image structures in the residual image, the better the restoration performance. Even
the most advanced restoration models still contain some image content in the residual
image (e.g., Figure 2). To avoid information loss, an effective technique is to add the residual
image back to the next filtered version, using it as feedback information and incorporating
it into the input image for the subsequent iteration. This approach allows the restoration
model to continuously learn and adjust during the iteration process, better utilizing the
useful information in the residual image to optimize the restoration effect and gradually
approach the true noiseless image. This can be formulated as:

R(k+1) = D̂(k) + δ(σ)∆D(k) (24)

where D̂(k) is the kth reconstructed result, ∆D(k) = R− D̂(k) is the kth residual image,
R(k+1) is the next filtered version, and δ(σ) is the scale factor subject to the standard
deviation σ of noise, a bigger feedback parameter δ should be applied to images with
strong noise content. Only one iterative operation of restoration cannot effectively remove
the noise, while multiple iterations can achieve good performance. Therefore, our entire
iterative process is

D̂(k) = argmin
Xj

λ
2

∣∣∣∣∣∣R(k) −AD(k)
∣∣∣∣∣∣2

F
+
∣∣∣∣∣∣D(k)

∣∣∣∣∣∣
w,∗

R(k+1) = D̂(k) + δ(σ)∆D(k)
(25)
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3.3. Adaptive Iteration Stopping Criterion

The original QWNNM model adopts an iterative process but uses a fixed number of
iterations for all degraded images. However, as depicted in Figure 3, the quality of image
restoration measured by PSNR/SSIM values varies with the number of iterations. Moreover,
even for the same image, different noise levels require different iteration counts to achieve
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the maximum PSNR/SSIM value. Since it is crucial to determine the optimal number of
iterations required, we propose a stopping criterion to achieve the best restoration result.
By precisely controlling the iterative process, the restoration model can achieve optimal
restoration performance for different image contents, thereby enhancing the flexibility and
practicality of the restoration algorithm.
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of iterations.

The original image D, and the additive noise N are independent, and therefore
we can assume that the less the dependency between the reconstructed D̂ and method-
noise image ∆D = R− D̂, the better the restoration performance. Therefore, during the
iteration process, we apply quaternion-based Pearson’s correlation coefficient to measure
the correlation of active regions in reconstructed and residual images.

correl(k) = corr
(

H. ∗ D̂(k), H. ∗
(
R− D̂(k)

))
(26)

where H is a quaternion matrix obtained by dilating the result of the Canny edge detec-
tor [34] on D̂(1) and indicates the active regions of an image, and D̂(k) is the reconstructed
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image after k iterations. The best iteration is the one that hits the minimum absolute value
in the ‘correl’ vector, which is used as our stopping criterion.

3.4. Flowchat and Pseudocode

We embedded three brand-new adaptive strategies in Sections 3.1–3.3 into the original
QWNNM and then developed the adaptive QWNNM model (see Algorithm 1). Figure 4
illustrates the flowchart of the framework of our adaptive QWNNM model. The input
degraded satellite image is represented using quaternions, and the initial restoration result
is transformed into the frequency domain by using Quaternion DCT (QDCT). Subsequently,
the filtered image is obtained through the combination of the soft shrinkage threshold
operation and the inverse Quaternion DCT (IQDCT). After that, it processes all patches
within a predefined search window for a specific patch, grouping similar patches into a
low-rank quaternion matrix. A low-rank recovery operation is performed on this array
to reconstruct the key patch. Finally, it evaluates whether the correlation between the
reconstructed image and the noise image has reached an extremum point. If this is not
the case, a portion of the residual image will be adaptively fed back into the next iteration,
continuing until the extreme point is achieved. For computational complexity in our
adaptive QWNNM, the incorporation of the Iteration Stopping Criterion significantly
reduces the number of iterations in the original QWNNM, while newly added Adaptive
Noise-Resilient Block Matching and Feedback of Residual Images have low computational
complexity, so our adaptive QWNNM has the similar computational complex as the
original QWNNM.
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A pseudocode description of the entire adaptive QWNNM algorithm is as follows:
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Algorithm 1 Image Restoration with Adaptive QWNNM

Input:
degraded image R; Initialize R(0) = R, D(0) = R, G(0) = D(0), L(0) = 0;
Set parameters λ, β and ρ;
Output:
The recovered image Ĝ(k);
1: Estimate noise level σ (if necessary);
2: Map δ(σ) according to σ;
3: for t = 1: kMax do
4: Iterative regularization R(k+1) = Ĝ(k) + δ(σ)∆G(k);

5: Calculate D̂(k+1);
6: for each patch Pi of E (k+1) = D̂(k+1) + L(k)

β do
7: Prefiltering for each degraded patch;
8: Form a similar patch group Ej;
9: Estimate weight vector w;

10: Quaternion singular value decomposition (QSVD) [U , Σ,V ] = QSVD
(
Ej

)
;

11: Get the patch estimation Ĝj using U∆V∗.
12: end for
13: aggregate all Ĝj together and get the restoration version Ĝ(k);

14: Update L(k+1) = L(k) + ρ
(
D̂(k) − Ĝ(k)

)
.

15: if t == 1
16: Compute H
17: end if
18: Compute correl(t) = corr

(
H. ∗ Ĝ(k), H. ∗

(
R− Ĝ(k)

))
;

19: if correl(t) > correl(t + 1)
20: break;
21: end if
22: end for
23: Return The recovered image Ĝ(k)

4. Satellite Image Restoration Experiments

This section presents extensive experiments demonstrating the effectiveness of our
proposed adaptive QWNNM model through the representative task of satellite image
restoration. Our model was compared with image restoration models in very different
technique approaches, including a fast-adaptive bilateral filter (F-ABF) [35] in a filtering
technique, decorrelated vectorial total variation (DVTV) [36] in a regularization technique,
and quaternions singular value decomposition K-means clustering (K-QSVD) [10,11] in
sparse dictionary representation technique, block-matching and 3D filtering (BM3D) [37]
and quaternion non-local means (QNLM) [12,13] in a nonlocal self-similarity prior tech-
nique, and quaternion non-local weighted nuclear norm minimization (QWNNM) [15] in a
low-rank minimization technique.

Due to shaking and orientation tilting of satellite sensors, the obtained satellite images
are always degraded by such motion blur. At the same time, noises in satellite images often
originate from multiple sources, and the Central Limit Theorem in statistics demonstrates
that the superposition of these noises can be approximated well by a Gaussian noise [38].
Moreover, Gaussian noise produces the largest degradation in satellite transmission systems
since it possesses the greatest entropy and then the largest uncertainty [39,40]. Therefore,
in simulation experiments, we used the combination of Gaussian noise and motion blur to
simulate the noise/distortion existing in satellite images. At the same time, we conducted
restoration experiments degraded by unknown haze, stripes, blurring, and so on in a
real environment.

