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Abstract: Continuous accurate positioning in global navigation satellite system (GNSS)-denied envi-
ronments is essential for robot navigation. Significant advances have been made with light detection
and ranging (LiDAR)-inertial measurement unit (IMU) techniques, especially in challenging environ-
ments with varying lighting and other complexities. However, the LiDAR/IMU method relies on a
recursive positioning principle, resulting in the gradual accumulation and dispersion of errors over
time. To address these challenges, this study proposes a tightly coupled LiDAR/IMU/UWB fusion
approach that integrates an ultra-wideband (UWB) positioning technique. First, a lightweight point
cloud segmentation and constraint algorithm is designed to minimize elevation errors and reduce
computational demands. Second, a multi-decision non-line-of-sight (NLOS) recognition module
using information entropy is employed to mitigate NLOS errors. Finally, a tightly coupled frame-
work via a resilient mechanism is proposed to achieve reliable position estimation for quadruped
robots. Experimental results demonstrate that our system provides robust positioning results even in
LiDAR-limited and NLOS conditions, maintaining low time costs.

Keywords: light detection and ranging; ultra-wide-band; inertial navigation system; resilient factor
graph; tightly coupled integration

1. Introduction

In the past three decades, mobile robots have garnered significant attention for per-
forming tasks without human interventions in complex environments, e.g., space explo-
ration, rescue operations, and industrial manufacturing. Based on their modes of move-
ments, robots are classified into wheeled robots, tracked robots, and legged robots [1].
Wheeled and tracked robots appeared earlier, and their technologies are more mature and
relatively simple to operate, making them the most widely used types of mobile robots
today. However, traditional wheeled or tracked robots are often unsuitable for unstructured
terrain [2]. Inspired by the movement patterns of humans and animals in nature, legged
robots—specifically those with bipedal or quadrupedal movement—navigate complex
terrain more freely, presenting significant research potential [3]. Compared with bipedal
robots, quadrupedal robots offer better stability and controllability [4]. In the field of
quadrupedal robots, beyond robot structures and control methods, addressing positioning
and navigation in complex environments is also crucial [5].

Currently, the integration of global navigation satellite system (GNSS) and inertial
navigation system (INS) is considered sufficient to meet the positioning requirements
of quadruped robots in most scenarios. However, operating in wide satellite-denied
areas poses a challenge for achieving continuous and reliable positioning for quadruped
robots [6].

Simultaneous localization and mapping (SLAM) with cameras or light detection and
ranging (LiDAR) is a promising positioning solution [7]. LiDAR-based solutions offer
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several advantages over camera-based ones. LiDAR is unaffected by lighting conditions,
allowing it to maintain excellent positioning performance at night or in environments with
drastic light changes [8]. Additionally, LiDAR provides a larger detection field of view and
a wider sensing range, enabling the accurate measurement of parameters, i.e., distance,
angle, and speed of target [9].

Despite the advantages of LiDAR-based positioning schemes, several challenges
persist. One of the main issues is the small vertical resolution of LiDAR, which leads
to weak elevation constraints. As a result, elevation errors of LiDAR-based SLAM al-
gorithms accumulate over time, causing biased elevation estimations. To address these
problems, researchers propose specialized processing based on ground point clouds to
impose stronger constraints on the Z-axis. Since LiDAR point clouds do not inherently label
points as belonging to the ground, and considering the real-time requirements of SLAM,
the primary research goal becomes the development of methods for fast and robust ground
segmentation [10–12]. LeGO-LOAM successfully implements ground segmentation, but
the authors focus only on point cloud segmentation without exploring the impact of ground
segmentations on SLAM performance [13]. Liu et al. [14] employ random sample consensus
(RANSAC) to segment the ground plane and then extract surface features from ground
point clouds and edge features from non-ground point clouds. This method performs
well in simple environments, but real-world road conditions are complex, and obstacles
such as grass easily impact effectiveness. To overcome these challenges, some researchers
adopt more advanced ground segmentation algorithms, such as Patchwork, instead of
traditional segmentation methods [15]. Xu et al. [16] propose a ground-optimized LiDAR
odometry called PaGO-LOAM, which incorporates Patchwork. Although this algorithm
lightens the system, it partially leverages ground constraints for global optimizations. To
make full use of ground information, Kenji Koide et al. [17] use factor graphs to integrate
ground information into the SLAM backend, aiming to correct cumulative drift on the
Z-axis. However, the constraints are overly rigid, leading to insufficient system robustness.
In summary, the Z-axis of LiDAR SLAM is prone to significant drifts, and further research is
needed for developing lightweight ground segmentation algorithms that fully use ground
information for global constraints.

As known, LiDAR-based schemes rely heavily on point cloud features, making them
vulnerable to estimation drift and tracking loss in sparse feature environments [18]. Addi-
tionally, LiDAR-based schemes only estimate the relative position, which poses challenges
in specialized environments, e.g., in fire rescue situations, it is necessary to refer to a prede-
fined world frame to follow a specific trajectory. One potential solution is to train neural
networks to recognize segmented objects from point clouds for localization [19]. However,
this approach requires significant effort in data collection, labeling, and training. Further-
more, changes in environments over time render the system ineffective. Another solution
involves establishing global observation constraints using deployed indoor infrastructure,
e.g., Bluetooth, Wi-Fi, pseudo-satellites, and ultra-wideband (UWB). Bluetooth technology
offers advantages such as low power consumption and cost-effectiveness. However, its
operational range is limited and susceptible to obstruction, rendering it unsuitable for
accurate indoor positioning. Wi-Fi, on the other hand, typically requires no additional
infrastructure and is convenient for most indoor environments; however, its positioning ac-
curacy is often compromised due to signal interference and multipath effects, making it less
reliable for high-precision applications. Pseudo-satellite signals can emulate satellite signals
in GNSS environments, offering high positioning accuracy. Nonetheless, the establishment
of pseudo-satellite systems is complex and costly, necessitating precise synchronization
between devices, which poses challenges for practical implementation [20]. In contrast,
UWB positioning technology provides centimeter-level accuracy, exhibits strong resistance
to multipath interference, and maintains a controllable cost, making it particularly suitable
for high-precision indoor positioning and garnering increasing interest within the SLAM
community [21].
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While the location results from UWB devices are promising, several limitations re-
main, with non-line-of-sight (NLOS) being one of the most significant challenges. The
NLOS issues typically arise due to obstructions, reflections, and other factors during signal
transmission. These factors result in an increased propagation time, causing the wirelessly
measured distance to be greater than the actual distance. Consequently, this leads to
measurement outliers, ultimately resulting in the failure of cooperative localization [22].
Ensuring accurate identification of NLOS signals is crucial for positioning accuracy [23].
One approach involves a signal propagation path loss model, which assumes that UWB
path energy under line-of-sight (LOS) conditions is significantly greater than NLOS con-
ditions. However, this method requires modeling the distribution of various statistics,
necessitating large, frequently updated training databases [24]. Collecting NLOS data is
often cumbersome and resource-intensive. Another strategy is to leverage environmental
context information to make NLOS judgments [25–27]. Zhang et al. [28] propose using
indoor spatial prior information to create a LOS/NLOS infographic of anchor points, which
accurately distinguish LOS/NLOS conditions in complex indoor environments. Though
this approach looks feasible, generating the initial environmental map for large buildings
is a daunting task [29]. Recently, the development of machine learning and deep learning
technologies leads more researchers to explore detecting NLOS signals. However, the
effectiveness of these models depends heavily on pre-trained datasets, and their reliability
decreases with changes in the environment or dynamic obstacles. Additionally, due to
the complexity of these mathematical models, meeting real-time prediction requirements
remains a challenge.

