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Abstract: Recent research has demonstrated that global warming significantly enhances peak vegeta-
tion growth on the Tibetan Plateau (TP), underscoring the influence of climatic factors on vegetation
dynamics. Nevertheless, the effects of different drought types on peak vegetation growth remain
underexplored. This study utilized satellite-derived gross primary productivity (GPP) and the nor-
malized difference vegetation index (NDVI) to assess the impacts of soil moisture (SM) and vapor
pressure deficit (VPD) on peak vegetation growth (GPPmax and NDVImax) across the TP from 2001 to
2022. Our findings indicate that NDVImax and GPPmax exhibited increasing trends in most regions,
displaying similar spatial patterns, with 65.28% of pixels showing an increase in NDVImax and 72.98%
in GPPmax. In contrast, the trend for SM primarily showed a decrease (80.86%), while VPD showed
an increasing trend (74.75%). Through partial correlation analysis and ridge regression, we found
that peak vegetation growth was significantly affected by SM or VPD in nearly 20% of the study
areas, although the magnitude of these effects varied considerably. Furthermore, we revealed that
hydrothermal conditions modulated the responses of peak vegetation growth to SM and VPD. In
regions with annual precipitation less than 650 mm and an annual mean temperature below 10 ◦C,
decreased SM and increased VPD generally inhibited peak vegetation growth. Conversely, in warm and
humid areas, lower SM and higher VPD promoted peak vegetation growth. These findings are crucial
for deepening our understanding of vegetation phenology and its future responses to climate change.

Keywords: peak vegetation growth; drought; soil moisture; vapor pressure deficit; Tibetan Plateau

1. Introduction

The Tibetan Plateau (TP), often referred to as the “third pole” of the world, has typical
alpine ecosystems that are particularly prone to the repercussions of climate change [1].
During recent decades, the plateau has witnessed a temperature increase at a rate double
that of the global average, severely impacting the timing and vigor of vegetation growth [2].
Such changes are critical because alpine vegetation is integral to the carbon and water
cycles, influencing the overall climate dynamics [3,4]. Moreover, shifts in vegetation growth
can feed back into broader climatic patterns, making it essential to monitor and understand
these dynamics for future climate modeling [5–8].

Peak vegetation growth is a main indicator reflecting the carbon absorption capacity
of terrestrial ecosystems and regulating the seasonal variation in atmospheric CO2 con-
centrations [9–13]. Numerous satellite observations suggest that the Earth’s land has been
experiencing increased vegetation coverage since the early 1980s [14,15], with an increase in
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peak vegetation growth also being perceived globally [12], which has significantly changed
the carbon–water cycles within terrestrial ecosystems [16,17]. Research has demonstrated that
climatic factors such as precipitation, temperature, and radiation dominate peak vegetation
growth [18–22]. Furthermore, CO2 and nitrogen deposition are crucial in controlling peak
vegetation growth [12]. Ongoing global warming is leading to increasingly frequent and
prolonged drought events, placing significant stress on ecosystems and potentially result-
ing in severe ecological imbalances, which profoundly affect vegetation growth [23–28].
Existing research has shown that the sensitivity of phenology to drought has significantly
increased in recent decades. Under future climate change scenarios, drought is expected to
become more severe and frequent, exacerbating its impact on vegetation [29,30].

Insufficient soil moisture (SM) and elevated atmospheric water requirements, charac-
terized by vapor pressure deficit (VPD), are recognized as the two major factors contributing
to drought stress in plants [31]. Soil drought can occur when soil moisture (SM) is insuffi-
cient. SM typically refers to the soil humidity or soil water content, which is one of the key
factors determining plant growth and hydrological processes. Vapor pressure deficit (VPD)
describes the difference between the moisture content in the air and the potential evap-
oration, characterizing the degree of air dryness, which is crucial for plant transpiration
and water exchange. The effects of moisture stress may be exacerbated in the context of
ongoing climate warming, complicating our understanding of how the coupling of SM and
VPD influences vegetation [32]. Several studies have demonstrated the importance of SM
in mediating the exchange of water, energy, and carbon between soil and vegetation, thus
influencing the growth conditions of plants [31,33]. However, other research has indicated
that VPD, instead of SM, dominates the efficiency of the ecosystem production at more
flux sites and on a greater scale globally [34]. For example, Zhong et al. [35] revealed the
important role of VPD in terrestrial ecosystems and indicated that increasing VPD would
threaten high-latitude ecosystems in the context of continuing global warming. The relative
roles of SM and VPD in influencing ecosystem productivity remain highly controversial.
Recent studies have indicated that SM is the primary moisture constraint on the productiv-
ity of terrestrial vegetation ecosystems in most regions of China, with the rate of increase
in SM’s impact on vegetation productivity outpacing that of VPD [36]. Conversely, other
researchers have found that VPD exerts a greater influence on the productivity of terrestrial
ecosystems in China than SM, suggesting that VPD has a stronger and more widespread
effect on the trends and variability in ecosystem productivity in the region [37]. Therefore,
there is still a lack of consensus regarding the specific impacts of VPD and SM on vegetation
productivity at the ecosystem scale, highlighting the need for further investigation into
how soil and atmospheric drought affect vegetation growth peaks.

