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Abstract: Crowd counting in aerial images presents unique challenges due to varying altitudes,
angles, and cluttered backgrounds. Additionally, the small size of targets, often occupying only
a few pixels in high-resolution images, further complicates the problem. Current crowd counting
models struggle in these complex scenarios, leading to inaccurate counts, which are crucial for
crowd management. Moreover, these regression-based models only provide the total count without
indicating the location or distribution of people within the environment, limiting their practical
utility. While YOLOv8 has achieved significant success in detecting small targets within aerial
imagery, it faces challenges when directly applied to crowd counting tasks in such contexts. To
overcome these challenges, we propose an improved framework based on YOLOv8, incorporating a
context enrichment module (CEM) to capture multiscale contextual information. This enhancement
improves the model’s ability to detect and localize tiny targets in complex aerial images. We assess
the effectiveness of the proposed framework on the challenging VisDrone-CC2021 dataset, and our
experimental results demonstrate the effectiveness of this approach.

Keywords: crowd counting; tiny target detection; aerial images; deep learning; YOLOv8

1. Introduction

Analyzing crowded scenes is crucial for efficient crowd management [1]. Poor crowd
management in public places, such as marathons, large religious gatherings, and political
events, can lead to stampedes and other crowd-related disasters [2]. To ensure effective
crowd management, it is essential to develop computational models that can analyze and
understand crowded scenes through surveillance cameras. However, crowded scenes
present challenges due to the complex interactions between individuals in unconstrained
areas [3]. Various crowd-related problems, such as crowd tracking [4], counting [5], and con-
gestion detection [6], have been extensively studied in the literature. Among these issues,
crowd counting is particularly important as it serves as a prerequisite for comprehensive
crowd analysis.

Crowd counting entails estimating the number of individuals in a scene. This infor-
mation helps crowd managers identify congested areas and implement safety measures
to prevent potential crowd disasters. Additionally, accurate crowd counting can aid in
the efficient utilization of resources, such as deploying the appropriate number of secu-
rity personnel and effectively managing logistics and infrastructure for public gatherings.
Crowd counting is a widely studied topic, with numerous researchers proposing various
sophisticated models to achieve accurate results. For instance, Wang et al. [7] recently
introduced a model, SDANet, which incorporates a scale awareness module to utilize scale
information in images and videos for crowd counting. Guo et al. [8] introduced a dual
convolution neural network (Dual-CNN) for crowd counting. The first network estimates
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the density map from the input image and the second network then re-constructs the crowd
image from the estimated density map. Several other models including refs. [9–13] have
been proposed in recent years for crowd counting in image and videos.

Most existing models, including the aforementioned ones, focus on crowd counting
in natural images (images captured from on-ground cameras). However, there has been
limited research on crowd counting using drone imagery. Crowd counting in drone
imagery holds significant importance due to the unique capabilities of drones. For example,
drone imagery provides a comprehensive view of large and dense crowds that might be
challenging to analyze from natural images captured by on-ground cameras. Additionally,
UAVs can access areas that are difficult for human operators to reach, ensuring real-time
monitoring and rapid response.

Recently, Ptak et al. [14] conducted a study evaluating the performance of different
deep learning models deployed on edge devices for crowd counting in drone images.
Nag et al. [15] introduced an encoder–decoder framework, namely, Attention-based Real-
time CrowdNet (ARCN), for crowd counting in drone imagery. Bakour [16] optimized
CSRNET (with VGG-16 as the backbone) for real-time crowd density estimation using
drone video sequences. Elharrouss et al. [17] presented a framework that employs dilated
and scaled neural networks to perform feature extraction and density estimation. Peng
et al. [18] proposed a framework for crowd counting in adverse conditions, particularly
at night and in haze. Their study introduced a novel dataset, the RGB-Thermal dataset
(DroneRGBT), and proposed the MMCCN that leverages visible and thermal infrared
information. Liu et al. [19] compiled a high-quality dataset for crowd counting in drone-
captured images, called Visdrone-CC2020, and organized a competition that attracted
numerous researchers to develop models and techniques to address the challenges of
crowd counting in drone imagery. They utilized the existing crowd counting models,
LCFCN [20], CSRNet [21], Switch-CNN [22], and DM-Count [23], originally developed for
natural images, and tested these models on drone images for crowd counting.

Despite the success of the aforementioned models for crowd counting in drone images,
they face difficulties due to the inherent challenges associated with drone imagery. (1) Drone
images are captured from varying altitudes and angles, thus leading to changes in target
size, shape, and perspective. (2) The background in drone imagery can be highly cluttered
and complex. (3) In high-resolution drone imagery, the targets of interest often appear very
small, occupying only a few pixels in the image. This presents a significant challenge for deep
learning-based target detectors, as the image is downsampled after passing through a series
of convolutional and pooling layers, resulting in a loss of information for small targets.