The known UC Merced Land Use dataset was manually extracted from large satellite
images in the USGS National Map Urban Area Imagery series, and it includes 21 land use
classes [41]. We randomly selected 1–3 images from each class and then obtained 51 test
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satellite images (Figure 5). These test satellite images were subjected to a combination of
“motion” type blurring and additive Gaussian noise, simulating real-world remote sensing
observation conditions. We generated the blur kernels using the MATLAB command
“fspecial”. In MATLAB, the command fspecial (‘motion’, LEN, THETA) returns a filter that,
when convolved with an image, approximates linear motion of a camera by LEN pixels at
an angle of THETA degrees counter patch wise. For horizontal and vertical motion, the
filter becomes a vector. All the satellite image restoration experiments were implemented
in MATLAB R2020a on a laptop with a 2.40 GHz Intel Core i5-1135G7 CPU and 8 GB @
3200 MHz DDR4 memory.
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4.1. Parameter Setting

These experiments were performed on simulated satellite image deblurring using a
motion blur kernel with a length of 20 and an angle of 60, followed by the addition of
additive Gaussian noise with (σ = 25). All simulation experiments employ Peak Signal-
to-Noise Ratio (PSNR) [42], Structural Similarity Index (SSIM) [43], Feature Similarity
(FSIM) [44], and Erreur Relative Globale Adimension nelle de Synthèse (ERGAS) [45] as
quantitative indicators of image restoration quality. For the restoration experiments in real
environment, since without ground-truth image as reference, we used the no-reference
evaluation indices: blind image integrity notator using DCT Statistics-II (BLIINDS 2) [46],
blind/reference-less image spatial quality evaluator (BRISQUE) [47], and naturalness image
quality evaluator (NIQE) [48].

PSNR and SSIM are commonly employed as the metrics in image restoration tasks:
PSNR measures the similarity between the ground truth and the restored image based
on Mean Squared Error (MSE), while SSIM assesses structural consistency. Unlike SSIM,
FSIM aligns more closely with human visual perception by utilizing phase congruency and
image gradient magnitude. ERGAS, which evaluates the quality of remote sensing image
processing, considers the dimensional global error between the restored image and the
reference image:

ERGAS = 100

√√√√ 1
B

B

∑
b=1

(
MSEb

Mb

)2
, (27)

where B represents the number of channels in satellite images, MSEb is the b-th band MSE
between predicted and reference images, and Mb is the average intensity of the b-th band
of the reference. Higher PSNR, SSIM, and FSIM values indicate better restoration results,
while a lower ERGAS value signifies a smaller difference between the restored image and
the reference image, indicating higher quality.

The BLIINDS 2 [46] index is based on natural scene statistics (NSS) and assesses image
quality in the DCT domain. It extracts features from the statistical properties of DCT coeffi-
cients and builds a predictive model from these features, enabling no-reference evaluation
of image quality. This index highlights the role of NSS in quantifying perceptual quality
in images. The BRISQUE [47] constitutes a no-reference index for assessing image quality,
wherein spatial quality is quantified without reliance on a reference image. BRISQUE mea-
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sures the perceived quality of images, with a lower value indicative of higher image quality.
The NIQE [48] is a no-reference image quality assessment index designed to evaluate image
quality. It uses NSS to extract features from images and fit them to a multivariate Gaussian
model (MVG). Quality is assessed by measuring the distance between the image’s feature
parameters and those of the established model. Higher BLIINDS 2 values indicate better
restoration results, while lower BRISQUE and NIQE values signify higher quality in the
reconstructed images.

The parameters in our proposed model and the original QMNNM model were set as
follows: λ = 115, β = 7.5, the search window size was 30, the number of similar patches
was 155, and the patch size was 6 × 6. The parameter µ was set to 1.001 to ensure effective
convergence. In order to choose the optimal values for ε and c in the weighting function,
we investigated the PSNR and SSIM values for different ε and c during the restoration
of satellite image ‘Img47’ (Figure 6). Clearly, the optimal value is c = 1.7 ∗

√
2. Since ε

is defined as a small positive constant and the value of ε does not significantly affect the
restoration results (Figure 6), we may set ε as the MATLAB built-in function ‘eps’ (=10−11).
All comparison models were implemented using available code and default parameters
from the corresponding papers [10–13,15,26–28].
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4.2. Restoration Results

The PSNR/SSIM and FSIM/ERGAS values for the proposed adaptive QWNNM model
under motion blur MB(20, 60)/σ = 25, compared to mainstream restoration models (F-ABF,
K-QSVD, DVTV, BM3D, QNLM, and QWNNM), are presented in Tables 1 and 2. The best
results are highlighted in bold. Figure 7 illustrates the average results. It is clear that our
proposed model achieved superior restoration performance under motion blur conditions.
In terms of PSNR/SSIM (Table 1), our adaptive QWNNM model demonstrates significant
improvements over the five mainstream algorithms (F-ABF, K-QSVD, DVTV, BM3D, and
QNLM), with average gains of 7.056/0.5024, 5.119/0.2876, 4.650/0.2022, 2.749/0.1134,
3.057/0.1373, and 2.226/0.1213, respectively. Regarding FSIM results (Table 2), our adaptive
QWNNM model also shows notable improvements with increments of 0.1562, 0.1187,
0.1826, 0.1391, 0.0749, and 0.1146, respectively. Moreover, in terms of ERGAS (Table 2), our
adaptive QWNNM model achieves substantial reductions of 197.4, 111.2, 93.45, 48.33, 52.06,
and 41.42 compared to the mainstream models, as lower ERGAS values indicate better
image quality. Especially when compared to the most closely related QWNNM model, our
improvement achieves notable average gains of 1.596/0.0759 in PSNR/SSIM and 0.0227 in
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FSIM, as well as a reduction of 27.15 in ERGAS. The primary reason for these improvements
lies in the introduction of the three adaptive strategies (adaptive noise-resilient block
matching, adaptive feedback of residual image, and adaptive iteration stopping criterion),
leading to a more accurate reconstruction of structural details in satellite images.

Table 1. PSNR (dB) and SSIM values of different restoration models for MB(20, 60)/σ = 25 (the best
result is in bold).

Image Degraded F-ABF [35] K-QSVD [10,11] DVTV [36] BM3D [37] QNLM [12,13] QWNNM [15] Proposed

1 23.70/0.2120 27.98/0.4936 29.21/0.6059 29.30/0.6089 28.86/0.5742 30.16/0.6334 29.01/0.5849 29.44/0.6246
2 17.58/0.2560 18.20/0.5042 18.44/0.6313 22.94/0.7901 22.90/0.7317 20.37/0.7106 26.09/0.8014 29.38/0.8680
3 21.44/0.2144 23.48/0.5085 24.05/0.6459 25.47/0.6896 25.52/0.6521 26.85/0.7318 26.73/0.6901 29.03/0.7728
4 22.76/0.2464 25.78/0.5293 26.53/0.6476 27.44/0.6755 26.95/0.6486 27.78/0.6698 27.60/0.6579 28.13/0.7047
5 21.85/0.2591 24.07/0.4678 24.33/0.5215 25.68/0.5794 25.39/0.5703 26.19/0.5856 25.98/0.6031 26.76/0.6465
6 16.48/0.1742 17.03/0.3135 17.13/0.3781 18.90/0.5170 18.57/0.4764 18.78/0.5005 20.10/0.5750 21.95/0.6972
7 15.74/0.2247 16.14/0.3386 16.24/0.3910 18.22/0.5472 17.51/0.4841 18.16/0.5145 19.43/0.6063 21.86/0.7335
8 20.50/0.2551 21.93/0.4585 22.37/0.5513 24.00/0.6178 23.96/0.6063 23.69/0.6145 25.53/0.6624 27.08/0.7281
9 20.66/0.2387 22.28/0.4443 22.50/0.5218 24.62/0.6129 24.87/0.6266 25.96/0.6833 26.26/0.6954 28.21/0.7869

