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Abstract: Semantic segmentation of vegetation in aerial remote sensing images is a critical aspect of
vegetation mapping. Accurate vegetation segmentation effectively informs real-world production
and construction activities. However, the presence of species heterogeneity, seasonal variations,
and feature disparities within remote sensing images poses significant challenges for vision tasks.
Traditional machine learning-based methods often struggle to capture deep-level features for the
segmentation. This work proposes a novel deep learning network named FA-HRNet that leverages
the fusion of attention mechanism and a multi-branch network structure for vegetation detection and
segmentation. Quantitative analysis from multiple datasets reveals that our method outperforms
existing approaches, with improvements in MIoU and PA by 2.17% and 4.85%, respectively, compared
with the baseline network. Our approach exhibits significant advantages over the other methods
regarding cross-region and cross-scale capabilities, providing a reliable vegetation coverage ratio for
ecological analysis.

Keywords: computer vision; aerial remote sensing images; vision models; semantic segmentation;
vegetation coverage; panoptic segmentation

1. Introduction

Vegetation encompasses all plant communities within a specific area, indicating signif-
icant features of the Earth’s surface. It serves as an irreplaceable material resource and is
vital for human survival [1]. With the modernization of forestry practices, remote sensing
technology has been extensively applied in various domains related to vegetation analysis,
including forest resource monitoring, forest fire management [2], biodiversity conservation,
forest resource assessment [3], disaster evaluation, and recovery efforts [4].

In the field of vegetation segmentation from aerial remote sensing images, the primary
methodologies encompass NDVI (Normalized Difference Vegetation Index) [5], image pro-
cessing [6], and machine learning approaches [7]. Given the species heterogeneity, seasonal
fluctuations, and various characteristics, plants exhibit unique traits and appearances (e.g.,
forests, grasslands, shrubs). These variations result in differing texture and color features,
thereby presenting significant challenges for segmentation tasks. Traditional spectral-based
methods are constrained by changes in illumination conditions, which neglect spatial and
textural information [8]. Classical machine-learning techniques depend heavily on manual
feature extraction. These methods struggle to capture multi-scale information and en-
counter issues such as over-segmentation and high computation complexity [9]. Nowadays,
deep learning methodologies work well in processing high-dimensional data and succeed
in capturing intricate patterns. Consequently, this paper presents a semantic segmentation
algorithm based on deep learning frameworks, aiming to improve the effectiveness of
vegetation detection and semantic segmentation.

In semantic segmentation, three challenges arise: first, aerial remote sensing images
are usually collected in extremely high resolution. The existing segmentation network
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model exhibits a shallow architecture, which limits its ability to extract rich detailed features
and spatial characteristics. Consequently, false detection and omission of the target appear.
Second, remote sensing images encompass various vegetation types characterized by
distinct textures and colors. This diversity can confuse the foreground from the background,
as their features may exhibit significant similarities. Finally, images acquired from different
regions suffer from substantial differences. For instance, the presence of shadows and the
occlusion caused by buildings can significantly impact vegetation segmentation accuracy,
requiring the model to address cross-domain issues.

To tackle the above-mentioned challenges, this paper designs an enhanced HRNet
network model [10], which incorporates the fusion of attention mechanisms termed FA-
HRNet. First, we propose an improved adaptive spatial attention module (ASA) that
enables the model to effectively extract and utilize feature maps across different scales. This
enhancement facilitates more efficient recognition and emphasis on key features within
vegetation. Secondly, we have refined the original upsampling module of HRNet by
introducing a multi-level upsampling module. This approach allows for a progressive
merging of adjacent branches, thereby minimizing information loss in the feature maps.
Finally, after the feature fusion stage, we incorporate a residual channel attention module
(RCA) to further extract channel information from the feature maps.

The modules as mentioned above make FA-HRNet focus on critical areas such as
vegetation while also improving its ability to handle complex scenarios involving occlusions
and shadows. These modules empower the network to extract more comprehensive features
and achieve fine segmentation results. Our main contributions are summarized as follows:

1. An improved Spatial Attention Module and Channel Attention Module are devel-
oped and fused for comprehensive extraction of vegetation features from remote
sensing images.

2. An enhanced multi-level upsampling module is proposed, which is better suited for
segmenting and achieving semantic information from high-resolution vegetation images.