For small target detection in drone imagery, the recently introduced YOLOv8 has
achieved significant results [24–27]. Despite its high detection accuracy, the network faces
challenges when applied to the detection and counting of people in drone imagery. For
detecting tiny targets in aerial images, YOLOv8 faces challenges primarily because of the
target’s extremely small size (just a few pixels) within a larger scene. Because of the small
size of the targets, these targets often lack distinctive contextual cues that help the model
to distinguish them from the background. Furthermore, YOLOv8 uses downsampling
techniques to boost speed, which can result in a loss of fine details crucial for identifying
small targets. Additionally, the receptive field of the model may not be adequately tuned to
focus on these small features. To address this issue with YOLOv8, we introduce a context
enrichment module (CEM) that enhances the receptive field of the convolutional layers
through the use of an atrous convolutional layer. The main contributions of this paper are
listed as follows:

1. We propose a modified YOLOv8-based framework specifically tailored for crowd
counting in aerial images. The model is capable of accurately detecting, localizing,
and counting the individuals in a complex environment with varying crowd densities
and altitudes.
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2. We enhance YOLOv8 by introducing a CEM, which significantly improves its ability to
detect small targets. The CEM effectively captures multiscale contextual information and
increases the model’s ability to differentiate the tiny targets from complex backgrounds.

3. To illustrate the efficacy of the proposed framework, we apply the model to a complex
and challenging dataset, VisDrone-CC2020 [19]. However, the dataset provides dot
annotations, which is incompatible with YOLOv8. To facilitate the training, we introduce
a method that converts dot annotations into four-tuple bounding box annotations.

The rest of this paper is organized as follows: The related work is discussed in Section 2.
Section 3 discusses the proposed methodology and different components of the framework
and Section 4 discusses the detailed results. Section 5 concludes this paper.

2. Related Work

In this section, we will discuss the related work for crowd counting. Generally,
we divide the related work into two groups: (1) crowd counting in natural images and
(2) crowd counting in drone images.

2.1. Crowd Counting in Natural Images

The early approaches in crowd counting and density estimation primarily utilized
regressors [28–30] to map extracted features to the count. These features were derived
using hand-crafted feature extractors [31]. However, these models required perspective
normalization to estimate the scale of the person in the image, which requires additional
efforts and computation.

Recent advancements have shifted toward using CNNs to generate density maps
for crowd counting tasks. The multicolumn architecture was introduced to address scale
variation by employing receptive fields of different sizes to extract features at multiple
scales [32,33]. An enhanced CNN architecture, known as the switching-multicolumn
architecture, was later proposed to handle significant variations in crowd density [22].
These models were designed to address scale variations by using receptive fields of different
sizes to extract features at multiple scales; however, multiple columns cause computational
overhead in selecting the appropriate number of columns and receptive field sizes.

Similarly, a feed-forward network was used for crowd counting, which takes a low-
resolution density map as input and generates high-resolution density maps [34]. This
model improves the process by taking a low-resolution density map and generating detailed
density maps, which are useful in crowd counting; however, the generation of high-
quality density maps leads to computational complexity. Although the multicolumn
architecture effectively addresses scale variation, it incurs computational overhead due to
the need to select the appropriate number of columns and their receptive field sizes [35].
A single-column approach, such as MSCNN [36], employs a scale aggregation block to
manage scale variation. Although MSCNN reduces computational complexity compared to
multicolumn networks by using a scale aggregation block, the model may be less effective
in handling large scale variations compared to the multicolumn method. Building on the
concept of scale aggregation, Cao et al. [37] introduced composition loss and local pattern
consistency loss to enhance crowd counting accuracy. The model requires fine-tuning
and careful implementation of the loss functions, making it harder to generalize across
different datasets. Sam et al. [38] proposed a growing CNN approach that recursively
splits into child CNNs for improved crowd counting performance. Expanding on this idea,
Sindagi et al. [39] introduced a multitask CNN with a cascaded approach to classify crowds
into different density levels. Although the model enables the CNN to classify crowds into
different density levels, improving both the counting and classification of crowded scenes,
this approach may introduce additional complexity, making the model more challenging
to train. Idrees et al. [40] incorporated DenseNet blocks and multiple loss functions to
optimize ground-truth crowd density maps, allowing the architecture to compute the crowd
count, density, and localization simultaneously. Xiong et al. [41] proposed a convolutional
LSTM to utilize temporal information for counting people. However, most datasets consist
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of still images and lack temporal correlation. An end-to-end encoder–decoder, called
the Automatic-Scale Network (AMSNet) [42], was developed through NAS. Similary,
Zhai et al. [43] presented a crowd counting framework, namely, FPANet, which uses a
lightweight feature pyramid, attention, and multiscale aggregation modules to improve
accuracy and efficiency in real-world applications. Wang et al. [44] proposed CAFNet,
which enhances crowd counting by integrating local, cross-level, and cross-layer context
information through specialized modules, resulting in a high-resolution density map.
Du et al. [45] presented a novel crowd counting framework that incorporates a hierarchical
mixture of density experts. Wang et al. [46] introduced a self-supervised crowd counting
framework that reduces the burden of heavy annotations and leverages a large number of
easily obtainable unlabeled images. This framework reduces the need for heavy annotations
by leveraging self-supervised learning, making it more practical in scenarios where labeled
data are scarce. Zhang et al. [47] presented a new crowd counting framework called
CrowdGraph. This graph-based method redefines crowd counting by approaching it
from a graph-to-count perspective. One of the disadvantages of a graph-based model is
that these methods may struggle with scalability, especially when applied to large and
densely populated scenes. Chen et al. [9] proposed a metric learning approach to estimate
crowd characteristics from a single annotated image of a scene. The approach employs
a Multi-Prototype Learner, trained via Expectation-Maximization, to capture foreground
and density prototypes. Yan et al. [48] introduced DFNet for accurate crowd counting in
crowded and noisy scenes. Although DFNet offers robustness in challenging environments
where other models may fail, the model requires additional computational resources due
to its complexity.