10 18.51/0.2772 19.39/0.4336 19.57/0.4930 22.46/0.6326 21.97/0.6056 22.86/0.6443 23.61/0.6637 25.72/0.7635
11 18.47/0.2334 19.36/0.4055 19.48/0.4731 22.13/0.6119 21.86/0.5721 22.21/0.5868 23.55/0.6510 25.64/0.7482
12 19.96/0.2547 21.17/0.2766 20.85/0.1692 21.91/0.4116 23.39/0.6462 20.79/0.1458 25.31/0.7955 26.39/0.8526
13 17.61/0.2385 18.34/0.3559 18.45/0.3917 21.14/0.5604 20.94/0.5380 21.35/0.5304 22.92/0.6306 25.16/0.7275
14 19.94/0.2378 21.20/0.3724 21.33/0.3977 22.78/0.4887 22.40/0.4653 23.13/0.4759 23.35/0.5158 24.35/0.5753
15 18.98/0.2387 20.02/0.4031 20.20/0.4651 22.70/0.5754 22.38/0.5667 23.10/0.5888 24.24/0.6478 25.86/0.7260
16 21.10/0.2589 22.92/0.5305 23.26/0.6549 25.41/0.7417 26.02/0.7367 26.46/0.7638 28.09/0.7808 30.30/0.8636
17 17.03/0.2153 17.64/0.4022 17.77/0.5079 20.40/0.6738 19.65/0.5875 19.91/0.6182 21.64/0.7127 23.65/0.8261
18 15.78/0.1801 16.23/0.3364 16.32/0.4264 18.24/0.5886 18.00/0.5446 18.24/0.5534 19.99/0.6851 22.38/0.8193
19 23.67/0.2505 27.94/0.6485 29.25/0.8527 31.77/0.8786 30.64/0.8102 34.03/0.9055 32.45/0.8207 34.09/0.8934
20 23.78/0.2455 28.24/0.6307 29.69/0.8272 32.00/0.8570 31.36/0.7987 34.18/0.875 32.58/0.8071 34.29/0.88985
21 23.82/0.2409 28.34/0.6301 29.95/0.8276 32.75/0.8569 31.26/0.7879 32.42/0.797 34.49/0.88230 33.95/0.8645
22 20.78/0.1736 22.49/0.3324 22.91/0.3949 23.94/0.4361 24.30/0.4508 24.51/0.4504 25.64/0.5137 26.74/0.5579
23 22.20/0.2411 24.76/0.5248 25.26/0.6459 26.37/0.6743 26.57/0.6690 27.55/0.7026 27.72/0.6991 29.08/0.7688
24 18.47/0.1588 19.42/0.2908 19.71/0.3593 22.35/0.5281 22.64/0.5593 23.91/0.6261 24.72/0.6663 27.50/0.7779
25 22.15/0.2160 24.58/0.3454 24.89/0.3460 25.37/0.3917 25.20/0.4005 25.51/0.3938 25.94/0.4228 25.75/0.4300
26 21.77/0.2424 23.98/0.4178 24.17/0.4353 25.19/0.4995 25.10/0.5066 26.20/0.5173 25.81/0.5491 26.44/0.5869
27 22.07/0.2400 24.48/0.4116 24.75/0.4228 25.66/0.4874 25.40/0.4890 26.38/0.4895 25.98/0.5228 26.58/0.5522
28 20.50/0.2122 21.97/0.3018 22.07/0.2941 22.84/0.3817 22.62/0.3793 22.83/0.3289 23.13/0.4341 23.60/0.4710
29 19.59/0.3104 20.72/0.4886 20.94/0.5557 23.06/0.6670 22.90/0.6383 22.58/0.5916 24.45/0.7035 26.06/0.7777
30 19.92/0.2152 21.24/0.4039 21.44/0.4811 22.71/0.5567 22.63/0.5412 22.97/0.5572 23.61/0.5970 24.87/0.6842
31 18.46/0.2405 19.31/0.2986 19.33/0.2799 20.60/0.4391 20.48/0.4440 20.92/0.4025 22.02/0.5979 23.83/0.7194
32 19.81/0.2602 21.05/0.3796 21.06/0.3832 22.61/0.5342 22.32/0.5168 23.09/0.5184 24.19/0.6599 25.89/0.7571
33 20.37/0.2233 21.81/0.3454 21.88/0.3506 23.04/0.4590 22.64/0.4363 22.72/0.3793 23.97/0.5405 25.06/0.6071
34 18.98/0.2330 19.98/0.3970 20.18/0.4642 22.71/0.5802 22.22/0.5355 22.20/0.5261 23.67/0.6029 24.82/0.6679
35 20.87/0.2090 22.59/0.4518 22.92/0.5650 24.36/0.6201 24.53/0.6007 25.09/0.6269 26.26/0.6583 28.18/0.7444
36 16.04/0.1781 16.52/0.3003 16.61/0.3530 18.45/0.5008 18.01/0.4406 18.21/0.4373 19.67/0.5668 22.28/0.7173
37 18.48/0.2451 19.38/0.4272 19.56/0.5030 23.29/0.6612 22.99/0.6251 23.44/0.6437 25.18/0.6976 27.36/0.7792
38 23.69/0.2519 28.08/0.6556 29.89/0.8598 33.15/0.8731 31.06/0.8058 34.16/0.8823 33.13/0.8098 34.66/0.8780
39 24.01/0.2418 29.04/0.6595 31.63/0.8771 36.43/0.8836 32.20/0.8136 34.80/0.8978 33.76/0.8060 35.37/0.8786
40 21.85/0.2252 24.15/0.4756 24.76/0.5823 25.97/0.6291 25.45/0.5910 26.06/0.6168 26.26/0.6284 26.88/0.6836
41 23.15/0.2721 26.62/0.6028 27.28/0.7400 28.96/0.7718 28.56/0.7294 29.88/0.7863 29.33/0.7415 30.43/0.7986
42 24.14/0.2457 29.32/0.6184 31.10/0.7804 31.55/0.7920 30.82/0.7399 33.30/0.8221 31.35/0.7505 32.21/0.8058
43 22.96/0.2585 26.25/0.5904 27.14/0.7283 29.66/0.7684 29.04/0.7270 30.68/0.7794 30.19/0.7420 31.38/0.7944
44 20.96/0.2311 22.66/0.4541 23.01/0.5443 24.45/0.5946 24.01/0.5594 24.43/0.6027 25.32/0.5988 26.52/0.6598
45 14.53/0.1809 14.81/0.2854 14.94/0.3488 17.19/0.5218 16.62/0.4430 17.09/0.4499 18.92/0.5939 22.10/0.7484
46 20.26/0.2306 21.69/0.4963 21.93/0.6219 23.96/0.6849 23.97/0.6444 24.73/0.6968 25.92/0.7017 27.93/0.7834
47 20.23/0.2904 21.59/0.5131 21.89/0.6025 25.17/0.7029 24.48/0.6676 25.38/0.6998 26.62/0.7239 28.46/0.7870
48 20.29/0.2772 21.70/0.4866 21.98/0.5628 24.07/0.6459 23.94/0.6271 24.88/0.6576 25.30/0.6763 26.99/0.7498
49 22.50/0.2505 25.32/0.5472 25.98/0.6684 27.49/0.7057 27.37/0.6833 29.35/0.7585 28.80/0.7196 29.98/0.7741
50 22.80/0.2676 25.90/0.5941 26.54/0.7281 28.26/0.7666 28.12/0.7322 29.76/0.7938 29.30/0.7531 30.71/0.8146
51 18.34/0.1649 19.26/0.3177 19.58/0.3924 21.78/0.5091 22.95/0.5369 22.44/0.5115 25.46/0.6311 28.29/0.7133