3. In high-resolution remote sensing imagery, the method achieves an accuracy of 73.81%,
surpassing the original model by 2.17%, in terms of vegetation segmentation.

2. Related Works
2.1. Unsupervised Learning-Based Segmentation Methods

Unsupervised learning-based methods analyze input data without any label infor-
mation [11,12]. Researchers do not need to pre-label remote sensing images or apply
supervised training processing [13]. The advantages of unsupervised learning include the
ability to perform segmentation in the absence of labeled data and the fact that it does not
require extensive prior knowledge. Those methods minimize human errors during the
segmentation process [14].

Commonly employed unsupervised learning techniques include K-means [15], Prin-
cipal Component Analysis (PCA) [16], and Gaussian Mixture Model (GMM) [17]. For
example, the K-means has been successfully applied in remote sensing images for a long
time [18]. Zhiyong Lv et al. [19] proposed an enhanced K-means-AMV, which incorporates
contextual information to construct adaptive regions around pixels. By leveraging context
information, this algorithm effectively determines labels for each pixel.

Despite their adaptability and capacity for large-scale processing, unsupervised learn-
ing methods are limited by the lack of class definitions. Therefore, results accuracy depends
on the parameter selection heavily.

2.2. Traditional Supervised Learning-Based Segmentation Methods

Supervised learning methods train models using a substantial amount of labeled
information [20]. The model learns from the training set and is subsequently tested on
the validation set to optimize their performance [21]. These models effectively learn the
intricate characteristics of vegetation in remote sensing images, thereby achieving high
segmentation accuracy and robustness.
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Traditional supervised learning techniques include Support Vector Machine (SVM) [22],
decision trees [23], and Random Forest (RF) [24]. For example, the Random Forest (RF)
classifier is an ensemble method that employs randomly selected training samples to
generate multiple decision trees [25]. RF has gained widespread application in remote
sensing image segmentation [26]. Recently, researchers have constructed an optimal feature
space by comprehensively considering factors such as spectral information, texture, and
terrain and established an object-oriented random forest approach to complete vegetation
extraction [27].

Traditional machine learning methods rely on hand-crafted feature extraction and
selection. Therefore, they may not fully capture deep features or complex relationships
present in sensing images characterized by intricate landforms.

2.3. Deep-Learning-Based Segmentation Methods

In recent years, the rapid advancement of deep learning has led to its widespread
application across various fields [28–30]. Key research areas include the forest resource
monitoring [31], forest fire detection [32], crop classification [33], and vegetation classifi-
cation [34]. The segmentation techniques employed to detect vegetation can be broadly
categorized into decoding networks methods (such as U-Net and SegNet) [35], spatial
pyramid networks method (such as DeepLab and PSPNet) [36], and multi-branch network
architectures method (such as HRNet and BiSeNet) [37]. For example, Mahendra et al. [38]
conducted convolutional neural network (CNN) models to precisely calculate urban vege-
tation coverage. Liu et al. [39] utilized DeepLabV3+ for the extraction and classification of
wetland vegetation, determining the optimal spatial resolution for images.

The learning network significantly influences the final segmentation results when high-
resolution remote sensing images are used [40]. Decoding networks and spatial pyramid
networks often reduce spatial resolution through sampling and pooling operations. They
exhibit certain limitations regarding precision in image segmentation [41]. In contrast,
multi-branch network structures process features at varying scales and levels of abstraction
via parallel pathways. Those approaches compensate for the detail loss by integrating
high-resolution and low-resolution features. Meanwhile, the original multi-branch network
structure models, such as HRNet, still exhibit several shortcomings. For instance, when
processing low-resolution feature maps, issues related to insufficient feature extraction
may arise. To address these challenges, Che et al. [42] improved the existing multi-branch
architecture by proposing a pyramid feature attention module aimed at achieving precise
segmentation of buildings. Similarly, Li et al. [43] opted for an attention mechanism module
that incorporates compression and excitation mechanisms to tackle this issue.

This paper aims to focus on the above-mentioned problems encountered in vegetation
extraction by integrating various attention mechanisms and enhancing the original HRNet
architecture, resulting in achieving accurate vegetation segmentation.