2.2. Crowd Counting in Drone Images

UAVs are gaining popularity for crowd monitoring due to their easy deployment, low
cost, and ability to provide high-resolution real-time images. Most approaches discussed in
the literature, however, rely on datasets captured by static cameras. Elharrouss et al. [17]
proposed a framework for crowd counting utilizing drone-collected data. Their approach
employs dilated and scaled neural networks to extract features and estimate crowd density.
Kuchhold et al. [49] proposed a scale-adaptive approach for crowd detection and counting
in drone images. The framework utilizes local feature points and density estimation across
various image scales. However, its reliance on local feature points may limit its effectiveness
in extremely dense crowds where feature points overlap. Zhang et al. [50] introduced
an Enhanced Multi-Modal Crowd Counting Network (I-MMCCN), which integrates a
hard example mining module along with a new Block Mean Absolute Error (BMAE) loss
function. The BMAE enhances local spatial correlation and aligns with evaluation metrics.
Although the introduction of the BMAE enhances the performance, it increases the model
complexity. Castellano et al. [51] proposed a method using a fully convolutional network to
detect and track crowd movement in video sequences by clustering crowd-dense areas and
identifying their centroids. The method is useful for video sequences and the performance
of the model is compromised in static crowd counting or scenarios where individuals are
stationary. Chen et al. [52] presented Flounder-Net, an efficient deep learning model that
uses interleaved group convolution to reduce network redundancy and employs rapid
feature map shrinkage to effectively manage high-resolution images. The model is fast
and effective; however, the reduced redundancy may result in a loss of detail and may not
be able to detect small objects. Castellano [53] proposed a lightweight fully convolutional
neural network for real-time crowd detection that combines classification and regression
tasks to accurately identify and focus on crowded areas. The model lowers computational
costs while maintaining reasonable accuracy; however, the simplicity of the model might
limit its ability to handle more complex scenarios. Bai et al. [54] introduced SACANet, an
innovative network tailored for crowd counting that adapts to scales and incorporates long-
range context awareness. The model is particularly effective in managing both small-scale
and large-scale features; however, the incorporation of long-range context awareness may
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increase the computational cost. Zhao et al. [55] proposed PDNet, a novel network that
includes a multiscale backbone, a Dilated Feature Fusion (DFF) module to manage small
targets and scale variations, and a Density Map Attention (DMA) module to focus on target
locations within complex backgrounds. The addition of DFF and DMA modules may slow
down the processing times and increase resource consumption. Bahmanyare et al. [56]
introduced the DLR Aerial Crowd Dataset (DLR-ACD), which comprises 33 large aerial
images with 226,291 annotated persons. Additionally, they introduced the Multi-Resolution
Crowd Network (MRCNet), an encoder–decoder CNN built upon VGG-16, aimed at
precise crowd counting and density map estimation. The model relies on VGG-16 as
the feature extractor, which is an outdated model and may not be as efficient in terms
of computation and resource usage. Husman et al. [57] presented a literature review on
drone specifications, on-board sensors, power management, and analysis algorithms and
discussed the ethical and privacy issues associated with using UAVs for crowd monitoring.
Gu et al. [58] presented a novel framework for crowd counting for drones. This framework
fuses visible and thermal infrared images to accurately count dense populations and guide
drone flights. Almagbile et al. [59] developed a method that employs the Feature from
Accelerated Segment Test (FAST) algorithm to identify crowd features in drone images.
Although the method is fast due to its reliance on computing the rapid corner detection
and feature extraction capabilities, the model might struggle to manage complex scenes or
in situations with severe occlusions. Castellano [53] proposed a lightweight FCN-based
model for crowd detection in crowd images. The model leverages spatial graphs and a
clustering technique to improve the detection performance. Although the model is suitable
for deployment on UAVs due to its lightweight architecture, a clustering-based approach
might introduce bias by predicting the presence of a crowd even with the presence of a few
individuals in the scene.

Despite the growing popularity of UAVs for crowd monitoring due to their easy
deployment and low cost, many current methods have significant limitations. For instance,
some frameworks focus on specific image scales or feature points, which may not perform
well under different conditions. Techniques involving complex modules can be computa-
tionally intensive, potentially hindering real-time processing. Additionally, methods using
algorithms like FAST may have difficulties with varying camera orientations and positions,
reducing their robustness in diverse scenarios.

3. Proposed Methodology

In this section, we will discuss the proposed architecture for small target detection.
Generally, the proposed architecture uses YOLOv8 as the base architecture; however, to
address the challenges associated with YOLOv8, we have modified the architecture to
better handle small target detection.

YOLOv8 typically comprises the backbone, the neck, and the head. The backbone
module is a CNN that processes the input image to extract detailed, multiscale hierarchical
features. After extracting the hierarchical features, the resultant feature maps are then
provided as input to the neck module. The neck module further refines the feature maps
obtained from the backbone module. This module enhances the spatial and semantic
features by employing additional convolutional layers and the feature pyramid pooling
module. The feature maps with different resolutions are provided as input to the head
module where target detection is performed. The head module includes detection sub-
networks that analyze the features provided by the neck to produce predictions for each
potential target. Subsequently, non-maximum suppression (NMS) is used to eliminate
overlapping predictions and keep only the most reliable detections.