Avg. 20.38/0.2341 22.32/0.4490 22.79/0.5344 24.69/0.6232 24.38/0.5993 25.21/0.6152 25.84/0.6607 27.44/0.7366
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Table 2. FSIM and ERGAS values of different restoration models for MB(20, 60)/σ = 25 (the best
result is in bold).

Image Degraded F-ABF [35] K-QSVD [10,11] DVTV [36] BM3D [37] QNLM [12,13] QWNNM [15] Proposed

1 0.6995/258.5 0.7296/134.7 0.5639/102.1 0.5517/100.9 0.6726/104.3 0.5808/88.99 0.7158/103.0 0.6491/99.37
2 0.5312/415.0 0.6067/356.1 0.6532/340.9 0.7754/204.1 0.7189/204.4 0.7168/273.5 0.8177/146.3 0.8792/102.3
3 0.6089/263.7 0.7147/177.9 0.6770/157.1 0.7146/134.0 0.7633/133.2 0.7705/114.2 0.7965/117.8 0.8236/91.03
4 0.7006/247.0 0.7336/145.3 0.6665/120.9 0.6661/107.2 0.7423/113.6 0.6981/102.5 0.7691/107.5 0.7556/100.5
5 0.7406/295.5 0.7400/192.3 0.6154/174.6 0.6517/149.0 0.7418/153.2 0.6908/138.2 0.7769/147.6 0.7717/133.3
6 0.6084/475.4 0.5991/417.9 0.5531/407.8 0.6118/333.6 0.6629/346.1 0.6299/338.0 0.7456/296.3 0.7993/240.6
7 0.6348/459.3 0.6541/414.4 0.6345/406.0 0.6755/325.0 0.7046/351.3 0.6877/325.8 0.7753/289.8 0.8287/220.1
8 0.6698/272.1 0.7143/199.9 0.6566/182.6 0.6700/151.5 0.7451/152.5 0.7057/157.5 0.7928/132.0 0.8142/110.5
9 0.6779/297.6 0.7254/212.9 0.6532/198.7 0.6793/155.5 0.7621/150.1 0.7566/131.2 0.8082/132.9 0.8450/105.6

10 0.6604/369.1 0.6843/301.5 0.6631/289.4 0.7095/205.8 0.7403/216.0 0.7386/193.8 0.7834/188.5 0.8318/146.4
11 0.5921/328.3 0.6368/270.0 0.6270/260.7 0.6765/192.6 0.6916/196.8 0.6746/188.8 0.7549/168.5 0.8123/132.1
12 0.7496/344.9 0.6143/264.4 0.3196/265.4 0.6345/234.0 0.7725/198.4 0.2755/265.7 0.8374/160.7 0.8479/142.3
13 0.6723/359.8 0.6573/304.8 0.5956/295.8 0.6487/216.7 0.7261/220.0 0.6907/208.9 0.7886/184.8 0.8260/142.7
14 0.6772/311.9 0.6756/237.1 0.5730/225.6 0.6321/191.1 0.6828/199.3 0.6494/183.3 0.7264/184.1 0.7458/163.0
15 0.6857/313.1 0.6927/248.8 0.6329/237.5 0.6606/177.4 0.7438/183.4 0.7157/167.2 0.7993/154.1 0.8249/126.4
16 0.6390/283.4 0.7046/201.5 0.7061/185.6 0.7098/146.2 0.7870/132.8 0.7696/126.6 0.8317/113.5 0.8735/86.88
17 0.5589/445.4 0.5827/386.4 0.6016/375.6 0.6765/277.2 0.6725/300.6 0.6712/291.5 0.7683/243.7 0.8331/194.1
18 0.5510/458.0 0.5357/411.0 0.5416/402.8 0.6008/322.0 0.6269/331.1 0.6175/321.9 0.7448/266.5 0.8199/203.0
19 0.5739/286.8 0.7712/151.4 0.8118/115.3 0.8273/88.25 0.8449/95.99 0.8649/66.15 0.8707/81.46 0.8940/70.95
20 0.6067/251.0 0.7823/134.5 0.7999/103.4 0.8110/81.99 0.8560/80.52 0.8628/58.36 0.8816/72.01 0.8908/62.62
21 0.6175/259.3 0.7884/137.3 0.7878/103.5 0.8071/75.58 0.8423/84.07 0.8459/75.11 0.8660/58.76 0.8675/66.28
22 0.6710/265.4 0.6585/188.6 0.5328/171.6 0.5341/152.3 0.6766/147.1 0.6170/143.3 0.7370/128.6 0.7313/114.3
23 0.6587/302.9 0.7253/190.3 0.6755/168.0 0.6813/148.1 0.7560/142.0 0.7342/125.7 0.7932/134.2 0.8056/112.5
24 0.6660/386.5 0.6540/313.3 0.5583/296.1 0.6257/219.2 0.7353/212.9 0.7272/184.3 0.7947/173.4 0.8436/127.7
25 0.7225/356.7 0.7695/223.7 0.4748/198.5 0.5380/187.9 0.6656/192.1 0.5660/176.4 0.6927/187.2 0.6411/181.8
26 0.7450/383.2 0.7244/242.3 0.5466/217.9 0.5996/193.0 0.7111/196.9 0.7471/170.5 0.6456/184.6 0.7372/169.5
27 0.7023/313.9 0.7286/198.4 0.5203/177.8 0.5922/159.8 0.7533/164.3 0.6206/145.9 0.7376/155.7 0.7195/144.5
28 0.5217/339.0 0.6447/247.3 0.4316/233.9 0.5340/215.1 0.6366/220.7 0.7279/215.8 0.6863/210.6 0.6811/199.6
29 0.6478/350.4 0.6827/272.4 0.6754/258.1 0.7038/201.2 0.7388/204.6 0.6915/211.0 0.7922/180.4 0.8330/147.2
30 0.6382/324.3 0.6638/247.8 0.6182/234.8 0.6452/202.1 0.7035/202.4 0.6780/194.1 0.7390/187.5 0.7766/161.4
31 0.7091/363.9 0.6478/299.9 0.5235/293.3 0.6039/252.5 0.6886/255.9 0.6124/243.3 0.7837/217.8 0.8423/176.1
32 0.6892/317.4 0.6745/242.6 0.5812/234.9 0.6525/195.1 0.7105/202.1 0.6763/184.5 0.8031/166.2 0.8518/135.9
33 0.6837/283.6 0.6261/210.3 0.4728/201.3 0.5704/176.8 0.6519/184.0 0.5466/181.2 0.7320/162.5 0.7528/145.6
34 0.6472/336.3 0.6659/268.9 0.6235/256.6 0.6607/191.8 0.7091/200.8 0.6769/200.2 0.7594/176.8 0.7782/152.9
35 0.6415/315.0 0.6761/223.9 0.6127/205.8 0.6316/175.1 0.7163/171.4 0.6759/161.0 0.7725/146.1 0.8056/118.6
36 0.5879/454.3 0.5864/404.6 0.5568/396.0 0.6010/319.7 0.6500/336.5 0.6243/328.7 0.7382/282.7 0.8155/209.0
37 0.6561/392.4 0.6809/320.0 0.6509/307.1 0.7093/200.3 0.7669/208.1 0.7497/197.7 0.8293/170.4 0.8573/131.8
38 0.5975/213.4 0.7751/109.5 0.8018/78.62 0.7885/51.41 0.8396/65.73 0.8211/44.99 0.8754/51.37 0.8890/45.96
39 0.5751/209.3 0.7705/103.1 0.8093/70.06 0.8109/45.25 0.8362/59.50 0.8308/35.99 0.8731/48.64 0.8831/43.96
40 0.6528/246.1 0.6844/162.0 0.6259/142.6 0.6630/122.8 0.7153/129.6 0.6929/120.9 0.7612/119.8 0.7671/111.0
41 0.6724/264.3 0.7890/151.2 0.7606/127.2 0.7676/105.3 0.8205/107.8 0.8036/93.47 0.8387/102.9 0.8461/90.63
42 0.6530/293.6 0.8111/139.1 0.7490/93.67 0.7453/87.41 0.8175/94.49 0.7953/70.94 0.8422/88.65 0.8252/82.45
43 0.7034/288.6 0.8000/167.2 0.7350/137.5 0.7548/102.6 0.8245/109.0 0.7919/89.25 0.8561/101.1 0.8432/89.19
44 0.6374/261.6 0.6797/187.8 0.6289/172.6 0.6672/146.3 0.7113/152.2 0.6933/144.6 0.7487/133.8 0.7651/116.5
45 0.5545/604.2 0.5614/559.4 0.5447/547.3 0.6287/422.4 0.6538/451.8 0.6463/429.4 0.7509/351.5 0.8295/246.1
46 0.6032/289.3 0.6811/214.2 0.6799/200.5 0.6934/159.2 0.7358/158.7 0.7271/145.3 0.7786/130.6 0.8190/104.6
47 0.7084/306.6 0.7454/229.9 0.6959/214.7 0.7261/148.2 0.7947/158.6 0.7733/143.3 0.8442/132.9 0.8600/106.9
48 0.6874/287.0 0.7163/212.7 0.6548/198.8 0.6915/155.4 0.7508/156.5 0.7387/138.8 0.7979/139.7 0.8260/113.6
49 0.6858/279.4 0.7656/172.7 0.6937/149.0 0.7081/124.3 0.7897/123.9 0.7773/97.98 0.8234/109.0 0.8259/94.68
50 0.6749/255.0 0.7793/151.3 0.7494/128.7 0.7505/106.0 0.8173/105.7 0.8040/87.65 0.8412/97.30 0.8544/82.70
51 0.6326/419.8 0.6338/347.8 0.5243/330.2 0.5898/256.8 0.7066/220.9 0.6339/234.5 0.7758/174.9 0.8162/132.1