Considering the limitations associated with relying solely on a single sensor in real-
world applications, and recognizing the complementary advantages of LiDAR, IMU, and
UWB sensors, a positioning approach based on sensor fusion offers significant benefits.
Firstly, integrating LiDAR and IMU with UWB enhances the reliability of UWB positioning
systems in NLOS situations. Secondly, since LiDAR/IMU-based navigation is recursive,
errors tend to accumulate as the robot travels farther. Introducing UWB observations helps
to suppress this error accumulation, improving overall accuracy. Most importantly, UWB,
as an absolute positioning method, converts the LiDAR/IMU results from the absolute
coordinate system to the global coordinate. This capability is crucial for indoor navigation
tasks that require global referencing.

Most data fusion methods, typified by the Kalman filter (KF), rely on Bayesian filtering
theory [30,31]. He et al. [32] propose a LiDAR inertial odometer framework using tightly
coupled iterative KF significantly reducing the complexity of Kalman gain calculation.
Marković et al. [33] employ extended Kalman filters (EKF) to loosely couple the positioning
results of LiDAR, vision, and UWB. Wang et al. [34] introduce a particle filter based on
an improved sparrow search algorithm to tightly couple UWB/LiDAR. Compared to
filtering-based methods, factor graph-based optimization approaches represent a growing
trend [35]. These methods use a probabilistic graph model with nodes linked to the system
state, incorporating all historical data. The probability expressions are converted into a
nonlinear least-squares (LS) problem for optimizations, employing efficient incremental
techniques for optimal navigation state solutions. Zhou et al. [36] propose a LiDAR/UWB
fusion algorithm based on graph optimization, achieving sensor degradation detection
and adaptive adjustment of fusion parameters. Although Nguyen et al. [37] developed a
tightly coupled LiDAR/INS/UWB positioning scheme utilizing Ceres optimization, their
system does not account for NLOS errors. In contrast, our system incorporates ground
constraint and NLOS recognition techniques, enabling it to address the effects of sparse
point clouds and NLOS errors in real-world scenarios. Additionally, we fully use the factor
graph’s plug-and-play resilient mechanism to discard unreliable sensor data in real time,
thereby reducing computational costs.

This paper proposes a LiDAR/IMU/UWB positioning system for quadruped robots,
with the main contributions of this work are as follows:
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1. To overcome the poor elevation robustness associated with the sparse vertical point
clouds in traditional LiDAR positioning, a lightweight point cloud segmentation algorithm
is proposed. By effectively utilizing the segmented point clouds, a ground constraint factor
that maximizes adaptability to variations in the ground plane is constructed.

2. To mitigate the NLOS issues of UWB caused by obstacle occlusions, a multi-decision
NLOS recognition module based on information entropy is developed, which is able to
mitigates NLOS errors.

3. Leveraging the compatibility of factor graphs with diverse information, a tightly
coupled framework based on a resilient strategy is proposed to ensure reliable position
estimation for quadruped robots. Experiments conducted in real-world scenarios validate
the superior performance.

The remainder of this paper is structured as follows. Section 2.1 provides an overview
of the complete system flow. Section 2.2 introduces a lightweight and efficient point cloud
processing module. The details of NLOS identification using information entropy and
multiple sensors are described in Section 2.3. Section 2.4 presents an LiDAR/IMU/UWB
tightly coupled localization algorithm. Detailed experimental settings and discussions are
reported and analyzed in Section 3. Finally, Section 4 summarizes the work by drawing
several conclusions and offers a vision for future research.

2. Materials and Methods
2.1. System Overview

The flowchart of the proposed method is illustrated in Figure 1. Initially, high-
frequency pose estimation is performed by pre-integrating IMU data, which is then applied
to correct point cloud distortion and construct pre-integration residuals. Next, a point
cloud segmentation algorithm is employed to segment the LiDAR point cloud. From the
segmented ground point cloud, surface features are extracted to construct the ground con-
straint factor, while inter-frame matching of the non-ground point cloud is used to create
the odometry factor, both of which are incorporated into the factor graph optimization.
To address the impact of NLOS environmental obstructions on ranging information, a
multi-decision NLOS recognition module based on information entropy is introduced. This
module effectively distinguishes between LOS and NLOS UWB measurements, eliminating
NLOS errors. Finally, we employ a resilient factor graph framework to tightly couple
LiDAR, IMU, and UWB data, fully leveraging historical information and available sensor
inputs to achieve precise global pose estimation for the quadruped robot.
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2.2. Lightweight Point Cloud Segmentation

Traditional ground constraints assume the ground is horizontal, which limits their
applicability to real-world scenarios. In practice, there are often slopes, stairs, and other
inclined surfaces. Introducing incorrect ground information worsens vertical drift. To
address uneven terrain and large-scale environments with pits and slopes, this paper
adopts a two-stage ground detection method. First, possible ground point clouds are
identified based on the ground normal vector. Then, a new ground segmentation algorithm
is introduced to assist in accurately extracting ground point clouds.

The first stage primarily mitigates interference point clouds by analyzing the triangle
formed between the LiDAR beam hitting the ground, the height of LiDAR and the ground.
As shown in Figure 2, the solid line represents the LiDAR hitting the ground, while the
dashed line represents the LiDAR hitting a non-ground surface. The height between the
LiDAR and the ground is calculated using the LiDAR’s distance to the ground and the
angle of the LiDAR. The Equation (1) is as follows:

h = s ∗ cos θ (1)
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For LiDAR positioning, it is crucial that its horizontal coordinate system remains
parallel to the ground. During movement, the height from the LiDAR sensor to the ground
typically shows only minor variations. However, if there are significant ground features—
like convex structures or steep slopes—the calculated height value will vary considerably,
which can impact the stability and accuracy of LiDAR-based ground detection. Since
the initial height of the LiDAR from the ground is known, the difference between the
calculated value and the initial height is used for judgment. If the difference is within
a certain threshold, the point is considered a ground point; otherwise, it is classified as
a non-ground point. The above steps allow for rough screening of ground point clouds.
However, due to uneven ground surfaces and potential potholes, such point clouds cannot
always be directly classified as ground. To address this, a new segmentation method called
Patchwork [15] is adopted to assist in extracting ground point clouds in the second stage.
Patchwork is optimized to make it lightweight and easily embedded in the LiDAR SLAM
system, allowing for smoother operation. The ground segmentation algorithm consists of
two parts: polar grid representation based on the concentric belt model and ground fitting.