Although YOLOv8 performs real-time target detection with high accuracy in natural
images, it faces significant challenges in identifying small targets within aerial images.
To accurately detect small targets, it is crucial to incorporate contextual information that
defines the target based on its surrounding environment. Small targets often lack distinctive
features, so understanding the context in which these targets appear can significantly
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improve detection accuracy. For example, identifying a small vehicle on a road becomes
easier when the model recognizes the road and other related surroundings. In order to
enable YOLOv8 to detect small targets in aerial images, we modify YOLOv8. The detailed
architecture of the proposed framework is illustrated in Figure 1.

Figure 1. Detailed pipeline of proposed framework for small object detection (zoomed in for
best view).

As illustrated in Figure 1, the input image is applied to the backbone of the network.
The backbone consists of five convolution–batch normalization–SiLU (CBS) blocks, four
C2F blocks, and the four proposed CEMs. The details of the modules are provided below:

The CBS module in the YOLOv8 architecture is designed to enhance feature extraction
and improve the overall efficiency and performance of the network. The CBS module
generally comprises a convolutional layer, followed by batch normalization and the SiLU
activation function. Specifically, the convolutional layer uses a kernel size k = 3, stride s = 2,
and padding p = 1. The convolutional operation of the CBS module downsamples the input
feature map while retaining spatial information. After convolution, batch normalization
is applied to normalize the output, stabilizing the learning process and accelerating con-
vergence. Finally, the SiLU activation function is employed, introducing non-linearity and
allowing the network to learn more complex features.

The C2F module, newly introduced in YOLOv8, improves the integration of features
with contextual information, which leads to improved detection accuracy [60]. It effectively
incorporates the principles proposed by the ELAN module [61], optimizing the network
structure by controlling the shortest and longest gradient paths, which also improves the
network training [62].

The architecture of the C2F module is illustrated in Figure 2. As shown, the C2F
module divides the input feature maps into two separate paths. This split aligns with the
CSPNet (Cross-Stage Partial Network) [63] concept, ensuring that one part of the feature
map is processed through the bottleneck modules while the other part remains unchanged.
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Figure 2. Detailed architecture of C2F module.

Let Ωi be the input feature map to the C2F module. The original map Ωi is subsequently
processed through three bottleneck modules, namely, B1, B2, and B3. Each bottleneck module
employs two convolutional layers, 1 × 1 followed by 3 × 3. Let Ωi be provided as input to
the bottleneck module B1. The output feature map ΩB1 is provided as input to B2. Similarly,
the output feature map ΩB2 is then provided as input to the bottleneck module B3. Let the
output feature map of the bottleneck module B3 be ΩB3 . Finally, all three output feature
maps {ΩB1 , ΩB2 , ΩB3} are fused together to obtain the fused feature map Ω f . The fused
feature map Ω f and original input feature map Ωi are then combined together through the
concatenation block.

3.1. Context Enrichment Module

As discussed above, to accurately detect small targets, it is imperative to capture
contextual information around small targets in aerial images, which can be achieved
through the CEM. The CEM captures contextual information by expanding the receptive
field of the convolutional layers through the use of atrous convolutional layers, without
increasing the computational load. Generally, the CEM increases the receptive field of the
model and ensures that even minute details and the larger context are considered, which
boosts the detection accuracy of small targets.

The detailed architecture of the CEM is illustrated in Figure 3. From Figure 3, it can be
seen that the CEM consists of three parallel branches, and each branch consists of an atrous
convolutional layer with a kernel size of 3 × 3 pixels but with different dilation rates of 1, 3,
and 5. We keep the kernel size 3 × 3 pixels, which is small enough to be computationally
manageable while still being large enough to capture essential features and local context
around each pixel.

The reason for using different dilation rates in the parallel branches is to capture
multiscale contextual information. A dilation rate of 1 corresponds to a standard con-
volution, capturing fine-grained details and local features. A dilation rate of 3 expands
the receptive field moderately, enabling the detection of larger patterns and more context
around the small targets without losing too much fine detail. The highest dilation rate of
5 significantly increases the receptive field, allowing the model to capture even broader
contextual information, which is essential for understanding the surroundings of small
targets within the vast aerial images.

The outputs of these differently dilated convolutions are then fused via concatenation,
effectively combining multiscale contextual information into a fused feature map. This
fusion ensures that the model can leverage detailed local features and broad contextual
cues. By integrating these varied scales of context, the CEM significantly improves the
model’s ability to distinguish and accurately detect small targets in complex aerial scenes.
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Figure 3. Detailed architecture of CEM.

3.2. Spatial Pyramid Pooling Fast (SPPF)

The spatial pyramid pooling fast (SPPF) module is similar to the spatial pyramid
pooling (SPP) module, which aids in handling targets at different scales. Specifically, the
SPP was introduced to generate a fixed-length feature representation of the input regardless
of the input image’s size. The SPPF in YOLOv8 is the optimized version of SPP, which is
designed to capture multiscale features while reducing the computation complexity.

The overall architectures of the SPPF and SPP modules are illustrated in Figure 4.

(a) SPP (b) SPPF

Figure 4. Detailed architectures of SPP and SPPF.

The SPP module takes the input feature map generated by the backbone network
of the model. The input feature map is subsequently passed through three parallel Max-
Pooling layers, each with a different kernel size, 1, 3 × 3, and 5 × 5, each with a stride of 1.
The 1 × 1 pooling layer does not change the feature map. The 3 × 3 pooling layer, with
a padding of 1, captures a broader context by considering neighboring pixels. Similarly,
the 5 × 5 pooling layer, with a padding of 2, captures an even larger context. Each of these
pooling operations produces a pooled feature map at their respective scales. These pooled
feature maps, together with the original input feature map, are then concatenated along
the channel dimension, creating a feature map that integrates multiscale information. This
concatenated feature map is subsequently passed through a 1 × 1 convolution layer, which
serves to reduce the number of channels and fuse the multiscale features into a unified
representation. The output of this convolution layer is the refined feature map, which is
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then subsequently passed to the detection head of the network to predict bounding boxes,
target classes, and confidence scores.