To address this issue, we first derived the maximum values of gross primary productivity
(GPPmax) and the normalized difference vegetation index (NDVImax) as proxies of peak
vegetation growth based on remote sensing data from 2001 to 2022 over the TP. Then, we
examined the responses of GPPmax and NDVImax to SM and VPD. We aimed to answer several
questions in our study: (1) What are the relationships between peak vegetation growth and
soil and atmospheric drought? (2) What are the spatiotemporal patterns of these relationships?
(3) How do such relationships vary among vegetation types and hydrothermal conditions?

2. Data and Methods
2.1. Study Area

The Tibetan Plateau, situated in Central Asia, holds the distinction of being the largest
and highest plateau globally, covering much of southwestern China and most of the Tibet
Autonomous Region. Its geographic coordinates range from 25◦N to 40◦N in latitude
and 70◦E to 105◦E in longitude. Boasting an average elevation exceeding 4000 m, the TP
surpasses many regions, leading to unique climatic and ecological characteristics. Because
of its low latitude, high elevation, and intricate topography, the TP is characterized by its
cold temperatures and scant precipitation. From 2001 to 2022, the mean annual temperature
varied from −14 ◦C in the northern part to 24 ◦C in the southern part (Figure 1b). The
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majority of the area is subject to arid or semi-arid climates, with the total annual precipi-
tation typically falling below 1000 mm in most regions (Figure 1c). The vegetation types
and distributions in the TP are diverse, enriched and complicated by the variations in
geographical conditions and altitudes. Alpine steppe and alpine meadows represent the
predominant vegetation types, constituting 27.94% and 25.57% of the region, respectively.
They are mainly distributed across the western, midland, and eastern regions of the TP. The
vegetation primarily consists of shrubs in the eastern and southern regions, while alpine
sparse vegetation is scattered throughout the entire area.
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Figure 1. Major features of TP: (a) representative vegetation cover types; (b) total average temperature
from 2001 to 2022; and (c) average precipitation from 2001 to 2022.

2.2. Data
2.2.1. NDVI Data

The NDVI, also known as the normalized difference vegetation index, can differentiate
vegetation from water and soil, providing an objective reflection of changes in vegetation
coverage. It is the optimal indicator of vegetation growth status and coverage. In this study,
500 m spatial resolution MODIS data, MOD13A1 (v061), with a temporal resolution of
16 days and a time span of 22 years (2001–2022), were acquired from the NASA Earthdata
Cloud (https://appeears.earthdatacloud.nasa.gov/, accessed on 12 December 2023) web-
site. This dataset comprised two major vegetation layers, the NDVI and EVI, and the NDVI
layer was chosen for download. The dataset offered temporal continuity and extensive
coverage, making it highly suitable for this research. Then, by setting the NDVI annual
average threshold to 0.1, the pixels with an NDVI annual average below 0.1 were excluded.
This approach effectively removes areas of low or sparse vegetation, bare soil, and water
bodies, thus ensuring the accuracy of the results [38–40]. This threshold was selected to en-
hance the reliability of the analysis by ensuring that only the areas with healthy vegetation
cover were considered in order to obtain more accurate research outcomes.

2.2.2. GPP Data

Gross primary productivity (GPP) is a crucial ecological indicator used to measure the ex-
tent to which plants fix solar energy in an ecosystem. It represents the overall productivity and
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energy conversion efficiency of an ecosystem and is vital in its energy flow and material cycling.
For this research, 500 m spatial resolution MODIS data, MOD17A2H (v061), with a temporal
resolution of 8 days and a time span of 22 years (2001–2022), were acquired from the NASA
Earthdata Cloud (https://appeears.earthdatacloud.nasa.gov/, accessed on 12 December 2023).
The dataset consisted of three major layers: gross primary productivity, net photosynthesis, and
quality control indicators. For this study, the gross primary productivity layer was selected for
download. To facilitate this research, regions with a multiyear average normalized difference
vegetation index (NDVI) below 0.1 were also excluded from the GPP data.

2.2.3. Climate Data

Climate data including SM, VPD, precipitation, temperature, and radiation were
obtained from the TerraClimate dataset (https://www.climatologylab.org/terraclimate.
html, accessed on 12 December 2023). The spatial resolution was 1/24◦. The dataset was
developed by the University of California, Merced [41]. To ensure consistency in spatial
resolution with the NDVI and GPP data, the meteorological data underwent resampling
using the bilinear interpolation method. Similarly, the climate data also eliminated regions
with multiple-year mean NDVI values under 0.1. Since the available temperature data
only included the maximum and minimum temperature, we took the average of these
two variables as the temperature variable for analysis.