The first part, in a nutshell, is based on a multi-plane approach. Since the observable
world is not flat, it is impossible to process the entire point cloud as a whole. Instead,
we assume that the point cloud of each region is flat and reduce the global problem
to local considerations. Traditional methods convert sectors into uniformly sized bins,
but to improve generalization—taking into account the fact that LiDAR point clouds
are denser at closer distances—the point cloud can be further subdivided based on this
phenomenon. By analyzing the distribution of LiDAR points, the point cloud is divided
into several regions of varying size according to distance and density, as shown in Figure 3.
By marking the location of the LiDAR as the center of a circle, the collected point cloud is
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divided into several small fan-shaped areas according to certain rules. The most common
method is to use a unified polar grid to represent the sector S, dividing it into smaller
regions with regularly spaced radial and azimuth directions, i.e., rings and sectors. The
Equations (2) and (3) are as follows:

Na = π/a (2)

Nl = L/l (3)

where L is the radius of the circle, l is the length of the diameter after the circle is equally
divided, a is the central angle of the equally divided sections, Na is the segmented sector
area, and Nl is the segmented inner ring number.
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Figure 3. Concentric circle model of ground segmentation. (a) traditional model on the left; (b) im-
proved model on the right.

Compared with traditional methods, the new concentric circle point cloud processing
approach not only enhances the robustness of the point cloud but also reduces the number
of regions and improves the algorithm’s real-time performance. After that, plane fitting is
then performed for the point clouds in each region. Since a two-stage extraction method
is used in this paper, a large number of interference point clouds have already been
filtered out, allowing the RANSAC method to improve the accuracy and completeness
of ground extraction without compromising real-time performance. Three points are
randomly selected in each point cluster G = {gi|i = 1, 2, . . . , k} for plane fitting, and the
fitting Equation (4) is as follows: 

nT ∗ g1 + d = 0
nT ∗ g2 + d = 0
nT ∗ g3 + d = 0

||n||= 1

(4)

where n is the normal vector of the plane and d is the intercept of the plane equation.
The cost function (5) for plane fitting is constructed by minimizing the distance from

each point to the fitting plane, and is expressed as follows:

argmin
n,d

k

∑
i=1

∣∣nT ∗ gi + d
∣∣

∥n∥ (5)

After several iterations of the algorithm, the plane with the smallest cost function is
identified as the ground plane. The detected ground information is then used to construct
a ground factor for the backend to complete error suppression.
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2.3. Multi-Decision Non-Line-of-Sight Judgment Based on Information Entropy

In the actual process of tracking a target using a UWB system, the anchor station
or tag is easily obstructed by walls, columns, pedestrians, and other objects, leading to
multipath signal propagation and NLOS ranging errors. These NLOS errors cause ranging
failures, which may compromise the stability of the factor graph fusion solution, resulting
in trajectory deviations or even complete localization failures. To address the instability
of ranging signals in NLOS environments, a multi-decision NLOS recognition module
based on information entropy is designed. This module uses information entropy to
determine the weight of each decision criterion. By weighting each decision score, the
module dynamically determines the reliability of ranging information through decision
fusion, effectively identifying and mitigating NLOS errors.

The concept of information entropy is first proposed by Claude Shannon, the “father of
information theory”, to address the problem of quantitatively measuring information [38].
This paper fully leverages NLOS criteria to calculate all decisions, which are divided into
decisions based on signal strength and decisions based on distance signal. Decisions based
on signal strength primarily depend on the error between the first path signal strength f p
and total received signal strength rx received by the tag from each anchor station during
the positioning process [39].

For the i-th UWB ranging value, calculate the difference ∆ri between the received
signal strength rxi and f pi at the current time k. The Equation (6) is as follows:

∆ri = rxi − f pi (6)

The decision based on the ranging signal mainly relies on the residual between the
ranging value and the LiDAR/IMU odometer. Specifically, the LiDAR/IMU, as an au-
tonomous system, maintains a high degree of stability over short periods of time. Therefore,
in an NLOS environment, the distance measured by the UWB will typically be greater than
the distance estimated by the odometer. For the i-th UWB ranging value, calculate the
difference, as defined in Equation (7), between the UWB label measurement mi and the
odometer estimate oi at the current time k:

∆di = mi − oi (7)

Based on the above error values, the probability, as defined in Equation (8), is estimated
using the normal distribution hypothesis:

P(∆i) =
1

σ
√

2π
e−

(∆i−µ)2

2σ2 (8)

where ∆i represents the difference value of the i-th anchor station under each sub-decision
criterion, µ is the mean value under the current decision criterion, and σ is the standard de-
viation.

For each sub-decision criterion, its information entropy, as defined in Equation (9), is
calculated to measure its contribution to the NLOS judgment:

H(∆i) = −P(∆i) log(P(∆i)) (9)

Next, the current information entropy, as defined in Equation (10), is updated using
the EWMA method:

Hk(∆i) = α · Hk(∆i) + (1 − α) · Hk−1(∆i) (10)

where α is the smoothing coefficient, with a range of (0, 1]. A larger value indicates a
greater influence from new data, while a smaller value means a greater influence from
historical data.
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At each time point, the updated signal strength error entropy and ranging signal
residual entropy are combined to calculate the joint information entropy. The Equation (11)
is as follows:

Hk(∆ri, ∆di) = Hk(∆ri) + Hk(∆di) (11)

The calculated joint information entropy is used for real-time NLOS detection. A
high entropy value indicates significant uncertainty in the signal propagation process,
suggesting NLOS conditions. Conversely, a lower entropy value implies a more certain
signal path, indicating possible LOS conditions. Based on the comprehensive evaluation
value, the NLOS judgment for each sample effectively reduces the impact of large ranging
errors on position calculation.

2.4. Factor Graph Fusion Framework Based on Resilient Mechanism

The factor graph algorithm provides a concise and intuitive representation of com-
plex probabilistic relationships between variables in a system. At its core, a factor graph
represents a probability model as a bipartite graph, consisting of two types of nodes: vari-
able nodes and factor nodes. Variable nodes correspond to the random variables in the
model, while factor nodes represent functions that capture the relationships between these
variables. The edges in the graph connect variable nodes to factor nodes.

In the integrated navigation problem, the position, attitude of the carrier, and ranging
information are uncertain, making robot integrated navigation essentially a probability
estimation problem. Specifically, the combinatorial navigation problem is a Maximum a
Posteriori (MAP) estimation problem of the robot state X for a given measurement value Z.
The maximum posterior probability estimation of a single state is defined in Equation (12):

XMAP = argmax
X

P(X/Z) = argmax
X

P(Z/X)P(X) (12)

In a Bayesian network, each observed variable is solved separately, so all conditional
probabilities are expressed as products and are decomposed. In the factor graph, the
decomposition of each term becomes a factor, and these factors are multiplied together
to form a graph, which is used to describe the factor graph. In this paper, three types of
variables are included: LiDAR raw measurements, IMU raw measurements, and UWB
raw measurements. According to the central limit theorem, the noise of most sensors
follows a Gaussian distribution, so each factor is defined by an exponential function, which
corresponds to the error function. Therefore, the above equation is broken down as shown
in Equation (13):

XMAP = argmax
X

f (X) = argmax
X

∏
k

f Lidar(xk)∏
k

f IMU(xk)∏
k

f UWB(xk) (13)

where xk represents the set of all state variables involved in the factor node. f Lidar(xk),
f IMU(xk) and f UWB(xk) represent the conditional probabilities of LiDAR, IMU and UWB
measurements in a given state, respectively.