The SPP module incurs computational costs due to parallel pooling operations with
different sizes. In contrast to the SPP module, the SPPF module replaces the parallel pooling
layers with a 5x5 pooling operation applied in a serial fashion. These pooling layers enlarge
the receptive field, allowing the model to capture information at different scales without
the need for multiple separate pooling operations, as in the traditional SPP.

4. Experiment Results

In this section, we initially present the details of the dataset utilized, followed by a
comprehensive evaluation of the proposed framework. We then compare the proposed
framework with other related methods. These experiments are designed to showcase the
effectiveness and advantages of our approach compared to the existing methods.

The proposed framework was developed using the PyTorch library. The experimental
setup for our study included a hardware configuration featuring an Intel Core i5 CPU
and an NVIDIA TITAN V GPU with 12 GB of memory. The operating system used was
Ubuntu 22. For the deep learning framework, we utilized PyTorch version 1.9.2, along with
CUDA 11.4 and cuDNN 11.4 for GPU acceleration.

To optimize the loss function, we employed stochastic gradient descent (SGD), a
widely used optimization technique known for its efficiency and effectiveness in training
deep learning models. The training process spanned 100 epochs, with an initial learning
rate set at 0.001. To ensure optimal convergence and to adaptively fine-tune the learning rate
throughout the training process, we utilized a cosine annealing algorithm. This method
gradually reduced the learning rate, enhancing the model’s performance and stability
during the training phase.

4.1. Dataset

To assess the effectiveness of the proposed framework, we utilized the Visdrone-
CC2020 dataset [64,65], which was collected by the AISKYEYE team from the Lab of
Machine Learning and Data Mining at Tianjin University, China. The dataset was gathered
using drones equipped with cameras, covering 70 different scenarios. It contains 112 video
sequences, with 82 sequences used for training and the remaining 30 sequences used for
testing. Each sequence consists of 30 images, each with a resolution of 1920 × 1080 pixels.
Thus, 2460 images are used for training, and the remaining 900 frames are used for testing.
In each image, human heads are annotated with points, resulting in a dataset containing
4.8 million head annotations.

The dataset presents significant challenges for crowd counting models due to its com-
plexity. One notable feature is the variety of scenes with different crowd densities, ranging
from sparse gatherings to highly congested areas. Additionally, the presence of various targets,
such as vehicles, trees, and buildings, adds to the challenge by introducing background clutter
and occlusions, which can significantly impact the performance of crowd counting models.
Sample images from different video sequences are illustrated in Figure 5.

Figure 5. Sample frames from diverse scenes represent comprehensive coverage of different environ-
ments and conditions.
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4.2. Evaluation Metrics

In this work, we assess the performance of the proposed framework in two distinct areas:
(1) localization (detection) accuracy, and (2) counting accuracy.

For localization performance, we use the widely adopted metric for target detection,
the mean average precision (mAP). The mAP determines whether a prediction is a true
positive (TP) or a false positive (FP) based on the threshold value of the Intersection over
Union (IoU). The mAP is formulated as Equation (1).

mAP =
1
N

N

∑
i=1

APi (1)

where N represents the number of predictions, and precision is defined as Precision = TP
TP+FP

To assess counting performance, we employ two commonly used evaluation metrics:
the Mean Absolute Error (MAE) and Mean Squared Error (MSE).

The MAE measures the average magnitude of errors between the predicted counts
and the actual counts, providing an overview of the model’s performance in predicting the
count. The MAE is formulated in Equation (2).

MAE =
1
n

n

∑
i=1

|yi − ŷi| (2)

Conversely, the MSE quantifies the average squared difference between the predicted
count and actual count. In this way, the MSE gives more weight to larger errors, thus
penalizing significant discrepancies more severely. The MSE is formulated in Equation (3).

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (3)

where yi represent the ground-truth count, ŷi is the predicted count, and n represents the
number of samples.

4.3. Conversion of Dot Annotations to Bounding Boxes

To train the proposed framework, bounding boxes are required. However, the annota-
tions provided in the publicly available dataset are in the form of dot annotations, where
each dot represents a person in the scene, given as (x, y) coordinates. In contrast, bounding
boxes need four points: the location (x and y coordinates) and the dimensions (width and
height) of the box, which correspond to the human head in the scene. For simplicity, we
assume that the height and width of the bounding box are equal.

To convert these dot annotations to bounding boxes, we need to estimate the size
of each head. Due to perspective distortions, the size of a person varies across different
regions of the image. To address this challenge, we generate a perspective map K by
manually annotating a few human heads from the top to the bottom of the image. Using
these annotated samples, we then apply a regression technique adopted in [66] to estimate
the head size across the entire image and generate a scale map. The scale map is a 2D
representation with dimensions equal to the input image. Each pixel in the map indicates
the estimated head size (in pixels) at the corresponding location in the image.

Let pi be a dot annotation representing a person at location (x, y). The perspective
map K provides the size of the head at each point (x, y). We then generate the bounding
box bi for dot annotation as [x, y, K(x, y), K(x, y)]. This approach allows us to accurately
convert the dot annotations into bounding boxes, taking into account the varying scales
and ensuring the proposed framework is effectively trained.

