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Abstract: Soil erosion within agricultural landscapes has significant environmental and economic
impacts and is strongly driven by reduced residue cover in agricultural fields. Large-area soil erosion
models such as the Daily Erosion Project are important tools for understanding the patterns of soil
erosion, but they rely on the accurate estimation of crop residue cover over large regions to infer
the tillage practices, an erosion model input. Remote sensing analyses are becoming accepted as
a reliable way to estimate crop residue cover, but most use localized training datasets that may
not scale well outside small study areas. An alternative source of training data may be commonly
conducted tillage surveys that capture information via rapid “windshield” surveys. In this study, we
utilized the Google Earth Engine to assess the utility of three crop residue survey types (windshield
tillage surveys, windshield binned residue surveys, and photo analysis surveys) and one synthetic
survey (retroactively binned photo analysis data) as sources of training data for crop residue cover
regressions. We found that neither windshield-based survey method was able to produce reliable
regressions but that they can produce reasonable distinctions between low-residue and high-residue
fields. On the other hand, both photo analysis and retroactively binned photo analysis survey data
were able to produce reliable regressions with r2 values of 0.57 and 0.56, respectively. Overall, this
study demonstrates that photo analysis surveys are the most reliable dataset to use when creating
crop residue cover models, but we also acknowledge that these surveys are expensive to conduct and
suggest some ways these surveys could be made more efficient in the future.

Keywords: crop residue cover; normalized difference tillage index (NDTI); tillage intensity; residue
survey; crop residue indexes; Google Earth Engine

1. Introduction

Excessive soil erosion is a significant environmental issue that is particularly acute
within agricultural landscapes. The topsoil losses within agricultural regions have been
shown to be extensive, reducing soil productivity and resulting in severe economic im-
pacts [1,2]. Sediment and nutrient runoff also have a negative impact on the downstream
infrastructure [3] and ecology [4] that can be costly to remediate. Consequently, under-
standing the magnitude and patterns of soil erosion within agriculture landscapes is an
important pursuit that will positively impact society and the environment.

Due to the complex interactions that govern sediment erosion and transport [5],
monitoring erosion within large regions is challenging, and models that enable this require
a variety of biophysical input parameters [6]. One model that has had success in this
regard is the Daily Erosion Project (DEP), which generates daily estimates of precipitation-
related soil loss for over 6000 small watersheds (USGS Hydrologic Unit Code 12) across
the Midwestern United States [7]. The DEP accomplishes this via an implementation of
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the Water and Erosion Prediction Project (WEPP) [8] model that utilizes radar-derived
precipitation data and additional weather data, LiDAR-derived terrain data, field-level
crop rotation data [9], and SSURGO soil property data [10] to ascertain most of the input
parameters needed for the WEPP model. While the WEPP input parameters that are
sourced from these data are relatively well constrained, information regarding the crop
residue cover conditions of agricultural fields has proven to be difficult to obtain while
maintaining accuracy, resolution, and coverage [11]. The DEP implementation of the WEPP
infers one of six tillage regimes and estimates time-based changes in residue cover, soil
bulk density, soil roughness, etc., based on the minimum observed residue at one or more
time periods during the tillage calendar [8]. It is thus understood that the residue cover
estimates within the DEP/WEPP may not match the observed residue cover by humans or
sensors in some fields due to cloud coverage or model errors, but this was selected as the
most practical method of estimating the tillage practices required by the WEPP and similar
models like RUSLE2 and SWAT.

The tillage information needed to estimate crop residue cover and/or assign one of
the six DEP tillage practices could potentially come from either tillage surveys or crop
residue cover measurements. Tillage surveys, which are traditionally conducted by driving
a transect across a geographic area such as a county and observing the tillage practices
at a defined interval, were routinely conducted by the United States Natural Resource
Conservation Service (NRCS) nationally from 1982 through 2004 as part of the Crop Residue
Management by the Conservation Technology Information Center (CRM; CTIC) survey
and are still conducted in some locations. The field-level data recorded while driving these
transects are typically divided into residue-cover- and technique-based tillage classes as
defined by the survey methodology (CTIC), such as conventional till (<15% at planting),
reduced till (15–30%), and strip till, ridge till, and no till (all > 30%), potentially allowing
one to estimate the mean residue cover observed for each tillage class. Alternatively,
some surveys classify the field residue cover conditions into a 10% crop residue cover bin
(e.g., 0–10%, 10–20% . . . 90–100%). Since this method does not accommodate the break
at 15% that is found in the NRCS and CTIC conventional and reduced tillage system
definitions, it is not utilized as often. Both methods are conducted via the “windshield”,
meaning the observer does not leave the vehicle, which enables quick collection of data,
but these estimates often exhibit bias [12–14], which is likely due to the human difficulty
in converting viewing angles from oblique to nadir [13], resulting in recommendations
such as holding one or more observers consistent across multiple county surveys [15]. New
techniques to standardize the windshield assessment process are being developed [16] but
are not yet widely applied. Along with these “windshield” methods, in-field methods are
also used to estimate crop residue cover. In-field crop residue cover measurements can be
collected via a multitude of methods, including tape transects, spiked wheels, and point-
count photo analysis surveys [17]. These methods all have inherent relative advantages and
disadvantages but are generally more accurate than the “windshield” methods. However,
the in-field techniques tend to achieve lower levels of adoption due to the larger amount of
time and effort they take to complete.