The established fusion localization factor model of a quadruped robot is shown in
Figure 4. The state vector corresponding to the current state space of the system is defined
in Equation (14):

Xk = [Pk,Vk, Qk, Bk]
T (14)

where the subscript k represents the location epoch, and P, V, Q represents the position,
velocity, and orientation of the carrier at the current epoch, respectively. Bk stands for the
acceleration and gyroscope bias of the IMU.
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Figure 4. Schematic of the proposed LiDAR/IMU/UWB factor graph model of quadruped robot.

2.4.1. LiDAR Measurement Model

The edge feature point set Fe
k and surface feature point set Fp

k extracted from the
current frame point cloud are matched with the edge feature point Fe

k−1 and surface feature
point Fp

k−1 in the previous frame point cloud. The pose transformation from frame k − 1 to
frame k is then calculated. Edge points form lines in three-dimensional space, and matching
them is achieved by constructing point-to-line constraints [40]. A point-to-line residual
formula is constructed as shown in Equation (15):

D(e,k) =

∣∣∣(pe
k,i − pe

k−1,u

)
×

(
pe

k,i − pe
k−1,v

)∣∣∣∣∣∣(pe
k−1,u − pe

k−1,v

)∣∣∣ (15)

where pe
k,i is a feature point in Fe

k , pe
k−1,u and pe

k−1,v are feature points in Fe
k−1.

Similarly, the residual formula from point to surface is constructed as shown in
Equation (16) [41]:

D(p,k) =

∣∣∣∣∣∣
(

pp
k,j − pp

k−1,u

)
•

(
pp

k−1,u − pp
k−1,v

)
×

(
pp

k−1,u − pp
k−1,w

)
∣∣∣(pp

k−1,u − pp
k−1,v

)
×

(
pp

k−1,u − pp
k−1,w

)∣∣∣
∣∣∣∣∣∣ (16)

where pp
k,j is a feature point in Fp

k , pe
k,u, pe

k,v and pe
k,w are feature points in Fp

k−1.
The detected ground information is used to construct the ground factor input at the

back end to complete error suppression. If the ground is successfully extracted from key
frame k, the feature point set of ground points is Fg

k , and the ground equation fitted by
ground feature points is denoted as AkXk + BkYk + CkZk = Dk. Then, the distance D(g,k),
as defined in Equation (17), from the ground point pg

k (x, y, z) of frame k to the ground of
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frame k − 1 is calculated, as well as the distance D(s,k), as defined in Equation (18), from the
ground plane of frame k to the ground plane Ak−1Xk−1 + Bk−1Yk−1 + Ck−1Zk−1 = Dk−1 of
frame k − 1.

D(g,k) =
|Akx + Bky + Ckz|√

Ak
2 + Bk

2 + Ck
2

(17)

D(s,k) =
|Dk − Dk−1|√

Ak
2 + Bk

2 + Ck
2

(18)

After constructing the residual models for point-line, point-plane, and ground con-
straints, the odometer residuals, as defined in Equation (19), and ground constraint residu-
als, as defined in Equation (20), between laser point clouds are obtained.

rLiDAR

(
Lk

k−1, X
)
= ∑

pe
k∈Fe

k

D(e,k) + ∑
pp

k∈Fp
k

D(p,k) (19)

rGround

(
Lk

k−1, X
)
= ∑

pg
k∈Fg

k

D(g,k) + D(s,k) (20)

In large indoor spaces such as underground parking lots and factories, the ground
may be uneven or have small slopes. In such cases, blindly adding ground constraints may
introduce incorrect information, which is counterproductive. Therefore, it is necessary to
continuously fit the angle of the normal vector of the ground plane between key frames. If
this angle exceeds a given threshold, the algorithm concludes that the quadruped robot is
not moving on horizontal ground. In such cases, no ground constraints are added during
the back-end position optimization. Conversely, if the robot is determined to be moving on
horizontal ground, ground constraints are added to improve the accuracy and robustness
of pose estimation. In addition, considering that the keyframe selection strategy results in
the keyframes to be too far apart, the ground corresponding to adjacent keyframes may
be different. To address this, a strategy is implemented in which the ground constraint is
applied exclusively between keyframes that fall within a specified spatial and temporal
range. By constraining the selection of keyframes in this manner, we ensure that adjacent
keyframes correspond to similar ground surfaces, thereby facilitating the application of
ground constraints.

2.4.2. IMU Measurement Model

Since the measurement frequency of the IMU is usually above 100 Hz, establishing
factor nodes for each IMU measurement greatly increases the computational burden. To
address the difficulties caused by the high overhead of a large number of factor nodes, pre-
integration technology is adopted [42]. Assuming there are LiDAR measurement updates
at the i time and the j time, it is necessary to pre-integrate all the IMU data between them.
This allows us to obtain the position, velocity, and rotation at the j time as initial estimates,
as shown in Equation (21).

pwbj
= pwbi

+ vw
i ∆t − 1

2
gw∆t2 + qwbi

s

t∈[i,j]

(
qbibt(a

bt − ba
t ))∆t2

vw
j = vw

i − gw∆t + qwbi

∫
t∈[i,j]

(
qbibt(a

bt − ba
t ))∆t

qwbj
= qwbi

∫
t∈[i,j]

qbibt ⊗
[

0
1
2

wbt ∆t

] (21)

By constructing the above equation, the pre-integrated component becomes dependent
only on the IMU measurement values. Therefore, we only need to directly integrate the
IMU data over a period of time to obtain the pre-integrated component. This approach
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significantly reduces the number of factor nodes, thereby greatly improving the speed
of optimization. Replace the pre-integration component with a variable, as shown in
Equation (22).

αbibj
=

s

t∈[i,j]

(
qbibt(a

bt − ba
t ))∆t2

βbibj
=

∫
t∈[i,j]

(
qbibt(a

bt − ba
t ))∆t

qbibj
=

∫
t∈[i,j]

qbibt ⊗
[

0
1
2

wbt ∆t

] (22)

The pre-integral residual is defined as shown in Equation (23).

rIMU(Ik
k−1, X) =


rp
rq
rv
rba
rbg


15×1

=



qbiw

(
pwbj

− pwbi
− vw

i ∆t + 1
2 gw∆t2

)
−αbibj

2
[
qbjbi

⊗
(

qbiw ⊗ qwbj

)]
xyz

qbiw

(
vw

j − vw
i + gw∆t

)
−βbibj

ba
j − ba

i
bg

j − bg
i


(23)

In the residual, displacement, velocity, and bias are all obtained by direct subtraction.
The second term represents the rotation error in the quaternion, where [.]xyz denotes a
three-dimensional vector composed only of the imaginary part of the quaternion (x, y, z).