The overall process of converting the dot annotations into bounding boxes is illustrated
in Figure 6.
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Figure 6. Pipeline of converting dot annotations into bounding boxes.

4.4. Comparisons with Different Variants of YOLOv8

To effectively evaluate the performance of the proposed framework, we compare
different variants of YOLOv8 with our framework. The details of these comparisons
are provided in Table 1. From Table 1, we observe a clear trend: as the model size and
complexity increase, so does the accuracy. The smallest variants, YOLOv8n and YOLOv8s,
achieve mAP@50 scores of 0.51 and 0.57, respectively, and mAP@70 scores of 0.42 and
0.51, which are lower compared to the more complex variants of YOLOv8. This is due to
their simplified architecture, which is designed to optimize speed. Tiny targets, such as
pedestrians in this case, require high-resolution feature maps and the ability to capture
fine-grained details across various scales. The reduced depth and breadth of YOLOv8n and
YOLOv8s limit their ability to generate and process these detailed feature maps, making it
challenging to accurately detect tiny targets. Additionally, these models produce lower-
resolution feature maps and have fewer detailed features, making it harder for them to
detect small targets in drone images.

In contrast, the more complex variants of YOLOv8, such as YOLOv8l and YOLOv8x,
extract higher-resolution feature maps due to their significantly greater number of param-
eters and layers. This allows these models to preserve fine-grained details about small
targets, which is crucial for detecting tiny objects in high-resolution drone images.

Despite the complex variants of YOLOv8 achieving better results compared to their
simpler counterparts, the proposed framework surpasses other complex variants of YOLOv8
in detecting tiny objects in high-resolution drone images by addressing the inherent limitations
of the original model. The proposed model effectively integrates the CEM that enhances the
receptive field of the convolutional layers, allowing the model to capture more contextual
information surrounding small objects. Additionally, the improved receptive field helps the
model focus on even the smallest features, making it better at distinguishing tiny objects
from complex backgrounds.

From Table 1, it is also evident that the complexity of the proposed framework increases
as well as the size of the proposed framework (due to addition of the CEM), which also
leads to longer inference times compared to other models. However, this added complexity
results in better accuracy compared to its counterparts.
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Table 1. Performance comparison of various YOLOv8 variants and proposed model in terms of mAP.

Model Parameters mAP@50 mAP@70 I.T (ms) Size (MB) GFLOPs

YOLOv8n 3.01 51.27 42.51 7.20 6.5 8.2

YOLOv8s 11.12 57.65 51.41 12.42 22.6 28.4

YOLOv8m 25.84 68.82 56.34 20.50 52.1 78.7

YOLOv8l 43.61 76.10 65.29 16.40 87.8 164.8

YOLOv8x 68.12 79.86 70.46 19.00 136.9 257.4

Proposed 72.54 82.10 76.23 21.10 164.2 294.5

4.5. Comparisons with Different Generic Detectors

To evaluate the detection performance of the proposed framework, we compared it
with other similar generic detectors, and the results are presented in Table 2. From Table 2,
it is evident that all state-of-the-art detectors perform lower compared to the proposed
framework. The experimental results show that Faster R-CNN achieves an mAP@50 of
23.74 and an mAP@70 of 15.32, which are significantly lower than other detectors, like
the Normalized Wasserstein Distance (NWD) [67], YOLOv9n, YOLOv10n, YOLOv3-spp,
Cascade R-CNN, and the proposed method. This indicates that Faster R-CNN struggles
with this particular crowd counting task. One limitation of this type of two-stage detector
is that it uses the last convolutional layer for feature extraction. The problem with this
strategy is that the receptive field of the last convolutional layer is very large, which causes
information about small objects to be lost due to the subsequent pooling and convolutional
layers. Since the size of people in the VisDrone2020 dataset is extremely small, Faster
R-CNN faces challenges in detecting these small objects in drone images. On the other
hand, one-stage detectors like YOLOv9n, YOLOv10n, YOLOv3-SPP, and YOLOv5s perform
better compared to other methods, as evidenced by their higher mAP@50 and mAP@70
scores. Upon comparing the performance of YOLOv9n with YOLOv10n, we noticed that
YOLOv10n achieves better performance compared to its counterpart. This is because
YOLOv9n struggles to detect small objects and is unable to extract contextual information
due to its small receptive field. YOLOv9n also relies on non-maximum suppression,
which makes it slower than YOLOv10n as it introduces additional computational overhead
during inference. These issues were addressed in YOLOv10n by incorporating large-kernel
convolutions and the Partial Self-Attention (PSA) module, which enhance the model’s
ability to perform better feature extraction and capture global context. Among these
methods, the NWD method performs well compared to YOLOv9n and YOLOv10n. This
is because the NWD is specifically designed for detecting tiny objects in drone images.
Instead of relying solely on the IoU, the NWD models bounding boxes as 2D Gaussian
distributions and computes the Wasserstein Distance (between predicted and ground-truth
bounding boxes) to detect small objects. Despite its good performance, the NWD method
still lags behind the proposed method. This is because the NWD lacks mechanisms for
enriching the surrounding context of small objects, which is critical for distinguishing tiny
objects in cluttered or complex scenes. In contrast, the proposed method utilizes the CEM
to capture multiscale contextual information for detecting small objects.