2.3. NDVImax and GPPmax Extraction Methods

For the NDVI and GPP data, taking the NDVI as an example, we extracted the
maximum value for each pixel from all NDVI data over the course of a year, which is
designated as NDVImax. In this way, each pixel value in the composite image represents
the maximum NDVI value for that location across all images throughout the year.

2.4. Statistical Analysis Strategy

First, we conducted a statistical analysis using Theil–Sen median trend analysis [42]
(Equation (1)) to examine the trends in NDVImax, GPPmax, SM, and VPD in the TP district
from 2001 to 2022. Next, we assessed the significance (p < 0.05) of the trends using the
Mann–Kendall test (Equations (2)–(5)). In the following, the formulas and principles are
explained, taking NDVImax as an example.

β = Median
( xj − xi

j − i

)
∀j > i (1)

Z =


S√

Var(S)
(S > 0)

0 (S = 0)
S+1√
Var(S)

(S < 0)
(2)

S =
n−1

∑
i=1

n

∑
j=i+1

sgn
(
xj − xi

)
(3)

sgn
(

xj − xi
)
=


1 i f

(
xj − xi

)
> 0

0 i f
(
xj − xi

)
= 0

−1 i f
(
xj − xi

)
< 0

(4)

Var(S) =
n(n − 1)(2n + 5)

18
(5)

where xi and xj represent the values of NDVImax for the i-th and j-th years, respectively. A
value exceeding 0 denotes a tendency toward increase, whereas a value below 0 signifies a
tendency toward decrease. The parameter n represents the length of the time series data,
while the function sgn corresponds to the sign function. In this research, we evaluated the
significance of the tendency changes at a confidence level of α = 0.05. A trend was considered
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significant when Z > 1.96, indicating that the data trend change was statistically significant.
Conversely, when Z < 1.96, the data trend change was not statistically significant.

Subsequently, this study employed partial correlation analysis to assess the separate
impacts of SM and VPD on NDVImax. When multiple influencing factors were present,
the partial correlation analysis enabled us to isolate the impacts of specific factors by
controlling the impacts of the additional variables. To calculate the partial correlation
coefficient (Equation (7)), we first needed to compute the simple correlation coefficient
(Equation (6)). Using the obtained simple correlation coefficients, we calculated the first-
order partial correlation coefficients, as shown below:

Rxy =
∑n

i=1[(xi − x)× (yi − y)]√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

(6)

Rxy,z =
Rxy − RxzRyz√

(1 − R2
xz)

√(
1 − R2

yz

) (7)

where x and y represent the multiyear average of data x and data y, Rxy represents the
simple correlation coefficient between data x and data y, and Rxy,z represents the partial
correlation coefficient between data x and data y after excluding the influence of data z.
Rxy,z > 0 and Rxy,z < 0, respectively, indicate a positive and negative correlation between
data x and data y.

The partial correlation analysis conducted in this research comprised four main scenarios:
(a) assessing the partial correlation between NDVImax and SM while excluding the impacts
of VPD, precipitation, temperature, and radiation; (b) investigating the partial correlation
between NDVImax and VPD while excluding the impacts of SM, precipitation, temperature,
and radiation; and (c) this article also calculated the partial correlations between NDVImax
and other factors. In order to comprehend the mechanisms underlying the impact of SM
and VPD on NDVImax, we initially examined the response of NDVImax to variations in SM.
Subsequently, we compared the response of NDVImax to changes in VPD to determine the
primary factor influencing NDVImax. Similar analyses were conducted for GPPmax.

Furthermore, to maximize the correlation, we performed the following process [42–44]
when obtaining the partial correlation coefficient between NDVImax and a factor: First, we
obtained the maximum value of the NDVI for every year; then, we determined the month in
which the NDVI reached its maximum value; and finally, we obtained the median as the final
result month for this cell. If NDVImax occurred in June, we calculated the partial correlation
coefficients between NDVImax and SM in June and the average SM in June–May, June–April,
June–March, June–February, and June–January. The control variable in the partial correlation
was the average VPD of the same period. If the absolute value of the partial correlation
coefficient between NDVImax and the average SM for April to June was the highest, then the
preseason length of the pixel SM was 2 months (zero in the current month); this represented
the ultimate partial correlation coefficient between NDVImax and SM for the pixel.

In addition to calculating the partial correlation coefficients of NDVImax with SM and
VPD, we also calculated the partial correlation coefficients of NDVImax with three other
meteorological factors. To better elucidate the impact of each meteorological factor on peak
vegetation growth, we determined the strongest correlated meteorological factor for each
pixel location using the maximum absolute value of the partial correlation coefficients.

In addition, this study also employed ridge regression analysis due to the collinearity
issues among the climate factors [45–47]. This is a biased estimation regression method
specifically designed for analyzing collinear data. We first normalized the data and input
them into the ridge regression model. Then, we used generalized cross-validation to select
the optimal parameters for the ridge regression model [45,48]. The explanatory variables
in this study are the climate factors on an annual scale, including SM, VPD, temperature,
precipitation, and radiation, while the dependent variable is NDVImax. The coefficient of
the ridge regression is used as the intensity of the sensitivity [40,49]. By identifying the



Remote Sens. 2024, 16, 4163 6 of 20

results with the largest absolute values of the ridge regression coefficients, we obtained the
climate factor with the greatest sensitivity to NDVImax for each pixel location.