2.4.3. UWB Measurement Model

When the positioning system is initially activated, the global position of the system is
determined through LS estimation. γi = (xi, yi, zi) represents the position of i-th anchor,
while the initial position p0 = (x0, y0, z0) of the target node remains unknown. The objective
of the LS method is to minimize the sum of squared errors between the estimated distances
and the measured distances from the target node to each anchor point. The corresponding
cost function is formulated as shown in Equation (24).

min∑M
i=1 (ẑi −

√
(x0 − xi)2 + (y0 − yi)

2 + (z0 − zi)2)
2

(24)

where M represents the number of anchor and ẑi denotes the received ranging values.
The LS method is applied to solve this optimization problem by iteratively adjusting p0 to
minimize the cost function, ensuring an optimal estimate of the initial position.

By solving this optimization problem, the initial position estimate of the target is
obtained. This initial value is then utilized as a global position constraint to construct the
residual term of the position constraint factor, as shown in Equation (25).

rPosition(Z, X) = p − p0 =

x − x0
y − y0
z − z0

 (25)

where p = (x, y, z) represents the variable to be optimized for the initial position of the tag.
The UWB observation signal is subsequently utilized to construct the range constraint

factor, as shown in Equations (26) and (27).

h(Pk, γki) =
√
(xk − xk,i)2 + (yk − yk,i)

2 + (zk − zk,i)2 (26)

rRange(Zk, X) =∥ zUWB
k − h(Pk, γki) ∥2

ΣUWB
k

(27)
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where (xk, yk, zk) represents the position of tag at time k. γk,i = (xk,i, yk,i, zk,i) represents the
position of the i-th anchor at time k, zUWB

k,i represents the measured distance between the tag
and the i-th anchor at time k. ΣUWB

k represents the covariance of the UWB ranging model.
For the proposed tightly coupled LiDAR/IMU/UWB factor graph structure, the

traditional approach involves solving the error function corresponding to each sensor
using fixed parameters. While this strategy works in most scenarios, it has limitations
in challenging indoor environments. For instance, sensors like UWB are significantly
affected by NLOS conditions, leading to large ranging errors. If the solution remains
fixed under these conditions, singular values may occur, negatively impacting positioning
accuracy. To address this issue, this paper proposes a resilient mechanism for the adaptive
solution of the objective function. For UWB observation data, the UWB signal quality is
assessed using a multi-decision NLOS recognition module based on information entropy.
Depending on the module’s discriminant results, the UWB error function is adjusted—
either increased or decreased—flexibly. After the measurements from each sensor are
obtained, the corresponding factor nodes are constructed, and the estimated state value is
determined by solving the nonlinear LS problem to minimize the error function of each
factor. The objective function for the constructed LS problem is as shown in Equation (28).

e(X) = argmin
X

(∥rLidar(L, X)∥2 + ∥rGround(L, X)∥2 + ∥rIMU(I, X)∥2 +
∥∥rRange(Z, X)

∥∥2
+ ∥rPosition(Z, X)∥2) (28)

Among these, the five residuals represent the odometer constraints, ground constraints,
IMU pre-integration constraints across interframe intervals, LOS observation constraints,
and the initial position constraints provided by UWB.

3. Experimental Results
3.1. Experimental Platform and Environments

The experimental platform is a quadruped robot from our laboratory, and the experi-
mental equipment is depicted in Figure 5a. This equipment includes a LinkTrack P-B UWB
(Nooploop, Nanjing, China), an ADIS16497 IMU (Analog Devices, Norwood, MA, USA),
and a VLP-16 LiDAR (Velodyne, San Jose, CA, USA). The UWB hardware used in this
experiment is shown in Figure 5b, which follows the IEEE 802.15.4-2011 UWB standard
and consists of multiple anchor nodes and a single mobile (tag) node. This experiment uses
six anchor nodes and one mobile node. The distance between each anchor node and the
mobile node was measured using two-way ranging based on time of flight (TOF). Since the
experiment was conducted in an indoor environment without access to GNSS signals, the
ATS-320M high-precision total station (Starfish, FoShan, China) was used to determine the
global positions of the anchor stations and evaluation points, as shown in Figure 5c. The
processing unit is an embedded controller, specifically the Jetson Xavier NX, running on the
Ubuntu operating system and utilizing the robot operating system (ROS). The processing
unit can obtain relevant data by installing the official ROS (Noetic version) driver package
for each hardware component. Using ROS commands, it is possible to acquire and store
messages from each sensor.

Since LiDAR, IMU, and UWB are three different types of positioning systems, spatial
calibration and time synchronization between sensors are necessary steps for successful
multi-sensor fusion. For spatial calibration, a high-precision total station was used to
accurately measure the spatial positions of all sensors. For time synchronization, the ROS
framework was used to assign timestamps to each sensor with the same time reference, and
the three sensor types were synchronized by aligning the data timestamps. To minimize the
impact of parameter estimation errors, it is crucial to estimate key parameters as accurately
as possible during the initial stage of the experiment.
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chor points 1 to 4 are located in the initial LOS region for the quadruped robot to initialize 
and align the sensor coordinate system, while UWB anchor points 5 and 6 are in the initial 
NLOS region. Before the experiment, the total station instrument was used to accurately 
measure the coordinates of each anchor point. During the experiment, pedestrians and 
vehicles intermittently passed through the test area, which affected the UWB mobile tag 
signal due to both static and dynamic obstacles.  

Figure 5. Experimental equipment: (a) Quadruped robot with sensors (Unitree, Hangzhou, China);
(b) UWB hardware module (Nooploop, Nanjing, China); (c) Total station (Starfish, Foshan, China).

The experiment was conducted in the underground parking lot of Sipailou Campus of
Southeast University. The experimental environment is depicted in Figure 6. UWB anchor
points 1 to 4 are located in the initial LOS region for the quadruped robot to initialize and
align the sensor coordinate system, while UWB anchor points 5 and 6 are in the initial
NLOS region. Before the experiment, the total station instrument was used to accurately
measure the coordinates of each anchor point. During the experiment, pedestrians and
vehicles intermittently passed through the test area, which affected the UWB mobile tag
signal due to both static and dynamic obstacles.
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Figure 6. UWB anchor deployment and key points of the mobile experiment.