The time constraints of observing the residue cover in millions of fields of 500,000+ km2

necessitate the use remote sensing, which many recent studies have demonstrated the ef-
fectiveness of in terms of using single- or multi-band indexes within regression or machine
learning models to predict crop residue cover [18–23].

To minimize the computational expenses and training data variability associated
with increasing geographic extent, a problem not unique to residue cover studies [24], an
important recent development is the creation of cloud-based geospatial analysis platforms
such as the Google Earth Engine [25]. The Google Earth Engine hosts all the major publicly
available Earth observation satellite datasets as well as some aerial datasets (e.g., US
National Agricultural Imagery Project; NAIP) and provides an optimized computational
environment that greatly reduces computation times when compared to running similar
analyses on standard desktop machines. The Google Earth Engine introduces some level of
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image abstraction, which can result in the loss of insight into the processing steps, such as
easily identifying which image date within a time range contains specific pixel values. The
Google Earth Engine can also help to overcome the difficulties associated with the temporal
and spatial variations in soils and crop residue cover over large regions by incorporating
remote sensing derivatives that are sensitive to changes in the photosynthetic vegetation
and soil moisture content within the analysis or removing problematic data, as was shown
before [21,26], thus expanding the training data coverage to multiple non-contiguous
regions over multiple years.

In this study, our primary objective was to test multiple sources of training data and
determine the minimum quality of crop residue fraction that is needed to produce reliable
crop residue cover models via the creation and comparison of models trained using residue
cover measurements collected using a variety of methods. Our secondary objective was
to test the ability of different crop residue cover data sources to identify the endpoints
of the residue cover spectrum. Between 2010 and 2017, the authors and cooperators
collected crop residue survey data using three different survey techniques (windshield
tillage surveys, windshield binned residue surveys, and photo analysis surveys) across
three Midwestern US states where corn and soybeans are commonly grown. These survey
data were used in conjunction with a Google Earth Engine spatial analysis and a local
linear regression analysis to assess whether each survey type is capable of producing
reliable regression models. Additionally, we tested the utility of photo analysis survey
data that were retroactively binned into 10% residue cover bins. We hope that this study
will help future researchers to select the crop residue cover data collection strategy that
is most appropriate for their study design when creating remote-sensing-based residue
cover models.

2. Materials and Methods
2.1. Data Collection

To investigate the suitability of windshield tillage surveys, windshield binned residue
surveys, and photographic analysis surveys as sources of training data for a crop residue
cover model, we and our colleagues have collected and aggregated residue cover estimates
via various survey methods throughout the Midwestern United States. All survey data
were collected during the springtime between 2010 and 2017 within the states of Nebraska,
Kansas, and Iowa, USA. Table 1 provides a summary of collection years and states for each
survey dataset and Figure 1. provides a map of the survey locations. Iowa data were col-
lected using two different survey techniques depending on the year and location surveyed,
while Nebraska and Kansas survey data were collected using consistent regional surveys.

Table 1. Collection method, state, years, and number of fields for all survey data within our study.

Survey Type State Years Number of Fields

Windshield Tillage Nebraska 2016 5561
Windshield Tillage Kansas 2010, 2013, 2014, 2016 4667

Windshield Binned Residue Iowa 2013, 2017 1615
Photographic Analysis Iowa 2015, 2016, 2017 296

The Iowa residue cover surveys were conducted using both windshield binned surveys
and photo analysis surveys between 2013 and 2017 within four different survey campaigns.
The 2013 windshield binned residue cover survey was conducted by Agren, Inc. (Carroll,
IA, USA), an agricultural conservation planning business, during the month of May via
observations of residue cover in all fields within the South Fork of the Iowa River, an HUC8
watershed in north central Iowa. Observations were collected by trained personnel and
classified into 10% residue category bins (e.g., 0–10%, 10–20%, . . ., 90–100%). The 2016
binned residue cover survey was conducted by watershed coordinators as part of the Iowa
Watershed Approach flood management project. This data collection was coordinated
by the Iowa Department of Natural Resources using personnel with similar backgrounds
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and similar procedures regarding the South Fork data from 2013. Photo analysis surveys
were conducted in 2015, 2016, and 2017 after planting (late April through early June) using
the reference methods described by Gelder et al. [19]. All field photos were taken from
approximately 1 m directly above the field (Figure 2), and four to five images were collected
for each field at random locations at least 30 m apart throughout the field. Trained observers
placed grids over the images on a computer screen and the presence or absence of crop
residue was noted for 100 evenly spaced grid intersections. Crop residue cover for each
image was defined as the percent of intersections that corresponded to the presence of crop
residue, and field crop residue cover value was defined as the mean crop residue cover of
all the images from that field.
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Figure 1. Summary map of survey data collection. Windshield tillage surveys were conducted in
Nebraska and Kansas, while windshield binned residue and photo analysis surveys were conducted
in Iowa. State names are located in the bottom left-hand corner of the states, and the inset map shows
the study states within the contiguous United States.