θ(α) =
(

XTX + αI
)−1

XTy (8)

Xnorm =
x − min(x)

max(x)− min(x)
(9)

Ynorm =
n

∑
i=1

aixinorm + b (10)

where θ(α) represents the analytical solution for the ridge regression coefficients, allow-
ing for the direct calculation of the regression coefficients. αi is a regularization term.
Typically, the appropriate α value is selected through generalized cross-validation to find
the best model performance. Xnorm represents the standardization of the data, including
vegetation peak, NDVImax, and meteorological factors such as SM, VPD, temperature,
precipitation, and radiation. Ynorm represents the standardized NDVImax, xinorm represents
the standardized climate factors, and ai represents the ridge regression coefficients.

3. Results
3.1. Spatial and Temporal Patterns of NDVImax and GPPmax

The spatial patterns and trends of NDVImax from 2001 to 2022 are shown in Figure 2.
Spatially, the high NDVImax values were dispersed in the southeastern region, while the
low values were dispersed in the northwestern region. The areas with NDVImax values
ranging from 0.1 to 0.4 comprised 43.08% of the total area (Figure 2a). In the results of the
NDVImax standard deviation calculation, the vast majority of the area (88.63%) comprised
values ranging from 0 to 0.06, while only a few regions exhibited high values, which were
mostly in the northeastern and southern areas (Figure 2b). Based on the Theil–Sen slope
estimation and the Mann–Kendall trend test, NDVImax demonstrated an increasing trend
from 2001 to 2022 (Figure 2c). Approximately 16.35% of the pixel area showed a significant
upward trend. The area with a significant increase in pixels was more than five times
greater than the area with a significant decrease (Figure 2c).

GPPmax displayed a spatial pattern similar to NDVImax, with the high GPPmax values
primarily scattered across the eastern TP. Conversely, the GPPmax values exhibited in the
western regions were generally low: the overall average was 0.52 g C/m2 (Figure 2d). The
spatial distribution of the GPPmax standard deviation mirrored that of the mean, with the
elevated values observed in the eastern regions and the lower values in the western areas.
The regions with values ranging from 0 to 0.1 g C/m2 covered 83.60% of the area (Figure 2e).
From 2001 to 2022, GPPmax showed an increasing trend (Figure 2f). Roughly 16.68% of the
pixels demonstrated a notable upward trend, while 0.86% showed a significant downward
trend (Figure 2f).

3.2. Spatial and Temporal Patterns of SM and VPD

SM and VPD exhibited distinct spatial patterns over the multiyear average (Figure 2g,j).
From 2001 to 2022, the spatial distribution of SM was analogous to that of NDVImax and
GPPmax. The SM values were elevated in the eastern and southern areas of the TP, whereas
they were lower in the western and northern regions, with the areas ranging from 0 to
60 m3/m3 accounting for 75.45% of the total area (Figure 2g). The standard deviation of
SM was generally low, with only some values exceeding 28 mm in the eastern, southern,
and western-central areas, and the proportion with 0–28 mm was 98.49% (Figure 2h).
A declining tendency in SM was noticed during the period from 2001 to 2022, with an
average rate of −0.19 mm/year (Figure 2i). Notably, approximately 25.82% of the pixel
zone exhibited a noticeable decreasing tendency, which was 10 times greater than the region
displaying a prominent increasing tendency (Figure 2i).
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The spatial patterns and tendencies of VPD from 2001 to 2022 are depicted in Figure 2j–l.
The results indicated an overall low VPD with only some regions in the northeastern area
of the TP showing slightly higher VPD values, with an average of 0.53 kPa (Figure 2j). The
spatial distribution of the standard deviation of VPD was similar to its mean value. Except
for the northeastern region, which was slightly higher, the remaining regions were generally
lower, and the regions with a value between 0 and 36 kPa accounted for 95.67% of the area
(Figure 2k). Approximately 74.75% of the pixel regions exhibited an increasing tendency
in VPD during the period from 2001 to 2022 (significant at 31.86%), which were mainly
concentrated in the central, western, and northeastern regions of the TP. Conversely, the
eastern and northern areas showed a decreasing trend, with the significant trends accounting
for 2% of the pixel regions (Figure 2l).
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Figure 2. The spatial distributions of the multiyear averages (a,d,g,j), standard deviations (b,e,h,k),
and temporal trends and significance levels (c,f,i,l) of the normalized vegetation index (NDVImax),
gross primary productivity (GPPmax), soil moisture (SM), and vapor pressure deficit (VPD) on the
TP. The subplots (a,b,d,e,g,h,j,k) include their respective frequency distributions. The small insets at
the top of (c,f,i,l) show the areas with significant trends (p < 0.05), where the bar charts represent the
frequency distribution of the trends, the colored bars indicate the significant trends, and the white
bars indicate the nonsignificant trends.
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3.3. Response of NDVImax and GPPmax to Climate Data