3. The Method
3.1. Subject Network

The network architecture of the model presented is illustrated in Figure 1. The FA-
HRNet network represents an enhanced HRNet architecture, incorporating a variety of
attention mechanisms and advanced upsampling modules. This model effectively cap-
italizes on the strengths of HRNet’s multi-branch structure to facilitate detailed feature
extraction from input drone remote sensing images. The overall architecture consists of
four stages, which produces feature maps with varying resolutions. First, stage 1 processes
the original image to generate an initial high-resolution feature map. In stage 2, multi-
ple branches are introduced, including both high-resolution and low-resolution branches.
These branches are fused with the low-resolution branch features through upsampling
techniques. In stage 3, additional branches with varying resolutions are incorporated,
allowing for further fusion of features from each branch. Finally, in stage 4, the features
from different branches undergo enhancement via an adaptive spatial attention module.
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The resulting features are then paired and fused using multi-level upsampling modules
to produce a smooth and refined high-resolution feature map. After processing through
these four stages, the features are enhanced by a residual channel attention module. This
approach improves the generalization capability for new data while mitigating the risk
of overfitting.
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Figure 1. The structure of the proposed FA-HRNet.

3.2. ASA Module

The existing HRNet model is renowned for its high-resolution feature extraction capa-
bilities, which enable it to comprehensively capture the details and semantic information
across various scales [10]. However, the fusion of feature maps from different scales may
lead to a loss of important features. To address this issue, we enhance the spatial attention
mechanism and integrates it into the feature fusion stage [44,45]. This improvement allows
for more effective integration of feature maps at varying scales, thereby enabling the model
to more accurately delineate object boundaries, texture details, and other complex semantic
information. Consequently, this enhancement improves both the accuracy and precision of
semantic segmentation. The structure of the ASA mechanism is illustrated in Figure 2.
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Firstly, the obtained feature map is processed through a compressed convolution layer.
Maintaining the original length and width of the feature map, then an adaptive channel
compression convolution module is employed to reduce the number of channels to decrease
computational complexity and minimize the number of parameters. Secondly, it passes
through both a maximum pooling layer and an average pooling layer independently, with
their results concatenated thereafter. Finally, this concatenated feature map undergoes
further processing via a convolutional layer followed by an activation function. This stage
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maps the processed results into a range between 0 and 1, thereby facilitating the extraction
of weights for each feature point. The specific processing process is shown in Equation (1):

Ms(F′) = ( f 7×7([AvgPool(F′); MaxPool(F′)]))
= ( f 7×7([F′s

avg; F′s
max]))

(1)

where the dimensions of F′s avg and F′s max are defined as C/16×H×W. The variable σ

is represented by the sigmoid function, while f 7×7 denotes a convolution operation with
a kernel size of 7 × 7. By multiplying the resulting spatial attention weight Ms with the
input feature map F′, one can obtain a feature map that incorporates spatial weighting.

3.3. RCA Module

The RCA mechanism is a technique designed to enhance the adjustment of impor-
tance weights for feature maps along channels [46]. In the existing HRNet model, various
branches may extract feature information at different levels and perspectives. During the
final fusion of these branches, redundant information and less significant feature channels
can emerge, potentially impacting both computational efficiency and the model’s gener-
alization capability. To address this issue, we incorporate the residual network principle
and introduce an improved channel attention mechanism module into the model [47]. The
obtained RCA is illustrated in Figure 3.
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In our framework, the input feature maps undergo global average pooling, which is
performed across the height and width of the feature layer to yield a 1 × 1 feature descriptor.
Then, an adaptive 5 × 5 convolutional layer is applied for dimensionality reduction across
all features. This is followed by another fully connected layer that further reduces the
feature dimensions. Finally, each channel’s weight in the feature map is normalized to a
range between 0 and 1 using a sigmoid activation function, resulting in weights along the
channel dimension.