Nebraska surveys were conducted using the CRM windshield tillage technique and
were conducted in late April through early June 2016 using the methods developed by
the Nebraska state office of the NRCS. These surveys were conducted via observing the
type of tillage found within fields at one-mile intervals along a predefined route. For both
the Nebraska and Kansas windshield tillage surveys, the tillage practice present in each
field was recorded as conventional tillage (<15% residue coverage), reduced tillage (15–30%
residue coverage), conservation tillage (30–50% residue coverage), or no till (>50% residue
coverage). This information was collected using a GPS-enabled tablet to assist in accurate
geolocation during data entry.
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Figure 2. Two examples of crop residue images used in our study. The top image shows a field
with 11% soybean residue cover with some emergent corn, and the bottom image shows a field
with 79% corn residue cover. All photos were taken from one meter above the field, and overlaid
grids, such as the ones shown in the right half of the bottom image, were used to estimate the spatial
coverage of crop residue within the images. Horizontally, gridlines are 7.62 cm (3 inches) apart.

The Kansas surveys were also windshield tillage surveys and were conducted by a
team of 3–4 trained personnel who drove a pre-determined route through each county,
stopping at intersections and determining the tillage practice present in each field. Approx-
imately 450 fields per county per year were examined, both in fall and again in spring, but
only the spring data were used in our analysis.

Before the Kansas and Nebraska survey data could be used to form regression re-
lationships, the tillage categories needed to be converted to numeric crop residue cover
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values. To facilitate this, the observed tillage type and the Cropland Data Layer (CDL) crop
type from the previous year were used to convert tillage practice observations to estimates
of spring crop residue cover using the conversions of Bull [27] (Table 2). The windshield
tillage surveys were performed using these converted crop residue cover values.

Table 2. Values were used to convert tillage type observations and CDL-based crop type combinations
to spring crop residue cover for the windshield tillage survey data. This conversion was performed
so that tillage survey data could be used to create regression relationships. The conversions used in
this study are taken from Bull (1993).

Tillage Type Crop Type Converted Residue Cover Value

Conventional Till Soybeans 3%
Conventional Till Corn 4%

Reduced Till Soybeans 26%
Reduced Till Corn 34%

Ridge Till Soybeans 42%
Ridge Till Corn 55%
Strip Till Soybeans 42%
Strip Till Corn 55%

Mulch Till Soybeans 55%
Mulch Till Corn 72%

No Till Soybeans 55%
No Till Corn 72%

In addition to these surveys, the photo analysis survey data were artificially binned
into 10% bins (e.g., 0–10%, 10–20%, . . ., 90–100%) to create a binned photo analysis dataset.
This dataset was used to determine if photo analysis residue cover data classified to a
coarser resolution could be usable as training data.

2.2. Geospatial Analysis

For the geospatial analysis, residue cover survey data were associated with field
polygons on a local computer before they were uploaded to Google Earth Engine, where
the satellite imagery analysis was conducted. A tabular version of the results from this
analysis was downloaded to a local computer, where the final regression analysis was
conducted within a Python 3.4 computational environment. A graphical summary of our
analysis workflow can be found in Figure 3, and all Google Earth Engine/Python code used
in this study can be found at the GitHub repository: https://github.com/dailyerosion/
Williams_et_al_2024_residue_cover (accessed 19 August 2024). An in-depth description of
our workflow follows.

Table 3. Satellite and index information for the indexes used within our study. For each Landsat
satellite platform, we used NDVI and NDMI to remove image data associated with excess emergent
vegetation and excess soil moisture, respectively. Then, we used NDTI to estimate crop residue cover
on quality raster cells.

Platform Ground
Resolution Availability Processing

Level Name Equation

Landsat 7 30 × 30 m 1999–2022 SR NDTI B5−B7
B5+B7

Landsat 7 30 × 30 m 1999–2022 SR NDVI B4−B3
B4+B3

Landsat7 30 × 30 m 1999–2022 SR NDMI B4−B5
B4+B5

Landsat 8 30 × 30 m 2013–Present SR NDTI B6−B7
B6+B7

Landsat 8 30 × 30 m 2013–Present SR NDVI B5−B4
B5+B4

Landsat 8 30 × 30 m 2013–Present SR NDMI B5−B6
B5+B6

https://github.com/dailyerosion/Williams_et_al_2024_residue_cover
https://github.com/dailyerosion/Williams_et_al_2024_residue_cover
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Figure 3. Workflow for our analysis. Field data were associated with field polygons on a local
machine, then uploaded to Google Earth Engine where we associated each field polygon with the
indexes listed in Table 3. A tabular version of these data was then downloaded to a local computer
where we performed our regression analysis.