After controlling for the effects of SM, temperature, precipitation, and radiation, a neg-
ative correlation between NDVImax and VPD was noted in the TP. Notably, approximately
11.51% of the significant negative correlations were mostly in the northeast and southwest ar-
eas, while a significant positive correlation of 8.38% was observed (Figure 3a). This suggested
an overall detrimental effect of higher VPD on NDVImax. Conversely, upon eliminating the
impacts of VPD, temperature, precipitation, and radiation, roughly 57.46% of the pixels exhib-
ited a positive relationship with SM, with 12.61% indicating a significant positive correlation
(p < 0.05, Figure 3b). These regions were primarily scattered across the eastern, central, and
southwestern areas of the TP. Instances of significant negative correlations were less prevalent
(6.59%) and were mostly observed in some central and western regions. This implied that
higher SM was conducive to vegetation growth in the central TP.

Compared with NDVImax, GPPmax displayed similar responses to VPD and SM. After
the influence of SM, temperature, precipitation, and radiation was mitigated, GPPmax exhib-
ited a negative correlation with VPD. Among the significant correlations (18.29%), negative
associations accounted for 61.55% (Figure 3c). These notable negative correlations were
mainly observed in the central and northeastern portions of the TP, indicating an overall
adverse effect of higher VPD on GPPmax. Conversely, after the effects of VPD, temperature,
precipitation, and radiation were eliminated, GPPmax exhibited a positive correlation with
SM. Approximately 19.21% of the pixels within the research region demonstrated a signifi-
cantly biased correlation (Figure 3d), among which 12.65% displayed a notable positive
correlation, and were mostly in the central and eastern regions. The remaining pixels
exhibited a notable negative correlation (6.57%). This finding underscores the favorable
impact of elevated SM on GPPmax.

As can be seen from Figure 3, temperature, precipitation, and radiation played impor-
tant roles in both NDVImax and GPPmax, which is consistent with other research results.
Furthermore, from the distributions in the figures and the bar charts, it is evident that
among the meteorological factors most strongly correlated with NDVImax, SM accounted
for 16.83% and VPD accounted for 16.85% (Figure 3e). For the meteorological factors most
strongly correlated with GPPmax, SM accounted for 12.38% and VPD accounted for 13.49%
(Figure 3f). It can be seen that the correlation between SM and VPD on peak vegetation
growth was as important as precipitation and radiation.

Figure 4 shows the ridge regression coefficients for the regions with significant partial
correlation coefficients, which represent the intensity of the sensitivity. It can be seen that
the spatial distribution of the sensitivities of SM and VPD to NDVImax was similar to the
spatial distribution of the partial correlation, and the distribution of GPPmax also showed a
similar trend (Figure 4a–d). Furthermore, when comparing the sensitivities of the various
meteorological factors to vegetation growth peaks, SM accounted for 15.76% of the most
sensitive factors for NDVImax, while precipitation accounted for 17.55% (see Figure 4e). For
GPPmax, SM represented 15.55%, and precipitation accounted for 11.12% (see Figure 4f).
This indicates that the sensitivities of SM and precipitation to vegetation growth peaks are
consistent, further supporting the results of the strongest correlation.
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between GPPmax and VPD, respectively, after excluding the effects of SM, temperature, precipitation,
and radiation (a,c). The spatial patterns of the partial correlation coefficients between NDVImax and
SM, and between GPPmax and SM, respectively, after excluding the effects of VPD, temperature,
precipitation, and radiation (b,d). The bar charts represent the respective frequency distributions,
and the numbers indicate the proportions of the significant pixels. The spatial patterns of the climate
factors correspond to the maximum absolute value of the partial correlation coefficient between
NDVImax and GPPmax (e,f), with the bar charts representing the proportion of the pixels for each
climate factor.
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In this study, we performed a statistical analysis to examine the correlation between
vegetation peak values (NDVImax and GPPmax) and climate factors, SM, VPD, temperature,
precipitation, and radiation, focusing on four distinct vegetation types: shrub (10.56%),
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alpine meadows (25.57%), alpine steppe (27.94%), and alpine sparse vegetation (11.69%).
The research findings indicated that among these four vegetation types, more than 57% of
the pixels exhibited a positive correlation between NDVImax and SM, with 21% of them
showing a noteworthy positive correlation. On the other hand, NDVImax and VPD typically
exhibited a negative correlation, accounting for more than 54% of the pixels (see Figure 5a).
The patterns of the correlation between GPPmax and SM, as well as between GPPmax and
VPD, closely resembled those observed for NDVImax (Figure 5b). Importantly, there were
variations in the correlations between the vegetation peak values and SM and VPD among
the vegetation types. In particular, regarding the alpine meadows, close to 60% of the
pixels showed a positive correlation between NDVImax and SM, while close to 55% of the
pixels exhibited a negative correlation between NDVImax and VPD. This trend held true for
GPPmax, with slight differences in the pixel distribution, but it was more pronounced in the
alpine meadows than in the other vegetation types.
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Figure 5. The partial correlation coefficients between the vegetation peak values and the influencing
factors at the biome level. (a) represents NDVImax and (b) represents GPPmax. The bar graphs above
the zero line show the proportion of positive correlations, whereas those below indicate the proportion
of negative correlations. The colored sections indicate the statistically significant correlations (p < 0.05),
with the numbers in brackets indicating the proportions of these significant correlations.