Avg. 0.6546/327.4 0.6921/241.2 0.6283/223.4 0.6718/178.3 0.7359/182.0 0.6962/171.4 0.7882/157.1 0.8109/130.0

It is well established that human perception serves as the ultimate criterion for assess-
ing image quality and plays a pivotal role in evaluating the performance of restoration
algorithms. Figures 8–12 demonstrate the visual enhancements achieved by our proposed
model and others. Not only did it display the overall image reconstructed by various
models, but it also showed the image of the small red box area zoomed by about 2.5 times,
providing a clearer and more intuitive reconstruction effect.
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(PSNR/SSIM). (a) Ground truth; (b) Degraded image with motion kernel (20,60) and noise level 𝜎 = 25; Restored satellite image by (c) F-ABF [35]; (d) K-QSVD [10,11]; (e) DVTV [36]; (f) BM3D [37]; (g) 
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Figure 8. Restoration performance on “Img5” with visual quality and numerical results (PSNR/SSIM).
(a) Ground truth; (b) Degraded image with motion kernel (20, 60) and noise level σ = 25; Restored
satellite image by (c) F-ABF [35]; (d) K-QSVD [10,11]; (e) DVTV [36]; (f) BM3D [37]; (g) QNLM [12,13];
(h) QWNNM [15]; (i) adaptive QWNNM (ours).

For the restoration of “Img5”, compared to seven mainstream models, it is evident
that our proposed model significantly enhanced the visual quality of the tank image. This
improvement was particularly pronounced in the enhancement of the tank edges and the
blurred background, as illustrated in the zoomed-in satellite image within the red box.
Traditional models like the F-ABF and K-QSVD models did not adequately account for the
degradation caused by the motion blur kernel, resulting in excessive distortion of circular
and rectangular structures. BM3D, DVTV, and QNLM models struggled with noise removal,
leading to the loss of critical details in both the tank and the background. Although the
QWNNM model produced better visual results than the aforementioned models, it still
tended to overly blur the image. In contrast, our adaptive QWNNM model successfully
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preserved structural integrity and details, yielding clearer edges and an enhanced overall
background. The edges of the tank, wires, and shadows were particularly pronounced
in the zoomed-in image, highlighting our model’s superior enhancement capability in
achieving clearer and more visually satisfying results.
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Figure 9. Restoration performance on “Img2” with visual quality and numerical results (PSNR/SSIM).
(a) Ground truth; (b) Degraded image with motion kernel (20, 60) and noise level σ = 25; Restored
satellite image by (c) F-ABF [35]; (d) K-QSVD [10,11]; (e) DVTV [36]; (f) BM3D [37]; (g) QNLM [12,13];
(h) QWNNM [15]; (i) adaptive QWNNM (ours).
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Figure 10. Restoration performance on “Img10” with visual quality and numerical results
(PSNR/SSIM). (a) Ground truth; (b) Degraded image with motion kernel (20, 60) and noise level
σ = 25; Restored image by (c) F-ABF [35]; (d) K-QSVD [10,11]; (e) DVTV [36]; (f) BM3D [37];
(g) QNLM [12,13]; (h) QWNNM [15]; (i) adaptive QWNNM (ours).



Remote Sens. 2024, 16, 4152 17 of 26

Remote Sens. 2024, 16, x FOR PEER REVIEW 18 of 28 
 

 

    
(f) 21.97/0.6056 (g) 22.86/0.6443 (h) 23.61/0.6637 (i) 25.72/0.7635 

Figure 10. Restoration performance on “Img10” with visual quality and numerical results 
(PSNR/SSIM). (a) Ground truth; (b) Degraded image with motion kernel (20,60) and noise level 𝜎 = 25; Restored image by (c) F-ABF [35]; (d) K-QSVD [10,11]; (e) DVTV [36]; (f) BM3D [37]; (g) QNLM 
[12,13]; (h) QWNNM [15]; (i) adaptive QWNNM (ours). 