Their relatively good performance is attributed to the fact that YOLOv3-spp incorpo-
rates spatial pyramid pooling (SPP), which pools features at different scales. This helps
the model capture finer details of objects at various scales. This strategy improves the
model’s ability to detect small and dense objects. YOLOv5 achieves better results than
YOLOv3-spp by further refining the spatial pyramid pooling approach and preserving
spatial information across layers through the use of path aggregation techniques.



Remote Sens. 2024, 16, 4175 13 of 20

Table 2. Performance comparison of various state-of-the-art detectors.

Model mAP@50 mAP@70

Faster-R-CNN [68] 23.74 15.32

YOLOv3-spp [69] 48.52 44.28

Cascade R-CNN [70] 42.40 32.23

RetinaNet [71] 34.12 29.42

ATSS [72] 41.75 30.17

RefineDet [73] 28.62 19.72

YOLOv5s 54.39 49.58

CenterNet [74] 40.64 29.25

NWD [67] 77.24 72.52

YOLOv9n [75] 68.41 64.19

YOLOv10n [76] 74.20 69.72

Proposed 82.10 76.23

By comparing the results in Tables 1 and 2, it is observed that the variants based on
YOLOv8 in Table 1 consistently significantly outperform the methods in Table 2. This is due
to reason that YOLOv8 incorporates enhanced feature pyramids and attention mechanisms
that help the model maintain high-resolution feature maps and details of small targets
across various scales.

The proposed framework, on the other hand, achieves superior performance com-
pared to other state-of-the-art detectors. This is due to the following reasons: (1) YOLOv8
serves as the baseline for the proposed framework, inheriting all the benefits of YOLOv8.
(2) We incorporate a CEM, which improves the model’s capacity to detect small objects
by broadening the receptive field of the convolutional layers through the use of atrous
convolution. Moreover, this effective integration enables the model to capture more contex-
tual information surrounding small objects, which is crucial for accurate detection in the
cluttered and complex scenes.

4.6. Comparisons with Crowd Counting Methods

To evaluate the counting performance of the proposed framework, we compare its
performance with other models, and the results are reported in Table 3. The models in
Table 3 are specifically designed for crowd counting tasks. We observe that AMDCN [77]
shows relatively low performance with high MAE and MSE values. This is due to the
fact that the model consists of a fixed and limited number of columns that process the
input image at restricted scales, making it struggle to extract fine-grained details in densely
populated scenes. Similarly, LCFCN [20] underperforms because it relies on point-level
supervision for target localization rather than employing a direct regression-based strategy
for crowd counting. Among the competing methods, we observed that MTE (SFANet) [78]
achieves relatively good performance. This is due to the reason that the model leverages
temporal information between frames to enhance the counting accuracy. Golda et al. [78]
propose strategies, TE-M20 (Temporal Extension with Many-to-One) and MTE (Merging
Temporal Embeddings), to leverage the temporal information across the frames to smooth
the crowd count. By comparing the performance of SFANet with its MTE-SFANet version
and MRCNet with its MTE-MRCNet counterpart, we noticed that by integrating MTE with
the original models, the performance is improved.

From Table 3, it is evident that the proposed framework outperforms most crowd
counting methods by a significant margin; however, it still slightly lags behind CSRNet.
This is because CSRNet is specifically designed for highly congested scenes and consists of
a dilated CNN that uses dilated kernels to achieve larger receptive fields, which effectively
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captures detailed spatial information without the need for pooling operations. However,
CSRNet has one drawback compared to the proposed framework: it is based on regression,
which estimates the count by inputting an image but does not provide precise localization
of people in the environment. In other words, CSRNet is limited to estimating the count
and does not precisely localize objects in the scene. In contrast, the proposed framework
accurately localizes objects, which is crucial for crowd management.

Table 3. Performance comparison of various state-of-the-art crowd counting models.

Model MAE MSE

LCFCN [20] 136.90 150.60

AMDCN [77] 165.60 167.70

MSCNN [36] 58.00 75.20

StackPooling [79] 68.8 0 77.20

SwitchCNN [22] 66.50 77.80

DA-Net [80] 36.5 0 47.30

C-MTL [39] 56.70 65.90

ACSCP [81] 48.10 60.20

SFANet [82] 39.70 48.30

MRCNet [56] 46.70 58.30

TE-M2O (MRCNet) [78] 46.70 59.80

TE-M20 (SFANet) [78] 46.00 55.50

MTE-(MRCNet) [78] 44.30 56.90

MTE-(SFANet) [78] 33.20 41.80

CSRNet [21] 19.8 0 25.60

Proposed 25.42 34.73

4.7. Ablation Study

To evaluate the effect of different modules on the performance of the proposed frame-
work, we performed an ablation study. We kept the experiment environment (training
and testing samples) the same for this experiment. We evaluated six models with different
configurations, as detailed in Table 4.

Table 4. Effect of CEM on model’s performance.

Method mAP@50 mAP@70

YOLOv3 48.52 44.28

YOLOv3 + CEM 52.10 46.37

YOLOv8s + SPPF 57.65 51.41

YOLOv8s + SPPF + CEM 59.28 55.62

YOLOv8s + SPP 59.64 54.44

YOLOv8s + SPP + CEM 61.12 56.42

Table 4 discusses the effect of the context enhancement module, spatial pyramid
pooling fast, and spatial pyramid pooling.