We observed that NDVImax and GPPmax exhibited certain relationships with hydrother-
mal conditions in terms of their responses to SM and VPD. In areas where the precipitation
exceeded 200 mm, NDVImax and VPD exhibited a generally significant negative correlation,
particularly in the precipitation ranges of 400–500 mm and 800–900 mm, where the negative
correlation coefficients were higher. A positive correlation between NDVImax and VPD
was only observed in a small portion of areas where the temperature was below 0 ◦C and
precipitation was less than 200 mm (Figure 6a). Conversely, NDVImax generally showed
a positive correlation with SM, with negative correlations appearing only in regions with
high temperatures and precipitation (Figure 6b). Additionally, GPPmax displayed a pattern
similar to NDVImax. The evident negative correlation between GPPmax and VPD primarily
occurred in areas where precipitation ranged from 200 to 600 mm, while a positive partial
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correlation was noted when precipitation was between 700 and 800 mm (Figure 6c). Simi-
larly, mirroring the correlation between NDVImax and SM, GPPmax showed a significant
positive correlation with SM in roughly the same regions, although it demonstrated a
negative correlation in areas with higher temperatures and lower precipitation (Figure 6d).
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From Figure 7, it can be observed that the ridge regression coefficients exhibited dif-
ferent results under varying water and heat conditions. In general, the sensitivity of peak
vegetation growth to SM was greater than that of VPD. NDVImax showed a significant
sensitivity to SM when precipitation was between 400 and 900, while it demonstrated a
marked negative sensitivity in areas with precipitation below 400 (Figure 7b). In contrast,
NDVImax generally exhibited a negative sensitivity to VPD, but showed a positive sensitiv-
ity in areas with precipitation below 200 and above 900 (Figure 7a). GPPmax displayed a
similar pattern. It showed a positive sensitivity to SM in areas with precipitation below 600,
whereas it exhibited a significant negative sensitivity in regions where the temperature was
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below −4 ◦C and precipitation exceeded 600 (Figure 7d). Similarly, GPPmax presented a
negative sensitivity to VPD in areas with precipitation below 600, while it showed a positive
sensitivity in regions where the temperature was above 0◦ and precipitation exceeded 700
(Figure 7c).
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4. Discussion
4.1. Response of Peak Vegetation Growth to Climate Data

The research findings indicated that there were similar spatial patterns between NDVImax
and GPPmax on the TP. In most regions, both NDVImax and GPPmax showed increasing trends.
Approximately 65.28% of the pixels exhibited an increasing tendency for NDVImax, with
16.35% showing a significant increase (Figure 2c). Similarly, approximately 72.98% of the
pixels showed an increasing tendency for GPPmax, with 16.69% displaying a significant in-
crease (Figure 2f). These findings were in line with the one-time observations of widespread
and sustained global greening documented in remote sensing studies [14,15,50]. In contrast,
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SM and VPD exhibited distinct spatial patterns. From 2000 to 2022, SM decreased in ap-
proximately 70.86% of the regions, with approximately 25.82% of the regions displaying a
significant decrease (Figure 2i). On the other hand, VPD increased in approximately 74.75%
of the regions, with approximately 31.86% of the regions showing a significant increase
(Figure 2l). These findings were consistent with previous research indicating that SM and
VPD exhibit opposite trends [51].

The evolution of drought involves a complex transition of water resource shortages.
It begins with meteorological anomalies such as high atmospheric temperatures, low
precipitation, and high evapotranspiration, and continues for a certain period, resulting in
abnormal energy transfer within the hydrosphere due to water vapor interactions. Here,
it can be seen that the continuous decrease in SM may exacerbate soil drought, and the
increase in VPD represents an increase in the atmospheric evaporation demand, which
may intensify meteorological drought. However, the formation of drought is influenced by
multiple factors and requires more in-depth research.

By studying how SM and VPD affect vegetation peaks, we can observe that NDVImax
and GPPmax exhibit similar trends. NDVImax is positively correlated with SM and nega-
tively correlated with VPD, and the correlation between them and GPPmax is consistent
with NDVImax. However, overall, the inverse correlation between vegetation peaks and
VPD is particularly significant in the northeastern area of the TP. Moreover, the significant
positive correlation between vegetation peaks and SM predominates; although the regions
vary, they remain largely consistent. This indicates that VPD mainly adversely affects
vegetation peaks, while SM helps to promote the growth of vegetation peaks.