    
(a) Img16 (b) 21.10/0.2589 (c) 22.92/0.5305 (d) 23.26/0.6549 (e) 25.41/0.7417 

    
(f) 26.02/0.7367 (g) 26.46/0.7638 (h) 28.09/0.7808 (i) 30.30/0.8636 

Figure 11. Restoration performance on “Img16” with visual quality and numerical results 
(PSNR/SSIM). (a) Ground truth; (b) Degraded image with motion kernel (20,60) and noise level 𝜎 = 25; Restored image by (c) F-ABF [35]; (d) K-QSVD [10,11]; (e) DVTV [36]; (f) BM3D [37]; (g) QNLM 
[12,13]; (h) QWNNM [15]; (i) adaptive QWNNM (ours). 

    
(a) Img20 (b) 23.78/0.2455 (c) 28.24/0.6307 (d) 29.69/0.8272 (e) 32.00/0.8570 

Figure 11. Restoration performance on “Img16” with visual quality and numerical results
(PSNR/SSIM). (a) Ground truth; (b) Degraded image with motion kernel (20, 60) and noise level
σ = 25; Restored image by (c) F-ABF [35]; (d) K-QSVD [10,11]; (e) DVTV [36]; (f) BM3D [37];
(g) QNLM [12,13]; (h) QWNNM [15]; (i) adaptive QWNNM (ours).
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Figure 12. Restoration performance on “Img20” with visual quality and numerical results
(PSNR/SSIM). (a) Ground truth; (b) Degraded image with motion kernel (20, 60) and noise level
σ = 25; Restored image by (c) F-ABF [35]; (d) K-QSVD [10,11]; (e) DVTV [36]; (f) BM3D [37];
(g) QNLM [12,13]; (h) QWNNM [15]; (i) adaptive QWNNM (ours).

For the restoration of “Img2”, the F-ABF model introduced smoothing distortions
and color artifacts, while the K-QSVD model resulted in excessive smoothing that notably
blurred the edges of the road, particularly the vertical road markings. The DVTV and
BM3D models partially reduced smoothness, while the QNLM and QWNNM models
managed to diminish artifacts to some extent but failed to fully restore certain textural
features. In contrast, our adaptive QWNNM model exhibited exceptional performance in
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satellite image reconstruction. It effectively restored the texture of road signs, removed
noise points from the road, and preserved the most distinct details of the digital “36” outline
and shadow edges, resulting in a visually appealing and aesthetically pleasing image. The
higher PSNR and SSIM values further validated the superiority of our algorithm.

“Img10” represents a satellite image of multiple houses with complex structures,
increasing the difficulty of reconstruction. Figure 10 demonstrates the recovery of its
degraded image due to motion blur and noise. The F-ABF model introduced additional
noise points and color irregularities in the restored image. When the damage to the
house image was substantial, the applicability of the F-ABF model became questionable.
We selected a clearly defined area within the red box for magnification, and upon close
inspection, it is evident that the K-QSVD, DVTV, and BM3D models introduced numerous
ringing artifacts in the restored background of the house image, leading to a blurring of
the blue boundaries and details. Although the non-local similarity-based QNLM model
produced clearer edges, the image remained overly smooth. Compared to the QWNNM
model, our proposed model demonstrated greater clarity, enhanced visual quality, and
fewer artifacts. It excelled in reducing image noise points, preserving aircraft boundary
outlines, and recovering details of airport debris.

‘Img16’ was applied motion blur, simulating rightward movement. F-ABF, K-QSVD,
DVTV, and BM3D models struggled to reconstruct the edges and intricate details of the
house, as evidenced by the 2× zoom of the house structure in the lower right corner.
The QNLM model excessively smoothed the image, resulting in a substantial loss of
critical features. The QWNNM model failed to effectively restore the smoothness of the
roads. In contrast, our model accurately captured flat roads and the precise structural
details of buildings, successfully preserving grass texture while eliminating undesirable
color distortions.

The ‘Img20’ is a satellite image of the golf course. Clearly, the F-ABF, K-QSVD, DVTV,
and BM3D models significantly distorted the pseudo color, resulting in highly blurred
restored images. Although the QNLM model effectively reconstructed the edges of sand
pits, it tended to overly smooth the edges, leading to the loss of critical detail information.
While the QWNNM model alleviated some of the excessive smoothing, it still struggled
to adequately remove noise and blurring. In contrast, our proposed adaptive QWNNM
model excelled in restoring edge information of sand pits within the open spaces of the
golf course, not only better preserving details such as the grass color and background but
also optimally maintaining the edges of sand pits, providing the most visually pleasing
depiction of the golf course.

4.3. Real Environment Experiments with Unknown Noise/Blurring

In this subsection, we conducted restoration experiments on six satellite images
(Figure 13) degraded by various noise types in the real environment, including haze,
stripes, blurring, etc. We compared our adaptive QWNNM against five advanced tech-
niques: F-ABF [35], K-QSVD [10,11], BM3D [37], QNLM [12,13], and QWNNM [15]. To
provide a more objective assessment of reconstruction results, since without ground-truth
image as reference, we employed three blind noise metrics: BLIINDS 2 [46], BRISQUE [47],
and NIQE [48]. Higher BLIINDS 2 values indicate better restoration results, while the
lower BRISQUE and NIQE values signifies the higher the quality of the restoration image.
Table 3 summarized BLIINDS 2, BRISQUE, and NIQE values of satellite image restoration
experiments by different models. Figures 14–19 compared the visual restoration results
by using the competing models. For all three evaluation indices, our proposed model
demonstrated significantly improved image restoration performance. This underscores its
effectiveness regardless of the noise type present.
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Figure 13. Satellite images degraded by haze, stripes, and blurring in a real environment, enumerated
from left-to-right.

Table 3. BLIINDS 2, BRISQUE, and NIQE values of different restoration models (the best result is
in bold).

Real Image Indexes F-ABF [35] K-QSVD [10,11] BM3D [37] QNLM [12,13] QWNNM [15] Proposed

1
BLIINDS 2 35.525 31.078 41.037 24.636 38.536 43.363
BRISQUE 34.008 29.425 33.929 35.065 32.321 28.860

NIQE 6.9651 6.8141 10.1083 12.2462 8.9234 7.1641

2
BLIINDS 2 55.528 41.099 57.544 40.574 55.283 58.531
BRISQUE 42.851 43.830 44.413 51.274 42.028 43.934

NIQE 7.2057 7.4444 7.2383 9.2311 7.3108 6.6876

3
BLIINDS 2 42.537 35.537 35.272 32.558 43.576 46.550
BRISQUE 44.309 34.687 32.566 31.243 35.233 32.247

NIQE 6.6394 8.0520 10.592 10.9544 8.4152 7.0428

4
BLIINDS 2 41.265 46.539 57.502 37.021 55.026 65.195
BRISQUE 43.458 42.827 43.117 43.373 43.457 41.064

NIQE 9.2277 9.1812 11.869 9.7100 9.9806 8.2862

5
BLIINDS 2 28.519 31.075 36.046 21.019 41.195 46.502
BRISQUE 41.876 43.737 42.638 48.459 42.321 41.852

NIQE 4.7248 6.5645 8.1706 9.5664 8.8154 7.2943

6
BLIINDS 2 35.551 41.179 42.542 32.581 45.079 47.509
BRISQUE 40.057 38.281 32.903 57.292 37.127 37.912

NIQE 6.7352 6.1613 6.7624 9.8949 6.5657 5.9813
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(b) F-ABF [35]; (c) K-QSVD [10,11]; (d) BM3D [37]; (e) QNLM [12,13]; (f) QWNNM [15]; (g) adaptive 
QWNNM (ours). 