The experimental environment was set up as depicted in Figure 7. In this setup, the red
triangles represent the UWB anchor points, while the blue circle indicates the position of
the quadruped robot. The fusion factor graph algorithm was primarily utilized to enhance
the dynamic positioning performance of the indoor environment, so the experimental path
has been designed to be a curved trajectory. The quadruped robot was programmed to
move along a rectangular motion path that encompassed the entire experimental area. For
evaluation purposes, four specific points (purple five-pointed star) were marked on the
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ground to serve as reference benchmarks. When the robot reached each evaluation point, it
was kept stationary to allow for error statistics to be gathered. This approach enabled a
thorough analysis of the algorithm’s performance in a controlled environment.
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3.2. Analysis of Lidar Point Cloud Based on Segmentation Constraints

The point cloud module based on segmentation constraints has two main tasks: first,
to improve system operation efficiency by segmenting ground point clouds, and second, to
correct height errors using ground point cloud constraints. As a result, the performance
evaluation was divided into two aspects. The first was to test how our ground segmen-
tation algorithm improves system performance when processing point clouds, primarily
by comparing the average running time of different algorithms when processing LiDAR
frames. The second was to evaluate the effect of adding ground constraints to the odometry.
The algorithm was tested on two datasets: the first is the Kitti dataset, and the second is the
Parking dataset, which was collected in the parking lot using the quadruped robot experi-
mental platform. The proposed algorithm was applied to the pure LiDAR SLAM algorithm
LEGO-LOAM and compared to LOAM (which does not include ground processing) and
PAGO-LOAM (which uses the state-of-the-art segmentation algorithm PATCHWORK).

Figure 8 shows the average running time of three algorithms for processing a frame
of LiDAR point cloud in different datasets. Drive_0018 and Drive_0027 are Kitti datasets
using a 64-line LiDAR, while Parking uses the 16-line LiDAR from the quadruped robot
platform. As a result, the number of point clouds in the Parking dataset is smaller, and the
processing speed of front-end feature extraction is faster. The LiDAR operates at 10 Hz, and
if the system takes more than 100 ms to process, some LiDAR frames will be lost during
the calculation process. The Drive_0018 and Drive_0027 datasets were chosen because
they cover varied and representative conditions within the urban area scenario, including
different levels of environmental complexity, lighting conditions, and typical obstacles.
These datasets allowed us to comprehensively evaluate the robustness and performance
of our proposed method. In addition, the Drive_0018 and Drive_0027 will return to the
starting point at the end of the period, which can be very good for comparing whether there
is a Z-axis drift. As shown in the figure, the running time of our algorithm is significantly



Remote Sens. 2024, 16, 4171 15 of 26

lower than that of A-LOAM, which lacks ground processing. Additionally, the single frame
processing time is also 4.5 ms higher than that of PAGO-LOAM algorithm, indicating that
our ground segmentation algorithm, which first performs rough ground extraction and
then refines it using the RANSAC algorithm, is highly feasible and suitable for deployment
in low-power systems.
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The Kitti datasets provide reliable ground truth for trajectories, making them suitable
for evaluating the proposed system in this paper. The evo tool is used to assess the absolute
pose error (APE) between several algorithms. The root mean square error (RMSE) of the
APE for the Kitti dataset is shown in Figure 9. Since A-LOAM does not include a loop
closure mechanism, our method also does not enable loop closure detection for any of the
sequences. In comparison, the trajectory produced by our algorithm shows high accuracy.
In the Drive_0018 sequence, which covers a long distance of up to 2.21 km, the cumulative
drift in A-LOAM cannot be corrected in time, resulting in a larger error of 18.051 m. In
contrast, our method reduces the error to 4.42 m. In the Drive_0027 sequence, thanks to
the addition of back-end ground constraints, our algorithm performs well on roads with
elevation changes, achieving an error of just 1.086 m, which is significantly lower than that
of other algorithms.
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To demonstrate the high availability of our ground constraint algorithm, we integrated
it into LIO-SAM and conducted extensive testing, achieving excellent performance and
stability. The test results are summarized in Table 1, showing that the accuracy of our
method is 1.13 m, significantly surpassing that of traditional LIO-SAM approaches. This
improvement underscores the effectiveness of incorporating ground constraints into the
positioning process.

Table 1. Performance of LIO-SAM in a dataset with ground.

Dataset
RMSE Error [m]

LIO-SAM Ours

Drive_0027 2.54 1.13

To further evaluate the performance of the proposed algorithm in ground segmen-
tation tasks, particularly in complex and dynamic real-world environments, we selected
a typical test scene featuring multiple steps and curbs. This environment simulates chal-
lenging terrain commonly encountered in daily life, where structures like steps and curbs
are difficult for traditional ground segmentation methods, which often misclassify these
features as the ground. The experimental results are illustrated in Figure 10, which visually
compares the segmentation performance of various algorithms within the same test envi-
ronment. As shown, the site contains complex terrain elements, such as multiple steps and
curbs, that are challenging to identify accurately in real-world applications. Traditional
methods often overlook critical height variations and geometric characteristics of the terrain,
mistakenly classifying step areas as part of the ground and reducing segmentation accuracy.
In contrast, our algorithm more effectively captures and utilizes key information, including
terrain height, slope, and planarity, allowing for precise identification and segmentation of
step and curb structures. The figure demonstrates that our method not only successfully
differentiates between ground and non-ground regions but also exhibits superior accuracy
and robustness when handling complex features like steps and curbs.
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3.3. ALLAN Variance Analysis of IMU

In INS positioning, the IMU integrates sensor information to estimate position through
pre-integration, making IMU sensor errors critical to positioning accuracy. The measure-
ment noise from the IMU primarily includes accelerometer noise, which introduces bias in
velocity and position estimates, and gyroscope noise, which affects attitude angle estima-
tion. This study addresses the drift and noise characteristics of the sensor by establishing
an IMU error model. Allan variance, a widely used tool in the field of inertial navigation
systems, quantitatively analyzes sensor performance by describing the statistics of drift
and random noise in inertial sensors, such as accelerometers and gyroscopes, over time. In
this paper, measurement data from the IMU were collected during a ten-hour stationary
period, and the noise characteristics were analyzed using Allan variance, as illustrated in
Figure 11. Utilizing the values for bias instability and random walk, we established the
noise covariance matrix and noise model for the combined positioning process, aiming to
minimize the impact of IMU system errors on positioning results during optimization.
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3.4. UWB Ranging Error Mitigation

The UWB ranging error primarily consists of two components: system error and
NLOS error.

3.4.1. System Error Elimination Module

The UWB system error primarily arises from the characteristics, design, manufacturing,
calibration, and usage of the equipment, leading to variability in error profiles among
different devices. If these errors are not addressed, they can introduce biases during
the positioning solution phase. In this study, the UWB equipment was sampled within
the effective working range in an indoor Line-of-Sight (LOS) environment, and an error
function model was established through data fitting. By actively compensating for the
inherent system errors of the sensor, the overall system error is mitigated, thereby enhancing
ranging accuracy and reducing the influence of these errors on the final positioning results.