On the one hand, SM directly determines the amount of water that plant roots can
extract, akin to a reservoir for plants [31]. Thus, SM can directly influence the growth status
of the vegetation, subsequently affecting the vegetation peak values. On the other hand,
VPD has the potential to prompt plants to close their stomata to decrease water loss [52–55],
which could limit the photosynthesis within the ecosystem [31,35]. VPD has a significant
impact on the physiological activities of plants. When VPD is high, plants will close the
stomata on their leaves to prevent rapid water evaporation. While this behavior helps
to reduce water loss, it also hinders the entry of carbon dioxide (CO2), thereby affecting
the efficiency of photosynthesis. Specifically, when VPD exceeds a certain critical value, it
will limit the photosynthesis and growth of the plants. In the face of high-VPD conditions,
the plants will adjust the opening and closing of stomata to seek a balance between CO2
absorption and water loss, maintaining a higher photosynthetic rate and thus improving
the water use efficiency. In environments with high temperatures and low soil moisture,
the constraining effect of VPD on the water and carbon cycles of the ecosystem may be
more significant than that of soil moisture [36,37].

Moreover, SM, as a main factor within climate systems, significantly influences biogeo-
chemical cycles, energy, and water [56]. It is also a vital driver of vegetation growth and
shows a direct positive correlation with vegetation productivity, which aligns with prior
study outcomes [33,57]. Importantly, due to the continuous increase in global temperatures,
VPD is also gradually increasing, and it is expected to continue increasing in the future.
VPD has become a critical driving factor for plant growth. High-VPD conditions not only
suppress the photosynthesis and stomatal conductance in plants, but also increase the
water loss through plant transpiration. While the impact of high-VPD conditions may
vary among plant species and ecosystems, it may result in reduced primary productivity,
exacerbating global drought and leading to plant mortality [58]. This underscores the
detrimental influence of VPD on vegetation and explains why vegetation peak values
exhibit a negative response to VPD.

4.2. Performance of Partial Correlation Coefficient on Different Vegetation Types

Researchers have shown that the connection between vegetation growth and climate
change in the TP region is complex and highly variable. The TP is primarily a high-altitude
cold ecosystem where vegetation growth is mostly constrained by the temperature and
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precipitation [59–63]. Many scholars have conducted research on the ecosystem of the
Tibetan Plateau. Studies have shown that drought has a lagging and cumulative effect on
the alpine grasslands of the plateau. Specifically, the response of the alpine meadows to
drought is primarily influenced by precipitation, while the response of the alpine grasslands
is mainly influenced by the temperature [64]. Additional studies have shown that drought
intensity on the Tibetan Plateau impacts the vegetation distribution, with sparse vegetation
being the most affected, followed by meadows and grasslands [65]. Other studies have
indicated that global warming has intensified the drought risk on the Tibetan Plateau,
highlighting that surface temperature is the dominant factor influencing the degree of the
vegetation response to drought [28].

With global changes, a good deal of attention has been given to high-altitude meadows
and alpine grasslands, while high-altitude sparse vegetation and shrubs have received
comparatively less attention. However, it is essential to emphasize that the study of the phe-
nological events in the various vegetation categories on the TP has equal importance [38].
Therefore, we conducted a statistical analysis of these four vegetation types. As depicted in
Figure 5, it is evident that the correlation between the vegetation peak values (NDVImax,
GPPmax) and SM and VPD varies among the vegetation types. This illustrates the differ-
ences in the ecosystem variations and their responses to driving factors across distinct
vegetation categories [38]. The most pronounced response, however, occurs in the alpine
meadows, where the vegetation peak values are primarily positively correlated with SM
and negatively associated with VPD. This could be a result of the effects of precipitation
and temperature on them. The principal grassland variety found on the TP is the alpine
meadow [66,67], which has a predominantly cold and humid climate [68]. Many scholars
contend that temperature is the influencing factor [66,69–71]. However, some researchers
argue that precipitation is its main influencing factor [66,72], and others suggest that it is
mostly influenced by spring solar radiation and summer temperatures [66,73]. As shown
in Figure 6, the correlations between the vegetation peak values (NDVImax and GPPmax)
and SM and VPD exhibited more distinct patterns in temperatures ranging from −10 ◦C
to 10 ◦C and precipitation levels between 200 and 800 mm. This further underscores the
critical importance of precipitation and temperature influences.