    
(a) (b) (c) (d) 

   
(e) (f) (g) 

Figure 15. Visual quality comparison of original satellite image 2 (a) and restored satellite image by 
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Figure 16. Visual quality comparison of original satellite image 3 (a) and restored satellite image by 
(b) F-ABF [35]; (c) K-QSVD [10,11]; (d) BM3D [37]; (e) QNLM [12,13]; (f) QWNNM [15]; (g) adaptive 
QWNNM (ours). 

Figure 14. Visual quality comparison of original satellite image 1 (a) and restored satellite image by
(b) F-ABF [35]; (c) K-QSVD [10,11]; (d) BM3D [37]; (e) QNLM [12,13]; (f) QWNNM [15]; (g) adaptive
QWNNM (ours).
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Figure 15. Visual quality comparison of original satellite image 2 (a) and restored satellite image by 
(b) F-ABF [35]; (c) K-QSVD [10,11]; (d) BM3D [37]; (e) QNLM [12,13]; (f) QWNNM [15]; (g) adaptive 
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Figure 16. Visual quality comparison of original satellite image 3 (a) and restored satellite image by 
(b) F-ABF [35]; (c) K-QSVD [10,11]; (d) BM3D [37]; (e) QNLM [12,13]; (f) QWNNM [15]; (g) adaptive 
QWNNM (ours). 

Figure 15. Visual quality comparison of original satellite image 2 (a) and restored satellite image by
(b) F-ABF [35]; (c) K-QSVD [10,11]; (d) BM3D [37]; (e) QNLM [12,13]; (f) QWNNM [15]; (g) adaptive
QWNNM (ours).
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Figure 16. Visual quality comparison of original satellite image 3 (a) and restored satellite image by
(b) F-ABF [35]; (c) K-QSVD [10,11]; (d) BM3D [37]; (e) QNLM [12,13]; (f) QWNNM [15]; (g) adaptive
QWNNM (ours).

The QNLM model (Figures 14e, 15e, 16e, 17e, 18e and 19e) yielded the worst visual
results in restored images that are notably blurred and distorted, highlighting the limi-
tations of non-local technique when noise levels are unknown. Similarly, both K-QSVD
(Figures 14c, 15c, 16c, 17c, 18c and 19c) and BM3D (Figures 14d, 15d, 16d, 17d, 18d and 19d)
models exhibited weaker performance, as their overly smooth restorations failed to pre-
serve important details, such as the small airplane in “Image 1” and the edges of the house
in “Image 4”. While BM3D effectively reduced stripe noise in “Image 5”, it still lacked
detail retention. The F-ABF model (Figures 14b, 15b, 16b, 17b, 18b and 19b) retained more
detail and reduced stripe noise but was less effective against haze, resulting in blur in
“Image 1 and image 2”. The QWNNM model (Figures 14f, 15f, 16f, 17f, 18f and 19f) partially
mitigated over-smoothing and enhanced clarity, yet it struggled to recover certain textures,
exemplified by the small airplane “Image1”. In contrast, our adaptive QWNNM model
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(Figures 14g, 15g, 16g, 17g, 18g and 19g) achieved the best visual results overall, preserving
intricate details such as the left road in “Image 2”, the patterns of brown soil in “Image
3”, and the triangular pattern on the central square in “Image 6”, while reconstructing the
contours and colors of the house in “Image 4” with clarity. These findings demonstrated
that our model outperformed five comparative models in removing stripe noise, preserving
essential details, and minimizing artifacts, positioning it as a superior option for image
restoration in satellite applications, particularly under varying noise conditions.
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Figure 17. Visual quality comparison of original satellite image 4 (a) and restored satellite image by 
(b) F-ABF [35]; (c) K-QSVD [10,11]; (d) BM3D [37]; (e) QNLM [12,13]; (f) QWNNM [15]; (g) adaptive 
QWNNM (ours). 
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Figure 18. Visual quality comparison of original satellite image 5 (a) and restored satellite image by 
(b) F-ABF [35]; (c) K-QSVD [10,11]; (d) BM3D [37]; (e) QNLM [12,13]; (f) QWNNM [15]; (g) adaptive 
QWNNM (ours). 

    
(a) (b) (c) (d) 

Figure 17. Visual quality comparison of original satellite image 4 (a) and restored satellite image by
(b) F-ABF [35]; (c) K-QSVD [10,11]; (d) BM3D [37]; (e) QNLM [12,13]; (f) QWNNM [15]; (g) adaptive
QWNNM (ours).
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Figure 18. Visual quality comparison of original satellite image 5 (a) and restored satellite image by
(b) F-ABF [35]; (c) K-QSVD [10,11]; (d) BM3D [37]; (e) QNLM [12,13]; (f) QWNNM [15]; (g) adaptive
QWNNM (ours).
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Figure 19. Visual quality comparison of original satellite image 6 (a) and restored satellite image by 
(b) F-ABF [35]; (c) K-QSVD [10,11]; (d) BM3D [37]; (e) QNLM [12,13]; (f) QWNNM [15]; (g) adaptive 
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The QNLM model (Figures 14e–19e) yielded the worst visual results in restored im-
ages that are notably blurred and distorted, highlighting the limitations of non-local tech-
nique when noise levels are unknown. Similarly, both K-QSVD (Figures 14c–19c) and 
BM3D (Figures 14d–19d) models exhibited weaker performance, as their overly smooth 
restorations failed to preserve important details, such as the small airplane in ‘‘Image 1” 
and the edges of the house in “Image 4”. While BM3D effectively reduced stripe noise in 
“Image 5”, it still lacked detail retention. The F-ABF model (Figures 14b–19b) retained 
more detail and reduced stripe noise but was less effective against haze, resulting in blur 
in “Image 1 and image 2”. The QWNNM model (Figures 14f–19f) partially mitigated over-
smoothing and enhanced clarity, yet it struggled to recover certain textures, exemplified 
by the small airplane “Image1”. In contrast, our adaptive QWNNM model (Figures 14g–
19g) achieved the best visual results overall, preserving intricate details such as the left 
road in “Image 2”, the patterns of brown soil in “Image 3”, and the triangular pattern on 
the central square in “Image 6”, while reconstructing the contours and colors of the house 
in “Image 4” with clarity. These findings demonstrated that our model outperformed five 
comparative models in removing stripe noise, preserving essential details, and minimiz-
ing artifacts, positioning it as a superior option for image restoration in satellite applica-
tions, particularly under varying noise conditions. 