From Table 4, we observed that incorporating the CEM significantly boosts the perfor-
mance of all the methods in the table. This indicates the importance of capturing contextual
information in target detection tasks. For example, in the case of YOLOv3, the base model
achieves 48.52% with an mAP@50 and 44.28% with an mAP@70. However, we observed
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that after integrating the CEM, these values increase to 52.10% and 46.37%, respectively.
Similarly, for the YOLOv8s configurations, the CEM consistently enhances performance
for all methods. For YOLOv8s + SPPF, the addition of the CEM raises the mAP@50 from
57.65% to 59.28% and the mAP@70 from 51.41% to 55.62%. In the case of YOLOv8s + SPP,
which already achieves a high performance, the inclusion of the CEM further improves the
mAP@50 from 59.64% to 61.12% and the mAP@70 from 54.44% to 56.42%. This improve-
ment demonstrates that the CEM enables the model to leverage contextual information and
helps the model to comprehend the relationships between objects and their environments.

By comparing the models using the SPPF and the standard SPP, it is observed that SPP
achieves superior performance in terms of accuracy. For example, YOLOv8s + SPP achieves
an mAP@50 of 59.64% and an mAP@70 of 54.44%, whereas YOLOv8s + SPPF achieves
lower values with an mAP@50 of 57.65% and an mAP@70 of 51.41%. This suggests that the
traditional SPP, with its more extensive multiscale feature aggregation, is better at capturing
spatial information across different target sizes. Despite the high accuracy performance
of SPP, SPPF is more computationally efficient compared to SPP. This is because SPPF is
lighter and faster than SPP.

To thoroughly evaluate and understand the impact of different dilation rate configu-
rations within the CEM, we conducted an ablation study using various combinations of
dilation rates. The goal of this study is to determine how different dilation rate settings
influence the model’s performance. In this study, we also conducted the experiment using
the same experimental environment, including the same training and testing samples, to
ensure consistency.

For this experiment, we generated eight different configurations and the results of
these configurations are reported in Table 5. From Table 5, it is noted that single dilation
rates achieve lower performance than more than one dilation rate. Among the single
dilation rate configuration, a dilation rate of 3 achieves good results compared to a single
dilation rate of 1 and 5. This is due to the reason that dilation rate 3 optimally expand the
receptive field to focus on tiny objects in the scene.

Table 5. Effect of different dilation rate configurations in the context enrichment module (CEM).

Configuration Dilation Rate mAP@50 mAP@70

1 d = 1 77.10 71.34

2 d = 3 79.24 73.75

3 d =5 78.68 72.32

4 d = 1, d = 3 80.35 75.15

5 d = 1, d = 5 79.45 74.01

6 d = 3, d = 5 79.90 74.45

7 (Proposed) d = 1, d = 3, d = 5 82.10 76.23

8 d = 1, d = 3, d = 5, d = 7 81.90 75.80

In the case of two dilation rate combinations, dilation rates of 1 and 3 (configuration 4)
outperformed the other two-rate combinations, achieving an mAP@50 of 80.10 and an mAP@70
of 75.15. This result indicates that combining a standard convolution (d = 1) with a moderately
expanded receptive field (using d = 3) captures both fine-grained details and broader contextual
information effectively.

From this experiment, we further observed that the configuration using dilation rates
1, 3, and 5 yielded the highest performance, with an mAP@50 of 82.10 and an mAP@70
of 76.23. This suggests that combining three different scales allows the model to capture
a wide range of contextual information, from fine details to broader patterns. However,
adding a fourth dilation rate of 7 slightly decreased performance compared to the three-rate
configuration, with an mAP@50 of 81.90 and an mAP@70 of 75.80. This suggests that
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further expanding the receptive field may introduce excessive context which may decrease
the focus of the model on relevant features.

To qualitatively assess the performance of the proposed framework, we present visu-
alizations of the output of the proposed method and other baseline methods using sample
frames from various scenes. These results are illustrated in the accompanying Figure 7.
Figure 7 demonstrates that the proposed framework detects the targets close to the ground
truth compared to the YOLOv8x and YOLOv8l models. Despite good detection perfor-
mance, the proposed method also occasionally misses some detections and generates false
positives. This is due to the reason that tiny objects in high-resolution scenes occupy very
few pixels and lack sufficient visual detail and distinctive features, making the model
confuse them with noise or background elements, leading to errors (missed detections and
false positives). These errors highlight areas where the model could be further refined to
improve its detection accuracy.

Figure 7. Visualization of the detection results by the proposed framework and other baseline
methods in different scenarios. The first column represents the results of YOLOv8l, the second
column shows the results of YOLOv8x, and the third column shows the results of the proposed
model. Bounding boxes in the blue color represent the correct detection, and bounding boxes in the
yellow color represent the false detections. (The best view is the zoomed-in view.)
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5. Conclusions

In this paper, we presented an enhanced YOLOv8-based framework tailored for crowd
counting in drone imagery. We introduced and effectively integrated a CEM to enhance
the detection accuracy of small objects in aerial images. We assessed the performance
of the proposed framework on a challenging dataset. From the experiment results, we
demonstrated that the inclusion of the CEM significantly boosts the performance of the
model, particularly in challenging scenarios.

In the future, we will explore more advanced context-aware modules that can further
enhance the model’s ability to distinguish small objects in highly cluttered and complex
backgrounds. Additionally, we will incorporate attention mechanisms that may allow the
model to dynamically focus on the most relevant parts of the image and boost the accuracy.
Although the focus of this study is pedestrian detection for crowd counting in aerial images,
we plan to extend our research to evaluate the detection of more complex and smaller
objects in aerial imagery.
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