The weighted feature map Mc is obtained by multiplying these normalized weights
with the input feature map. The processed feature map is then derived through an additive
residual connection with the original input feature map. The detailed processing process is
shown in Equations (2) and (3):

Mc(F′) = σ( f (5×5)([AvgPool(F′)]))
= σ( f (5×5)([F′s

avg]))
(2)

k = ψ(C) =
∣∣∣∣ log2(C)

γ
+

b
γ

∣∣∣∣ (3)

where F′savg represents an average pooling operation size of 1 × 1 × H, σ represents the
sigmoid function, k represents the calculated size of the adaptive convolution kernel in the
convolutional layer, and the feature map is processed through the f 5×5 over-convolution
operation to obtain the weight MC. Ultimately, by multiplying and adding, we obtain the
fused feature map F′, which incorporates the channel attention mechanism represented
by MC.
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3.4. Multi-Level Upsampling Module

In the upsampling process, bilinear interpolation is commonly employed to restore
the low-resolution feature map. However, bilinear interpolation tends to be relatively
simplistic when processing edge pixels, which results in blurred or jagged edges during
image enlargement. This limitation adversely affects applications that demand high-quality
edge preservation [48]. Consequently, we propose replacing bilinear interpolation with
bicubic interpolation. Bicubic interpolation builds upon bilinear methods by considering a
greater number of surrounding pixels and utilizing more complex polynomial functions
for improved accuracy. Furthermore, in the original HRNet architecture, feature fusion
involves directly amplifying features from branches that yield different resolutions before
merging them. This straightforward approach leads to detail loss within the feature maps
during processing, ultimately compromising the quality of the final fused output. To
address this issue, we introduce a multi-level upsampling module designed to enhance
detail retention during feature fusion. The processing process of this module is shown in
Equation (4):

f (F1, F2, F3, F4) = Concat(Concat(Concat(F3, F4), F2), F1) (4)

where F1, F2, F3, F4 is the feature map extracted from four levels.
The formula for the Bicubic difference is shown in Equation (5):

f (x, y) =
3

∑
i=0

3

∑
j=0

p(i, j)× W(x − i)×W(y − i) (5)

where p(i, j) is the value of adjacent 4 × 4 pixels. W(t) is a third-order difference function
that uses a vertical variance kernel function, as shown in Equation (6):

W(t) =


1 − 2|t|2 + |t|3 i f 0 ≤ |t| ≤ 1

1 − 2|t|2 + |t|3 − |t|3 i f 1 ≤ |t| ≤ 2
0 otherwise

(6)

In each layer, the feature maps of size H × W × C are concatenated with the feature
maps obtained from the previous layer after applying Bicubic difference processing on
each channel. This results in feature maps of size 2H × 2W × C/2. The feature maps Fi
were merged and extracted according to their respective network levels, followed by a
layer-by-layer upsampling process until the final extraction yielded feature maps of size
8H × 8W × C/8. The specific process is illustrated in Figure 4. The improved sampling
mechanism during the fusion process is progressive, allowing for greater detail retention
and producing clearer and smoother characteristic images that contain more information.
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4. Experimental Setting
4.1. Datasets

In terms of experiments, considering the adaptability and effectiveness of the model
across various vegetation types and complex landforms, experiments were conducted
utilizing a mixed dataset comprising multiple sources. LoveDA (Land-Cover dataset for
Domain Adaptation) [49] is an urban-rural land cover dataset utilized for adaptive land
cover selection, which will be used as the public benchmark for comparisons. Additionally,
a mixed dataset was created, comprising the remote sensing urban forest from Nanjing
and the Huanghai Forest Farm dataset from Yancheng, obtained through UAV aerial
photography. The remote sensing images from Nanjing were employed to constitute the
urban forest component of the dataset, while data from Yancheng, contributed to the
artificial forest segment. Additionally, the LoveDA urban and rural dataset was utilized
to incorporate diverse landform types such as natural forests, rivers, and hills to further
enrich the dataset. This compiled dataset encompasses various landform characteristics,
including forests, farmland, lakes, and plantations.

As shown in Figure 5a, the selected study area includes Zhongshan Mountain and
Xuanwu Lake, both of which exhibit significant greening efforts and abundant urban green
spaces. The dataset comprises 16 high-resolution remote sensing images with dimensions
of 10,000 × 8000 pixels each, aligning well with the characteristics typical of urban forest
areas. As shown in Figure 5b, in this dataset, there are two plots of poplar trees; the
first plot covers an area of approximately 10,000 square meters, while the second plot
spans about 3600 square meters. The equipment employed for sampling comprises the
M350RTK, produced by DJI Technology Co., Ltd. in Shenzhen, China, equipped with P1
and L2 lenses (employed to collect orthophoto images and airborne laser data from the
experimental area). An UAV, along with this equipment, is depicted in Figure 6. Given that
deep learning semantic segmentation necessitates specific accuracy standards for input
data, preprocessing was conducted on the acquired dataset. The processed remote sensing
images were divided into image blocks measuring 1024 pixels by 512 pixels.
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Since this experiment employs an end-to-end design, the input data is directly mapped
to the output results; therefore, the preprocessing stage has been omitted. Labelme (version
5.1.1) image annotation software was employed for labeling purposes, resulting in a sample
label dataset corresponding to order, quantity, and size specifications. Following this step,
the dataset will be randomly divided into training, validation, and test sets in a ratio of 8:1:1.
These subsets were designated for network training, parameter tuning during learning
phases, and model evaluation, respectively.