Residue cover photographic survey data were first recorded as pointwise observations.
However, since crop residue cover is likely to vary most significantly at the agricultural field
scale, each point was associated with the appropriate agricultural field polygon sourced
from the Agricultural Conservation Planning Framework database [9]. This was conducted
so that the analysis could be conducted on the field scale for all analyses since all windshield
data were only collected as a field average. In the case of the photo analysis surveys, the
mean value of all points within a field was used as the field’s residue cover value. All field
polygons were buffered inward by 30 meters to limit the influence of edge effects, then
uploaded to Google Earth Engine where the satellite analysis was conducted.

Within Google Earth Engine, time series data from the two most relevant Landsat Earth
observation missions (Landsat 7 and 8) were used to calculate spectral indexes that relate
to the three key components of residue cover observations: the amount of residue cover,
emergent photosynthetic vegetation, and soil moisture. To capture these properties, we
utilized the Normalized Difference Tillage Index (NDTI), Normalized Difference Vegetation
Index (NDVI), and the Normalized Difference Moisture Index (NDMI). The NDTI focuses
primarily on soil surface differences. This is essential for calculating the residue cover
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percentages. The NDVI and NDMI are primarily included and used for filtering out
different pixels for being too green or too wet. Those two ensure that the final pixels being
reviewed and analyzed are the most likely to have the residue that is being searched for.
The equations used to calculate these indexes can be found in Table 3. Using the pixel
quality bands that are a component of the Landsat 7 and Landsat 8 data, bitwise masks
were used to remove pixels containing clouds or snow prior to analysis. For Landsat 7, bits
3, 5, and 7 were used, and for Landsat 8 bits 3 and 5 were used. Once clouds and snow
were removed, the Landsat 7 and 8 surface reflectance datasets were harmonized using the
methodology of Roy et al. [28], and the resulting dataset was used to calculate our spectral
indices. Both Landsat 7 and 8 mission data have ground sampling distances (GSDs) of
30 × 30 m.

To capture all possible images that could correspond to the time of spring planting,
when the DEP model expects minimum residue cover to be measured [7], all images that
were collected between 1 March and 15 June each year were included. On average, this
results in 6 cloud-free images for Landsat 7 and 8 combined, but this varied based on year
and location (Table 4). It was not possible for us to determine the time of planting at each
pixel, so instead we used the minimum NDTI value of each year’s image stack to produce
the NDTI value used in our regression analysis. The minimum NDTI was selected based
on previous work by Gelder et al. [19] and Zheng et al. [14], which both showed that using
the minimum value of the image stack accurately corresponds to the residue cover at the
time of planting.

Table 4. Average number of valid images per field within the analysis dates (1 March and 15 June).
Valid images are defined as images that pass the NDVI/NDMI thresholds described above and are
free from cloud cover. This combines imagery from both Landsat 7 and 8, resulting in higher numbers
of valid images when both satellites were operational (2013+).

Survey Type Year Avg. Valid Images

Windshield Tillage 2010 2.4
2011 1.6
2014 9.1
2015 4.1
2016 5.9
2017 5.9

Windshield Binned 2013 5.9
2017 6.7

Photo Analysis 2015 4.9
2016 7.1
2017 3.6

Similarly to Beeson et al. [29], we controlled for extreme NDTI values by removing
NDTI values associated with high levels of emergent vegetation and/or excess soil mois-
ture. In keeping with Beeson et al., we used an NDVI threshold to remove pixels overly
influenced by emergent vegetation, but unlike their study we used an NDMI threshold
instead of NEXRAD rainfall data to remove pixels with high soil moisture. While this is a
slightly different metric, we expect that our NDMI threshold approach will behave similarly
to their NEXRAD approach and has the advantage of exclusively relying on Landsat data.

To determine the most appropriate threshold values, we tested different NDVI/NDMI
thresholds and determined the optimal threshold values based on model performance and
data coverage. We calculated the average NDVI and NDMI index values within each field
for each Landsat image available within our sensing period. We then used these values to
create distributions for each index (Figures 4 and 5). Using these distributions, we assessed
the utility of using the 50%, 60%, 70%, 80%, and 90% quantile values for the NDVI/NDMI
index threshold values. We decided that using an 80% quantile threshold provided the
best balance between coverage and data quality, and we used this threshold value for both
NDVI and NDMI. These 80% threshold values were 0.129 and −0.081 for NDMI and NDVI,
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respectively. In addition to using these thresholds to discard low-quality data, any raster
cells that did not have data available from three valid Landsat images after thresholding
were also discarded, ensuring that the minimum NDTI calculation is based on at least three
image captures.
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Figure 4. Normalized kernel density estimated distributions for each of the three indexes used
within the study period. NDTI is the most normal, and the NDMI/NDVI distributions are slightly
right-skewed.