During the sampling process of equidistant ranging values, a complete LOS scenario
was maintained to ensure that there are no obstructions and no personnel moving between
the anchor station and the tag. Both the anchor station and the tag were fixed on 1 m tripods.
For the procedure, anchor station 1 (A0) was taken as an example: A0 remained stationary
while the tag was moved progressively from the nearest distance of 1 m. A total of 60 sam-
pling points were collected. The device acquisition frequency was set to 20 Hz, and static
sampling was performed at each position for 60 s, resulting in approximately 1200 ranging
values per sampling point. The true distances were measured using a high-precision total
station. For modeling the system error, anchor station A1 was used as an example to fit the
ranging error. To balance fitting accuracy and computational complexity, a fourth-order
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polynomial was selected as the system error description function (29). This choice helped
to avoid the risks of underfitting or overfitting, ensuring a robust representation of the
system error while maintaining manageable computational requirements.

d0 = −0.00014x0
4 + 0.00286x0

3 − 0.02089x0
2 + 1.05664x0 + 0.09052 (29)

where d0 represents the fitted ranging value of anchor station A0, and x0 represents the
measured value of anchor station A0. The same applies to the other anchor stations.

The error optimization effect of the UWB system is illustrated in Figure 12. In the
figure, the blue bar chart represents the original ranging error of the anchor station, while
the green bar chart shows the ranging error after correction using the error model. As
the figure demonstrates, the UWB ranging error is significantly reduced after applying
the correction. The error model established through data fitting effectively reduces the
ranging error, thereby improving the overall ranging accuracy. This optimization is crucial
for ensuring the precision of UWB positioning in LOS scenarios.
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3.4.2. Non-Line-of-Sight Recognition Module Based on Information Entropy

For NLOS recognition, experiments were conducted in the previously mentioned
parking lot environment. Figure 13 shows the difference curve between the first path
signal strength and the total received signal strength for each anchor station during the
experiment. It can be observed that, as the robot moves, each anchor station is affected by
varying degrees of NLOS interference.
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Figure 14 shows a comparison between the evaluation results of each anchor station
based on information entropy and the real situation. In the figure, the horizontal axis
represents each key epoch of the quadruped robot in the parking lot environment, and the
vertical axis indicates the LOS/NLOS status identified by each anchor station. A value of 0
indicates LOS, and 1 indicates NLOS. The actual LOS/NLOS status, determined based on
the robot’s movement trajectory and the environment, is represented by a solid black line.
As seen in the figure, the NLOS recognition algorithm based on information entropy was
used to accurately identify the LOS/NLOS status of the anchor station, closely matching
the actual trend. When a ranging error occurs, the ranging information from the anchor
station is classified as NLOS. While there are a few errors at individual decision points,
the number of LOS selections is less than in the actual situation, effectively ensuring the
robustness of the positioning system.

Remote Sens. 2024, 16, x FOR PEER REVIEW 20 of 27 
 

 

line. As seen in the figure, the NLOS recognition algorithm based on information entropy 
was used to accurately identify the LOS/NLOS status of the anchor station, closely match-
ing the actual trend. When a ranging error occurs, the ranging information from the an-
chor station is classified as NLOS. While there are a few errors at individual decision 
points, the number of LOS selections is less than in the actual situation, effectively ensur-
ing the robustness of the positioning system. 

 
Figure 14. LOS/NLOS discrimination based on information entropy. 

3.5. Analysis of Collaborative Optimization  
To verify the validity of the factor graph fusion framework based on the resilient 

mechanism proposed in this paper, we compared and analyzed it with four other meth-
ods. The first method is the least squares positioning method (LS) based solely on UWB. 
The second method is the UWB/INS fusion method (EKF) based on the extended Kalman 
filter. The third method is a LiDAR/INS fusion method (LIU), where UWB information is 
only used for initialization and is not integrated into the system afterward. The fourth 
method is based on the traditional LiDAR/INS/UWB tightly coupled approach, where 
UWB information is integrated into the positioning system (LIUT). 

Figure 15 shows a comparison of the positioning results from different methods. It 
should be noted that, due to the spatial distribution of UWB anchor stations and the in-
fluence of obstacles in the parking lot, when the movement range of the quadruped robot 
extends from the 1st to the 4th, the quality of the UWB ranging signal degrades, introduc-
ing more NLOS errors and causing significant jumps in the UWB positioning results. As 
a result, the LS and EKF results are only shown for part of the area. However, the subse-
quent positioning accuracy analysis will be based on the positioning results correspond-
ing to the time stamps. In the fourth to first stage, where the number and distribution of 
anchor stations are favorable, LS and EKF produced good positioning results. While LS 
shows some jumps due to noise interference from a single UWB solution, both methods 
maintained accurate positioning within a small range of the first evaluation point. The 
LIU algorithm exhibits a relatively smooth overall trajectory; however, it suffers from 
gradual drift due to the lack of absolute information injection and the accumulation of 
inherent errors from the laser and IMU sensors. In contrast, the LIUT method successfully 
integrates UWB ranging information, receiving high-quality data during the transition 
from the fourth to the first stage, which helps suppress cumulative errors and maintain 
high positioning accuracy. Nevertheless, as the robot becomes increasingly affected by 
NLOS conditions, its positioning results begin to diverge from the true motion trajectory. 
In contrast, our tightly coupled system demonstrates significant advantages by 

Figure 14. LOS/NLOS discrimination based on information entropy.

3.5. Analysis of Collaborative Optimization

To verify the validity of the factor graph fusion framework based on the resilient
mechanism proposed in this paper, we compared and analyzed it with four other methods.
The first method is the least squares positioning method (LS) based solely on UWB. The
second method is the UWB/INS fusion method (EKF) based on the extended Kalman
filter. The third method is a LiDAR/INS fusion method (LIU), where UWB information
is only used for initialization and is not integrated into the system afterward. The fourth
method is based on the traditional LiDAR/INS/UWB tightly coupled approach, where
UWB information is integrated into the positioning system (LIUT).