4.2. Evaluation Metrics

We employed the Mean Intersection over Union (MIoU), Pixel Accuracy (PA), and F1-
score as evaluation metrics to assess the semantic segmentation accuracy. MIoU is a widely
recognized metric for evaluating semantic segmentation algorithms, as it comprehensively
accounts for the prediction accuracy across different categories and provides an overall
assessment. The MIoU value ranges from 0 to 1. Values closer to 1 indicate a higher degree
of similarity between the predicted results and the true labels. Values approaching 0 signify
lower similarity. The calculation formula is shown in Equation (7):

MIou =
1

k + 1

k

∑
i=0

pii

∑k
i=0 pij + ∑k

j=0 pji − pii
× 100% (7)

PA is the proportion of correctly recognized pixels in all pixels, which is used to
evaluate the accuracy of semantic segmentation. The formula is shown in Equation (8):

PPA =
∑k

i=0 pii

∑k
i=0 ∑k

j=0 pij
× 100% (8)

In Equation (7), k + 1 is the number of classifications in the model; pii is pixel class
i predicted as class i (TP), which is the pixel with correct segmentation; pij is pixel class j
predicted as class i (FP); pji is pixel class i predicted as class j (FN), which represents the
positive examples of incorrect prediction and negative examples of incorrect prediction.

The F1 score integrates precision and recall, making it particularly suitable for sce-
narios with class imbalance. It effectively reflects the overall performance of models in
semantic segmentation.

The calculation formula is shown in Equation (9):

F1 =
2 × Precision × Recall

Precision + Recall
(9)

Precision =
TP

TP + FP
(10)

Reacll =
TP

TP + FN
(11)

In Equation (10), TP refers to true positives (the number of correct predictions classified
as positive), FP denotes false positives (the number of incorrect predictions classified as
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positive), and FN represents false negatives (the number of incorrect predictions classified
as negative).

4.3. Parameter Sensitivity Analysis

In experiments, an RTX 4090 GPU (24 GB), manufactured by the American company
NVIDIA (Santa Clara, CA, USA), along with CUDA 11.0 are employed for parallel comput-
ing while the PyTorch framework is utilized for constructing, training, and validating the
deep learning network, as well as optimizing network parameters. The initial learning rate
of the model is set to 0.01, with a weight decay of 0.0005 and momentum of 0.9; additionally,
a batch size of 16 is adopted. Figure 7 illustrates the relationship between the epochs and
Mean Intersection over Union (MIoU) during this experiment. The results indicate that
the MIoU converges when the model reaches 300 epochs; therefore, a maximum training
period of 300 epochs is selected.
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5. Results and Analysis
5.1. Analysis of Ablation Experiments

In order to verify the effectiveness and accuracy of the ASA mechanism module,
RCA mechanism module, and multi-level upsampling module proposed in our work, we
conducted an ablation experiment for validation. The results are presented in Table 1. It is
evident that incorporating both the spatial attention mechanism module and the channel
attention mechanism module reduces redundant information, enabling the model to better
capture details and texture information present in the feature map. Compared with the
original HRNet network, there is an increase of 2.08 percentage points in MIou and a rise
of 4.76 percentage points in PA.

Table 1. Ablation test results.