The use of SSURGO soil survey data [30] as a regression factor was considered but
not implemented due to multiple reasons. Soil color has been shown to have an impact
on residue cover determination [20,31], but SSURGO data are not currently available as
a Google Earth Engine dataset, and others have shown that SSURGO texture data may
not improve model performance in a remote sensing context [29]. Additionally, SSURGO
mapping units were designed with minimum areas of 1–5 ha, and complexes (mixed soil
series) are mapped in areas where soil series are not readily separated [32]; thus, they were
not designed to be accurate at the GSD of current Landsat images.

Once time series values were calculated at the pixel level, they were then aggregated
to the field level by taking the median summarized index value within the inward-buffered
field polygon. Aggregating to the field level by taking the minimum field index value was
not considered because this would likely include data from in-field depressions whose high
soil water content biases NDTI and NDVI values [19,20] and mean values would likely
include high-residue-cover waterways or other conservation practices. In addition to the
indexes described above, the modal Cropland Data Layer (CDL) value for each field during
the previous year was used to assign a crop type to each field.
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2.3. Regression Analysis

While other crop types were present in small numbers within our training data, we
chose to focus our analysis on corn (Zea mays) and soybean (Glycine max) fields, which
composed 52% and 42% of our survey data, respectively. The remaining 6% of our data,
which was composed of 17 different crop types, was discarded. Even though corn and
soybean crop residues have different structures (Figure 2), we found little difference in
their NDTI response for a given crop residue cover percentage in initial trials, and thus
performed the regression for both crops at once. This may be due to the fact that long-term
low-tillage-intensity fields in corn–soybean rotations have significant corn residue even in
the year directly after soybeans.

To assess the quality of the data produced by the various survey techniques, we con-
ducted four separate linear regression analyses between each of the four survey types used
and the satellite-data-derived NDTI values. We then used the quality of these regressions
to determine the utility of using each survey type as training data for a remote-sensing-
based residue cover model. We assessed model fit for all regressions via the coefficient of
determination (r2).

We are also interested in the feasibility of using each type of training data for discrim-
inating between the end-member tillage types (e.g., differentiating between no till and
conventional till, corresponding to maximal or minimal residue cover) and thus performed
a secondary analysis to assess each survey type’s utility in this context. For this analysis, we
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removed data not associated with either no till or conventional till fields from each dataset,
then compared the distributions of each dataset’s NDTI values between the two remaining
tillage types. For the windshield tillage dataset, the original tillage type classifications were
used to distinguish between no till and conventional till fields. For the remaining datasets,
any field with less than 10% observed residue cover was classified as a conventional till
field and any field with greater than 55% observed residue cover was classified as a no
till field. The resulting distributions were assessed based on their degree of separation
using the Kolmogorov–Smirnov test, a non-parametric test of the dissimilarity between
two distributions.

3. Results
3.1. Temporal Index Trends

Figure 4 displays the distributions of the NDTI, NDVI, and NDMI indexes throughout
the study period. The NDTI and NDVI both had mean values close to zero (0.05 and 0.10,
respectively, while the NDMI had a lower average value of −0.12. The NDTI distribution
was roughly normal, but the NDVI and NDMI distributions were slightly right-skewed,
indicating that some areas in the study area have consistently high soil moisture or green
vegetation. A 30-day rolling average of the mean value for each index can be found in
Figure 5. In general, the NDMI values are highest in the early spring when snow and
snowmelt are present. Conversely, the NDVI steadily increases throughout the sensing
period and likely continues to increase as the growing season progresses. Notably, the
NDTI values show more variability than either the NDVI or NDMI values and also seem to
follow a similar trend in late spring to the NDVI values. In particular, the sharp increase in
the NDTI values after June 1st mirrors a similar increase in the NDVI values around this
time. This indicates that the increases in the NDTI values around this time are likely related
to new green crop growth, agreeing with Gelder et al. [19].

3.2. Survey Data Model Performance

The regression performance between the windshield-based and field-based surveys
exhibited stark differences. In the windshield tillage survey, no clear visual relationship
between tillage type and NDTI values was observed (Figure 6), resulting in a coefficient
of determination (r2) of 0.21. This indicates a weak correlation between the two variables.
Similarly, the windshield binned survey exhibited a limited relationship between the
observed residue cover and NDTI values, yielding a slightly improved r2 of 0.24. However,
it was noted that lower NDTI values were more frequently associated with low observed
residue cover.

In contrast, the photo analysis survey demonstrated a significantly clearer relationship
between the observed residue cover and NDTI values. Notably, a distinct linear trend was
observed when the residue cover exceeded 30%. However, below this threshold (Figure 6),
a higher incidence of outliers was observed, and no clear trend emerged. The overall
relationship exhibited an r2 of 0.56 when considering all the data points. When restricting
the analysis to data points with residue cover values greater than 30%, the r2 improved to
0.64, indicating a moderate-to-strong correlation.