Figure 15 shows a comparison of the positioning results from different methods. It
should be noted that, due to the spatial distribution of UWB anchor stations and the
influence of obstacles in the parking lot, when the movement range of the quadruped robot
extends from the 1st to the 4th, the quality of the UWB ranging signal degrades, introducing
more NLOS errors and causing significant jumps in the UWB positioning results. As a
result, the LS and EKF results are only shown for part of the area. However, the subsequent
positioning accuracy analysis will be based on the positioning results corresponding to
the time stamps. In the fourth to first stage, where the number and distribution of anchor
stations are favorable, LS and EKF produced good positioning results. While LS shows
some jumps due to noise interference from a single UWB solution, both methods maintained
accurate positioning within a small range of the first evaluation point. The LIU algorithm
exhibits a relatively smooth overall trajectory; however, it suffers from gradual drift due
to the lack of absolute information injection and the accumulation of inherent errors from
the laser and IMU sensors. In contrast, the LIUT method successfully integrates UWB
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ranging information, receiving high-quality data during the transition from the fourth
to the first stage, which helps suppress cumulative errors and maintain high positioning
accuracy. Nevertheless, as the robot becomes increasingly affected by NLOS conditions,
its positioning results begin to diverge from the true motion trajectory. In contrast, our
tightly coupled system demonstrates significant advantages by integrating LiDAR, IMU,
and UWB data, thereby compensating for the limitations inherent in any single sensor and
ensuring smooth positioning even in challenging environments. The introduction of UWB
signals allows our method to obtain absolute position information during the initialization
phase, facilitating the generation of an accurate absolute trajectory. Furthermore, by flexibly
incorporating anchor ranges within the LOS, our approach effectively corrects cumulative
errors and enhances system robustness, mitigating the impact of low-quality ranging
information on positioning results.
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As seen from the quantitative comparison in Figure 16, the positioning method pro-
posed in this paper significantly improves positioning accuracy. The average error of the
LS at the evaluation point is 14.67 m, the EKF is 3.56 m, the LIU is 1.19 m and the LIUT
is 1.15 m. In comparison, the average error of our method is the smallest, at 0.36 m. This
represents a reduction in positioning errors of 97.53%, 89.85%, 79.25%, and 76.49%, respec-
tively, compared to the aforementioned methods. It is important to note that, due to the
challenges in obtaining real-time ground truth in indoor environments, the positioning re-
sults are analyzed using static evaluation points. Consequently, when the positioning error
at certain evaluation points is substantial, the overall positioning accuracy is significantly
impacted. For instance, the LIUT positioning method can maintain satisfactory accuracy in
areas where the distribution of anchor points is reasonable and NLOS errors are minimal.
However, as cumulative errors gradually increase and the quality of UWB positioning
deteriorates, the positioning results tend to drift, leading to substantial errors and a notable
increase in overall inaccuracies. In contrast, our method effectively mitigates the influence
of NLOS on the system while also eliminating cumulative errors. This approach enhances
the robustness of the positioning system, resulting in improved positioning outcomes across
multiple evaluation points and ultimately significantly reducing overall positioning errors.
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Since the UWB anchor stations in the experiment are at the same height, we cannot
analyze the changes in LS and EKF on the Z-axis. As shown in Figures 17 and 18, when
the quadruped robot system began to move, the height error of LIU gradually increased,
with a maximum drift of 5.43 m. The height error only decreased back to the initial
0.6 m when the robot moved back and point cloud registration occurred. Therefore, in a
long-distance environment without loops, the error will continue to accumulate. UWB
information was introduced into LIUT, which helped to some extent in suppressing height
drift. However, the system robustness deteriorated when NLOS were received, resulting
in a maximum drift of 5.846 m. In contrast, the proposed method demonstrates good
robustness, significantly constraining height drift, with a maximum drift of only 1.05 m.
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Additionally, an ablation analysis was conducted to further assess the effects of each
module individually. The results show that introducing the point cloud segmentation
module significantly improves point cloud processing speed, with single-frame processing
times reduced by 17.2 ms when using 16 threads, and the positioning error reduced by
4.72 m (see Figures 8 and 9). In the UWB-based positioning system, degraded signal
quality can lead to jumps or interruptions in positioning (see Figure 16). Furthermore,
for the LIUT algorithm, the indiscriminate fusion of UWB data resulted in an inability
to correct LiDAR/IMU accumulated errors, even introducing new errors, which led to
a divergence trend in the positioning results (see Figure 15). In contrast, the proposed
method demonstrates optimal performance, achieving a positioning accuracy of 0.36 m,
which is exceptional for maintaining both positioning accuracy and stability.

3.6. Laboratory Experiment Results

To further validate the effectiveness of the proposed algorithm in complex indoor
environments, experiments were conducted on the third floor of the comprehensive experi-
mental building at Sipai Lou Campus, Southeast University. The robot navigated through a
diverse experimental area that included interconnected scenes such as long corridors, halls,
and balconies. Notably, the long corridors feature parallel walls and consistent geometry,
leading to LiDAR-extracted features that are often monotonous and repetitive, thereby
lacking sufficient distinctive characteristics for accurate matching. The narrowest corridor,
measuring only one meter wide, presents severely degraded walls that pose significant
challenges for LiDAR performance. Additionally, NLOS interference due to wall and room
occlusions is notably pronounced.

The experimental environment and positioning results are illustrated in Figure 19,
where the red triangles represent UWB anchor points, the blue circles denote the quadruped
robot, and the red curve indicates the trajectory result. The findings demonstrate that
existing UWB localization algorithms struggle in this environment due to a lack of sufficient
and effective UWB ranging information. Furthermore, the LIU algorithm fails to extract
significant features for point cloud registration, resulting in trajectory jumps in the long
corridor and an inability to return to the original region. Although the LUIT algorithm
initially received a sufficient number of UWB signals, which helped suppress odometer
errors and maintain a consistent trajectory, the increasing influence of low-quality ranging
signals led to gradual cumulative errors and significant drift in the final trajectory. In
contrast, while our method exhibits slight offsets in the narrow corridor, the incorporation
of high-quality multi-sensor information enables the positioning system to effectively



Remote Sens. 2024, 16, 4171 23 of 26

navigate these challenges, successfully completing the global positioning task in this
demanding indoor environment and ensuring smooth positioning results.
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3.7. Real-Time Performance

In real-world environments, real-time positioning is essential for quadruped robots to
perform autonomous tasks. The system’s efficiency is evaluated on the robot’s industrial
computer, and the time consumption of each module is shown in Table 2. The lidar point
cloud processing module removes a large number of invalid point clouds, effectively
reducing the computational load for subsequent point cloud frame matching, with a total
processing time of 16.2 ms. The UWB ranging value processing module, which primarily
involves NLOS judgment and outlier removal, takes only 0.01 ms due to the small amount
of computation required for the entropy-based evaluation. The factor graph optimization
module, which incorporates a resilient mechanism, does not add all information to the
factor graph fusion model, thus reducing the time required for optimization to 1.22 ms.
Additionally, multi-threading technology is employed to process these modules’ computing
tasks in parallel, ensuring higher computational efficiency. In summary, our positioning
system is well-suited for real-time positioning applications of quadruped robots.

Table 2. Average Time Consumption of Each Module.

Module Time Consuming (ms)

Lidar point process 16.2
UWB range process 0.01

Factor graph optimization 1.22

4. Conclusions

For accurate and reliable positioning of quadruped robots in GNSS-denied envi-
ronments, this paper proposes a tightly coupled LiDAR/UWB/INS navigation system
based on a resilient factor graph. Compared with existing methods, our approach demon-
strates superior robustness and precision. By constructing a point cloud segmentation and
constraint module, we minimized elevation errors and reduced the computational load.
By incorporating information entropy into NLOS detection, the quality of UWB data in
multi-obstacle environments is ensured. Additionally, the resilient mechanism and tightly
coupled factor graph model guarantee both accuracy and real-time location updates. To
verify the effectiveness of the proposed algorithm on the quadruped robot platform, tests
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were conducted in a real-world scenario within an indoor underground parking lot. The
experimental results validate the superiority of our method and offer a viable solution for
robot positioning in GNSS-denied environments.

Informative semantic data are crucial for the continuous operation of a positioning
system. One of our future research goals is to focus on indoor semantic information
to explore the impact on mapping, positioning, and navigation. We will also focus on
multi-robot navigation and will further optimize positioning results by shared informa-
tion between multiple robots, aiming to better meet the continuous positioning needs of
quadruped robots.
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