Figure 19. Visual quality comparison of original satellite image 6 (a) and restored satellite image by
(b) F-ABF [35]; (c) K-QSVD [10,11]; (d) BM3D [37]; (e) QNLM [12,13]; (f) QWNNM [15]; (g) adaptive
QWNNM (ours).

4.4. Coupling Effect of Three Adaptive Strategies

In this subsection, we investigate the coupling effects of three adaptive strategies:
Adaptive Noise-Resilient Block Matching (S1), Adaptive Feedback of Residual Images (S2),
and Adaptive Iteration Stopping Criterion (S3) on the satellite image. Table 4 presents a
comparison of the PSNR, SSIM, FSIM, and ERGAS values for the original QWNNM model
and different combinations of adaptive strategies (S1, S1&S2, S1&S3, and S1&S2&S3) in
terms of image restoration. Figure 20 provides a visual representation of the reconstruction
results for the three satellite images.

Table 4. Restoration results of three modification for MB(20, 60)/σ = 25.

Images Metrics Degraded QWNNM [15] S1 S1&S2 S1&S3 Proposed

Runway

PSNR 22.122 26.3670 27.327 30.258 27.770 31.063
SSIM 0.3935 0.6997 0.7342 0.8099 0.7408 0.8203
FSIM 0.6790 0.8018 0.8135 0.8651 0.8168 0.8708

ERGAS 198.28 118.91 104.16 75.52 100.89 70.098

Airport

PSNR 23.9361 28.569 28.837 30.463 28.846 30.604
SSIM 0.4516 0.7316 0.7441 0.7856 0.7429 0.7862
FSIM 0.7325 0.8292 0.8139 0.8420 0.8125 0.8413

ERGAS 190.33 109.61 104.58 86.95 105.05 86.67

Residential

PSNR 23.127 26.505 26.483 28.268 26.483 28.292
SSIM 0.4166 0.6503 0.6489 0.734 0.6489 0.734
FSIM 0.7102 0.7967 0.7959 0.8425 0.7959 0.8413

ERGAS 189.8 129.19 125.46 104.54 125.46 105.25
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Building upon the original QWNNM model, adding different combinations of adap-
tive strategies underwent further optimization of restoration performance, particularly 
regarding the PSNR, SSIM, FSIM, and ERGAS metrics, with average improvements of 
1.589, 0.0510, 0.0205, and −19.69, respectively. S1 demonstrated improvements across all 
metrics compared to QWNNM. By transforming image blocks from the traditional spatial 
domain to the quaternion frequency domain and applying soft-thresholding to shrink the 
frequency coefficients such that noise components can be effectively suppressed in the 
similarity measurement, enhancing the accuracy of similarity measurements and then im-
proving image restoration results. S1&S3 achieved the similar restoration performance as 
that in S1. This is because the incorporation of Adaptive Iteration Stopping Criterion (S3) 
is to reduce the number of iterations (i.e., computational complex). In contrast, S1&S2 
demonstrated greater improvements, particularly in the clarity of the “R13” road sign in 
the “Runway”, the blue fuselage of the aircraft in the “ Airport “, and the contours of the 
houses in the “Residential” (Figure 20), indicating that the inclusion of edge information 
in residual images achieved comprehensive enhancements over the original QWNNM 
model. Overall, the adaptive QWNNM model (S1&S2&S3) excelled across all metrics, 
making it the most effective option. In terms of overall visual quality and detail represen-
tation, it closely resembles the original image state, effectively demonstrating the efficacy 
and practicality of the adaptive QWNNM model in satellite image restoration. 

    

Runway 

Remote Sens. 2024, 16, x FOR PEER REVIEW 25 of 28 
 

 

    

    
(a) (b) (c) (d) 

   

   

   
(e) (f) (g) 

Figure 20. Restoration performance with visual quality. (a) Ground truth; (b) Degraded image with 
motion kernel (20,60) and noise level 25; Restored satellite image by (c) QWNNM [15]; (d) S1; (e) 
S1&S2; (f) S1&S3; (g) adaptive QWNNM (S1&S2&S3). 

5. Conclusions 
Due to channel noise and random atmospheric turbulence, retrieved satellite images 

are always distorted and degraded and so require further restoration before use in various 
applications. In this study, we present an adaptive quaternion-weighted nuclear norm 
minimization model, which offers several advantageous features. First, our model inte-
grated the benefits of quaternion representation and soft thresholding in the frequency 
domain, providing a novel approach to mitigate noise impacts in block matching. Second, 
our model incorporated an adaptive proportion of the residual image from each iteration 
as feedback in the next iteration, allowing to use edge information in residual images to 
continuously improve the restoration performance during the iterative process. Finally, 
our model established a stopping criterion of iteration processes through measuring the 

Airport 

Residential 

Figure 20. Restoration performance with visual quality. (a) Ground truth; (b) Degraded image
with motion kernel (20, 60) and noise level 25; Restored satellite image by (c) QWNNM [15]; (d) S1;
(e) S1&S2; (f) S1&S3; (g) adaptive QWNNM (S1&S2&S3).

Building upon the original QWNNM model, adding different combinations of adap-
tive strategies underwent further optimization of restoration performance, particularly
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regarding the PSNR, SSIM, FSIM, and ERGAS metrics, with average improvements of
1.589, 0.0510, 0.0205, and −19.69, respectively. S1 demonstrated improvements across all
metrics compared to QWNNM. By transforming image blocks from the traditional spatial
domain to the quaternion frequency domain and applying soft-thresholding to shrink
the frequency coefficients such that noise components can be effectively suppressed in
the similarity measurement, enhancing the accuracy of similarity measurements and then
improving image restoration results. S1&S3 achieved the similar restoration performance
as that in S1. This is because the incorporation of Adaptive Iteration Stopping Criterion
(S3) is to reduce the number of iterations (i.e., computational complex). In contrast, S1&S2
demonstrated greater improvements, particularly in the clarity of the “R13” road sign in
the “Runway”, the blue fuselage of the aircraft in the “ Airport “, and the contours of the
houses in the “Residential” (Figure 20), indicating that the inclusion of edge information in
residual images achieved comprehensive enhancements over the original QWNNM model.
Overall, the adaptive QWNNM model (S1&S2&S3) excelled across all metrics, making
it the most effective option. In terms of overall visual quality and detail representation,
it closely resembles the original image state, effectively demonstrating the efficacy and
practicality of the adaptive QWNNM model in satellite image restoration.

5. Conclusions

Due to channel noise and random atmospheric turbulence, retrieved satellite images
are always distorted and degraded and so require further restoration before use in various
applications. In this study, we present an adaptive quaternion-weighted nuclear norm
minimization model, which offers several advantageous features. First, our model inte-
grated the benefits of quaternion representation and soft thresholding in the frequency
domain, providing a novel approach to mitigate noise impacts in block matching. Second,
our model incorporated an adaptive proportion of the residual image from each iteration
as feedback in the next iteration, allowing to use edge information in residual images to
continuously improve the restoration performance during the iterative process. Finally, our
model established a stopping criterion of iteration processes through measuring the de-
pendence between the current restored image and the corresponding residual image. Both
simulation experiments with known noise/blurring and real environment experiments
with unknown noise/blurring confirmed the effectiveness and robustness of our adaptive
QWNNM model over the original QWNNM model and other state-of-the-art restoration
models in very different technique approaches.
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