The retroactively binned photo analysis survey data exhibited a performance similar
to the non-binned version (Figure 6). The regression analysis resulted in an r2 of 0.56,
indicating a moderate correlation between the observed residue cover and NDTI values.
Similar to the non-binned model, the model performed less effectively in predicting residue
covers below 30%. Notably, the regression models for both versions of the data were nearly
identical. For example, for an NDTI value of 0.05, the non-binned model estimated a residue
cover of 54.3%, while the binned model estimated 54.0%, a marginal difference of 0.3%.
These findings emphasize the superiority of photo analysis surveys over windshield-based
surveys in capturing the relationship between residue cover and NDTI values. The photo
analysis approach exhibited a clearer and more consistent trend, particularly when the
residue cover exceeded 30%.
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Figure 6. Linear regression models for survey datasets. Both the windshield tillage and windshield
binned surveys performed poorly, but the photo analysis and the retroactively binned photo analysis
produced much better results.

3.3. End-Member Analysis

While our windshield tillage survey data produced poor regression results, when
looking at the end-member distribution of the minimum NDTI values for the “no till”
and “conventional till” tillage groups, we do see a clearer separation in the distributions
(Figure 7), with a K–S value of 0.50 and a p value of 2.2 × 10−129. This indicates significant
differences in the minimum NDTI distributions for the observed “no till” and “conventional
till” fields. All the other surveys also showed significant differences between the minimum
NDTI distributions for the two end-member regimes, with a concomitant increase in the
K–S statistic that correlated to increases in R2 within the linear regression analysis. This
indicates that all the survey types are generally able to distinguish between “no till” and
“conventional till”, although the photo surveys distinguish the end members better. This
consistent trend of NDTI increase across all the surveys as residue cover increases within
similar ranges indicates that these models are generally suitable for application across large
areas with accurate ground truth data. The photo analysis survey data had the highest K–S
statistic value (0.81), followed closely by the binned photo analysis survey data. Notably,
the p values are smaller for the windshield tillage survey types due to the larger number of
samples available for these surveys.



Remote Sens. 2024, 16, 4185 13 of 19

Remote Sens. 2024, 16, 4185  13  of  20 
 

 

(Figure 7), with a K–S value of 0.50 and a p value of 2.2 × 10−129. This indicates significant 

differences in the minimum NDTI distributions for the observed “no till” and “conven-

tional till” fields. All the other surveys also showed significant differences between the 

minimum NDTI distributions for the two end-member regimes, with a concomitant in-

crease  in the K–S statistic that correlated to  increases  in R2 within the  linear regression 

analysis. This indicates that all the survey types are generally able to distinguish between 

“no till” and “conventional till”, although the photo surveys distinguish the end members 

better. This consistent trend of NDTI increase across all the surveys as residue cover in-

creases within similar ranges indicates that these models are generally suitable for appli-

cation across large areas with accurate ground truth data. The photo analysis survey data 

had the highest K–S statistic value (0.81), followed closely by the binned photo analysis 

survey data. Notably, the p values are smaller for the windshield tillage survey types due 

to the larger number of samples available for these surveys. 

 

Figure 7. Distribution of minimum NDTI values within the two main tillage regimes for all survey 

types, and for windshield binned residue data. There is a large amount of overlap between the top 

two distributions for windshield tillage survey data, whereas the separation is more apparent for 

photo analysis survey data, confirmed by higher K–S statistics. 

3.4. Application to Regional Crop Residue Cover Analyses 

Based on our regression analysis, photo analysis survey data created the best regres-

sion when paired with Landsat 7/8 minimum NDTI values and NDVI and NDMI thresh-

olds. The resulting linear model used to predict crop residue cover is as follows: 

𝐶𝑟𝑜𝑝 𝑅𝑒𝑠𝑖𝑑𝑢𝑒 𝐶𝑜𝑣𝑒𝑟 ሺ%ሻ ൌ 676 ൈ 𝐿𝑎𝑛𝑑𝑠𝑎𝑡 7&8 𝑁𝐷𝑇𝐼   20.5 

The crop residue cover map produced using this equation for 2021 can be found in 

Figure 8. Overall, our predictions of crop residue cover align well with the USDA’s Major 

Land Resource Areas (MLRAs). MLRAs are geographically associated land resource units 

that contain similar types of soils, climate, and land use and thus have generally similar 

Figure 7. Distribution of minimum NDTI values within the two main tillage regimes for all survey
types, and for windshield binned residue data. There is a large amount of overlap between the top
two distributions for windshield tillage survey data, whereas the separation is more apparent for
photo analysis survey data, confirmed by higher K–S statistics.