4.3. Response of SM and VPD to Vegetation Growth Peak Under Different
Hydrothermal Conditions

Broadly speaking, elevated VPD and reduced SM typically hinder vegetation growth.
However, an opposite trend is shown in some regions in Figure 6, where VPD is positively
correlated and SM is negatively correlated. First, SM exhibited a negative correlation in
areas with higher precipitation levels. This can be explained from two major perspectives.
Firstly, a moderate increase in precipitation can directly enhance soil moisture, making it
more favorable for plant growth and resulting in a positive correlation between the vegeta-
tion peak values and SM. In addition, excessive rainfall may lead to a reduction in solar
radiation, thus impacting the photosynthesis in plants and consequently decreasing the
vegetation peak values [74–77]. Secondly, with the gradual warming of the global climate,
the corresponding increase in VPD is notable. VPD not only hinders plant photosynthe-
sis and stomatal conductance, but also elevates plant transpirational water loss, thereby
negatively impacting the vegetation peak values [58]. However, Figure 6 shows that some
regions exhibit opposite trends in VPD, while the regions with positive correlations in VPD
are mostly concentrated in areas with higher temperatures and precipitation. The main
reason may be that the increase in VPD promotes photosynthesis when the temperature is
suitable and the water availability is sufficient.

Due to VPD’s regulation of plant stomata, plants will close their stomata to reduce
water loss when VPD is high. However, this closure also limits the absorption of CO2 by
the plants, leading to a decrease in photosynthesis and affecting the peak growth of the
vegetation [31]. On the one hand, when the temperature rises, it leads to an increase in
VPD, which in turn reduces the photosynthesis of the vegetation [58]. Higher temperatures
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also accelerate water evaporation, thereby reducing SM. Additionally, low soil moisture
and high VPD both limit the photosynthesis of the vegetation [36]. On the other hand,
increased precipitation enhances SM, and the subsequent rise in evapotranspiration re-
duces VPD, thereby promoting the photosynthesis of the vegetation [78]. However, even
with sufficient precipitation, rising temperatures can lead to increased evapotranspiration,
thereby inhibiting plant growth. Conversely, plants will not experience water stress when
the precipitation is insufficient as long as the temperature is suitable [79]. Therefore, the
multifaceted impacts of SM and VPD on vegetation under varying temperature and precipi-
tation conditions warrant further exploration. From the results of this study, it is found that
SM and VPD follow established patterns in their effects on vegetation when temperature
and precipitation are within normal ranges; however, they exhibit completely opposite
effects under certain extreme conditions.

4.4. Limitations of the Research

Of course, since we only selected SM, VPD, temperature, precipitation, and radiation
as influencing factors to study the trends of vegetation peak changes, we may lack a
complete explanation of the reasons behind these changes. Moreover, precipitation is the
main source of SM and plays a crucial role in SM. At the same time, it can also cause changes
in air humidity, thereby affecting VPD. However, different precipitation patterns often have
different effects, which were not considered in this article. In future research endeavors,
it would be beneficial to investigate a wider range of influencing factors to arrive at a
more precise understanding of the causes of vegetation peak value changes. This would
enable a more comprehensive description of the major factors affecting vegetation growth,
providing valuable guidance for the ecological management of the TP. Furthermore, the
data used in this research may have limitations, and it is preferable to draw conclusions
based on long-term research. The reliability of the final conclusions can be ensured through
further in-depth analysis of the influencing mechanisms via detailed ground experiments.

5. Conclusions

We based this article on satellite greening data and meteorological datasets from 2001
to 2022 and used Theil–Sen media trend analysis and partial correlation analysis to study
the spatiotemporal changes in NDVImax, GPPmax, SM, and saturated VPD in the TP, as
well as the response of the first two to the latter two. The results indicate that NDVImax
and GPPmax have similar spatial patterns, with NDVImax and GPPmax showing an upward
trend in most regions, accounting for approximately 65% of the area; SM and VPD exhibit
different multiyear average spatial patterns, with SM showing a downward trend in 70%
of the region, while VPD shows the opposite trend, with approximately 70% of the region
showing an upward trend. Our findings indicate that both NDVImax and GPPmax exhibit
positive correlations with SM and negative correlations with VPD, attributable to the
influence of driving factors. From the results of the partial correlation coefficient, it can be
seen that the correlation between SM and VPD on peak vegetation growth is as important as
precipitation and radiation. Furthermore, the results of the analysis of sensitivity intensity
further support the importance of SM to the peak of vegetation growth.

From the perspective of statistical vegetation types, the above correlation patterns were
also observed in the four vegetation types of shrubs, alpine grasslands, alpine meadows,
and sparse alpine vegetation. The most obvious manifestation was in the alpine meadows,
which showed a dominant advantage over vegetation growth peaks in 60% of the areas.
From the perspective of hydrothermal conditions, the above correlation pattern was only
observed in areas with precipitation ranging from 200 to 800 mm and temperatures ranging
from −10 ◦C to 10 ◦C. When precipitation is too high, the peak vegetation values will be
positively correlated with VPD, and conversely, they will be negatively correlated with SM.
Overall, SM helps to promote the growth of vegetation peaks, while VPD mainly adversely
affects vegetation peaks. Against the backdrop of global climate change, frequent drought
events mean that the vegetation of the TP is facing a gradually worsening environment. This
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study contributes to a more comprehensive understanding of how vegetation phenology
responds to future climate change.
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