3.4. Application to Regional Crop Residue Cover Analyses

Based on our regression analysis, photo analysis survey data created the best regression
when paired with Landsat 7/8 minimum NDTI values and NDVI and NDMI thresholds.
The resulting linear model used to predict crop residue cover is as follows:

Crop Residue Cover (%) = 676 × Landsat 7&8 NDTI + 20.5

The crop residue cover map produced using this equation for 2021 can be found in
Figure 8. Overall, our predictions of crop residue cover align well with the USDA’s Major
Land Resource Areas (MLRAs). MLRAs are geographically associated land resource units
that contain similar types of soils, climate, and land use and thus have generally similar
tillage practices, suggesting that our model is capturing the broad variations in tillage
management that occur throughout the state.
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from our analysis. Variations in predicted crop residue cover align with Major Land Resource Areas
(MLRAs), suggesting that our model is capturing the broad variations in tillage management that
occur due to soils and crops. Inset map shows the location of the AOI within the coterminous
United States.

4. Discussion
4.1. Recommended Use Cases of “Windshield” Survey Datasets

While windshield tillage and windshield binned residue surveys are widely con-
ducted, as evidenced by the large number of observations we were able to assemble, our
analysis shows that they perform poorly when used to predict crop residue cover as a con-
tinuous variable. This is disappointing because datasets such as these are widely available
throughout the United States, have existed for many years, and thus could be a valuable
training dataset. Both windshield survey datasets had high levels of variability, which led
to training data that were distributed over the entire range of predicted crop residue cover
values for a single tillage class or residue cover bin, making it difficult for the models to
identify the relationship observed in the photo analysis dataset.

Although neither windshield dataset produced reliable regressions, the distributions
in Figure 7 show that binned residue data can generally be grouped into “low intensity” and
“high intensity” tillage categories that have distinct minimum NDTI value distributions,
although the photo analysis data have less overlap, which we hypothesize is due to the
improved observation angle [13]. The regression results were not unexpected because
they are likely due to the inherently inaccurate data conversion process ([27]; Bull et al.)
between categorical information and quantitative data. This separability of low/high-
intensity tillage suggests that windshield data may likely be useful in an end-member
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tillage classification approach if the quality can be maintained. We do not believe that this
contradicts the findings by others [13,22] who found that some high-quality tillage class
training datasets could be used to develop models that accurately estimate the tillage classes
on validation fields. This finding is particularly relevant to crop residue cover approaches
that employ spectral unmixing or otherwise require information on the end-member
characteristics of tilled fields [29,33]. In this context, windshield binned residue surveys
should be able to reliably represent the end-member characteristics of high-tillage and
low-tillage fields without the need to employ more rigorous survey techniques. However,
actual residue cover values, and not the standard three or four tillage classes, are preferred
by the DEP due to the improved ability to discriminate between the six DEP tillage classes
that may only differ by a few percent in terms of the residue cover at planting in the more
intense tillage systems.

4.2. Recommended Use Cases of Photo Analysis Survey Datasets

As expected, the photo analysis survey datasets produced the most reliable models
of crop residue cover. Unlike the windshield methodologies, the photo analysis survey
observes the field from above, samples multiple portions of a given field, and quantitatively
assesses the amount of crop residue cover in each location. All these factors combine to
create a more accurate representation of in-field crop residue cover, and, consequently, this
technique returned the best correlations with the remote sensing estimates. As noted in
the Introduction, however, this is also the most labor-intensive technique, so the number
of data points collected to establish the crop residue models will also need to be balanced
against the time and monetary expenses of this approach. Alternative photo collection and
photo analysis techniques that maintain the same level of data quality but decrease the cost
of collection will likely need to be developed before we observe the widespread adoption
of this survey technique.

In contrast to the windshield data, the retroactively binned photo analysis survey
produced a regression that performed almost equally well compared to the photo analysis
survey data. This finding suggests two things. First, the issues found within the windshield
binned residue data do not inherently result from binning data, and efforts to improve the
accuracy of windshield binned residue surveys [16] may make them suitable for use within
a regression framework. Second, those photo analysis techniques that increase the percent
crop residue cover speed for a given image that also sacrifice a small amount of accuracy
may be worth pursuing. For example, in our analysis of photos, we recorded the presence
or absence of crop residue in 100 points per image. Based on these results, it is likely that it
would be possible to reduce the number of points observed per image significantly without
reducing the efficacy of the resulting crop residue cover model, which would in turn enable
us to collect more training data in the same amount of time. Additionally, machine vision
approaches [34] that can reliably classify residue cover images into 10% bins could offer a
way to quickly collect large quantities of reliable training data.

4.3. Model Limitations

The best-performing model was able to produce linear regression with an r2 of 0.56,
which resulted in residue cover maps that correlate with the known variances in crop
residue cover percentages across Iowa. While this article covers the effects of the input
survey data on the resulting model, the quality and quantity of the available remote
sensing data are also important factors that influence these models. For example, it is well
documented that local variations in confounding factors such as soil moisture, emergent
vegetation, and soil type/color can have a significant impact on the accuracy of the resulting
remote sensing models [35–37], which could explain the reduced correlation between the
NDTI and residue cover below 30% in Figure 6; thus, accuracy should be assessed when
estimating residue cover on soil orders not sampled in this study. The NDTI values in
Figure 7 across all the survey types indicate similar minimums and maximums across
the Iowa, Kansas, and Nebraska soils, indicating that the regressions across the entire
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region are generally valid but may have decreased accuracy when compared to locally
derived regressions. Generally, we succeeded in reducing the impact of the two most
important confounding factors (soil moisture and emergent vegetation) for estimating
residue cover; however, better characterization of these factors would likely result in
model improvements.

In addition, since we are using minimum spring NDTI values to predict crop residue
cover and requiring a minimum of three valid images, we are limited by the number of
remote sensing observations we have in a given location. As shown in Table 4, we have
on average five valid image dates between 1 March and 15 June; thus, some locations will
not have enough observations in a given year to generate an estimate. To overcome this,
several possibilities exist. First, we could incorporate data from a wider variety of satellite
platforms. In particular, the Harmonized Landsat Sentinel-2 dataset is promising for our
work, and we look forward to the full development of the Sentinel 2 component within
the Google Earth Engine. Second, we could utilize estimates from prior or subsequent
years and assume similar practices existed in those years. Third, the use of alternative
satellite technologies such as Synthetic Aperture Radar (SAR) [23] singly, or in conjunction
with optical remote sensing, could expand the image opportunities during periods of
cloud cover. In particular, the upcoming launch of the NISAR SAR satellite may provide
interesting possibilities since it will be collecting fully polarimetric SAR data over our
study region.

Although generally accurate in terms of determining the mean field residue cover,
we observe in Figure 9, a detail of Figure 8 in central Hamilton County, Iowa, that the
current model overestimates the range of field-level residue variation. The field to the
south of the farmstead has significant soil organic and soil moisture content variation, and
the model overestimates the variation in residue cover. The model-estimated field ranges
(maximum–minimum) were roughly 30–40% Y, and the observed field range was 20%.
We believe this is due to the linear regression model minimizing the errors for the mean
field residue cover versus mean NDTI. We theorize that future research could improve
the regressions by considering the soil property variation within each field and how that
soil variation modifies the NDTI response to residue cover. This is likely to improve the
low-residue-cover performance of the model as the soil background dominates the reflected
spectra instead of the more spatially uniform residue signature.

4.4. Potential Cost-Effective Survey Designs

The major limitation of photo analysis surveys is the cost of transporting the survey
staff to a diverse set of geographic locations to perform surveys and the cost of performing
the point count photo analyses for the collected survey images. However, there may be
ways to reduce both costs to the point that it is efficient to conduct photo analysis surveys
at broad scales. First, the prevalence of GPS-enabled smartphones with high-quality
camera systems means there are essentially no additional equipment costs associated with
performing these surveys. With minimal training that could consist of a single instructional
video, conservation groups or citizen scientists could be trained and asked to perform
these surveys within their local area. They could then send these survey photos back to a
centralized organization such as a university or conservation organization where the point-
count surveys could be centrally performed. This approach could dramatically reduce the
cost of obtaining raw survey photos and result in the collection of much more data.

In addition, our retroactively binned photo analysis results suggest that it may be
reasonable to employ photo analysis techniques that speed up the process of measuring the
crop residue cover percentages in survey photos, even if they sacrifice some accuracy. In the
past few years, the ability of machine learning models to perform these types of analyses
has improved rapidly [34], and using acceptable models would dramatically increase the
speed of the photo analysis process. Thus, by combining distributed partner-led survey
campaigns and the utilization of machine learning models for survey photo analysis,
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the efficiency of these photo surveys could approach the efficiency of the conventional
windshield surveys while providing much better data.
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5. Conclusions

In this study, we assessed the utility of three crop residue survey types (windshield
tillage surveys, windshield binned residue surveys, and photo analysis surveys) and one
synthetic survey (retroactively binned photo analysis data) as sources of training data for
crop residue cover regressions. Using our highest-quality training data (photo analysis
surveys), we were able to produce reliable estimates of crop residue for corn and soybean
fields, but neither windshield-based survey dataset was able to produce reliable regressions.
However, both windshield methodologies did produce a reliable distinction between low-
residue and high-residue fields in aggregate, which may be useful in cases where the
end-member characteristics of tilled fields need to be characterized. Finally, we found that
retroactively binned photo analysis survey data performed equally as well as the original
dataset, which suggests that more labor-efficient methods of retrieving crop residue cover
from images should also produce reliable training data. The large-area implementation of
this model in Figure 8 reflects the expected trends in residue cover. Further validation across
time could verify accurate residue cover estimation across the entire Landsat 4 to Landsat 9
record, enabling the estimation of long-term tillage management information. However,
this approach still exhibits inaccuracies within the field, over- and under-estimating residue
cover on bright and dark soils. Overall, this study demonstrates that photo analysis surveys
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are the most reliable dataset to use when creating crop residue cover models, but we also
acknowledge that these surveys are expensive to conduct and believe these surveys could
be made more efficient in the future.
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