NetWork Multistage
Upsampling ASA RCA Mean Intersection Over/% Pixel Accuracy/%

A × × × 71.64 85.06
B ×

√
× 72.33 87.60

C × ×
√

72.59 86.73
D ×

√ √
73.72 89.82

E
√

× × 71.88 85.65
F

√ √ √
73.81 89.91

Furthermore, by introducing the multi-level upsampling module, our network retains
more information during feature map fusion while effectively minimizing quality loss of
the feature maps. When compared with the original model, MIou shows an improvement
of 0.24 percentage points and PA increases by 0.59 percentage points.
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5.2. Comparison of Semantic Segmentation Models

In order to analyze the performance of FA-HRNet in vegetation segmentation for
high-resolution remote sensing images, we designed both qualitative and quantitative ex-
perimental analyses. We selected advanced semantic segmentation models with distinct net-
work structural characteristics for comparison, including SegNet, DeepLabV3, DeepLabV3+,
and HRNet. In the following experiments, these models will be tested and compared on our
test dataset to validate the efficiency of FA-HRNet in vegetation segmentation.

As shown in Table 2, the mean Intersection over Union (mIoU) values for HRNet,
U-Net, SegNet, DeepLabV3, and DeepLabV3+ are 68.42%, 63.97%, 62.33%, and 65.67%,
respectively. It is evident that the performance of SegNet is lower than that of other
network models by a margin of 3.37% compared to DeepLabV3+. HRNet demonstrates
superior capability in feature map information extraction due to its multi-branch network
architecture. Certain branches maintain a high resolution, facilitating the capture of detailed
information, while other branches operate at a lower resolution to extract high-level features.
This design endows HRNet with significant advantages over U-Net, SegNet, DeepLabV3,
and other network models when addressing semantic segmentation tasks. The pixel
accuracy of U-Net, SegNet, DeepLabV3, and FA-HRNet is 68.42%, 63.97%, 62.33%, and
73.81%, respectively. The experimental results indicate that FA-HRNet achieves a higher
pixel accuracy (PA) value compared to the other models. Furthermore, in terms of F1-score
comparison, the FA-HRNet network model attains an impressive score of 85.27, surpassing
that of the other network models. Following the integration of the attention mechanism
and the multi-level upsampling module, our proposed model FA-HRNet surpasses U-
Net, SegNet, and DeepLabV3 in terms of mean Intersection over Union (mIoU) and pixel
accuracy (PA) on the test set.

Table 2. Comparative experimental results.

NetWork Mean Intersection Over Union/% Pixel Accuracy/% F1-Score/%

FA-HRNet 73.81 89.91 85.27
HRNet 71.64 85.06 82.33
U-Net 68.42 82.21 83.10
SegNet 63.97 78.88 77.94

DeepLabV3 62.33 73.12 69.23
DeepLabV3+ 65.67 79.85 74.98

The results of semantic segmentation are presented in Figure 8. Images “a” and “b”
were selected from urban remote sensing data of Nanjing, focusing on residential areas and
road landscapes. Images “c” and “d” were obtained from the remote sensing images of
Yancheng, highlighting plantation forest landscapes. Images “e” and “f” were sourced from
the LoveDA dataset, showcasing rural and river landscapes. The findings indicate that
the proposed network demonstrates effective segmentation performance when applied to
remote sensing images featuring diverse land surface characteristics.

The detailed pairs are illustrated in Figure 9, the landscapes that are prone to con-
fusion, such as lakes and roads, present challenges for DeepLabV3 and U-Net during
segmentation tasks, leading to inaccuracies in vegetation segmentation. In contrast, the
model proposed demonstrates superior segmentation performance and exhibits a more
nuanced understanding of the easily confusable elements within remote sensing images.
Figure 10 reveals that, when compared with the original HRNet, the proposed network
minimizes both false detection and missed detection while identifying and segmenting
canopy edges and grassland boundaries. This results in relatively complete and accurate
representations of vegetation edge features. Overall, the proposed network model shows
significant advancements over the original HRNet regarding detailed feature processing.
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Figure 8. Comparison of vegetation segmentation visually. (a,b) Comparison of segmentation results
from different semantic segmentation models on remote sensing images of Nanjing. (c,d) Comparison
of segmentation results from different semantic segmentation models on remote sensing images of
Yancheng. (e,f) Comparison of segmentation results from different semantic segmentation models on
remote sensing images derived from the LoveDA dataset.
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5.3. Application of Vegetation Coverage Analysis

In order to further validate the extraction capability of the FA-HRNet model for large-
scale high-resolution images, we conduct a vegetation coverage analysis on selected remote
sensing images from Nanjing and Yancheng. In this study, six drone remote sensing images
with a resolution of 17,004 × 26,440 pixels were selected from the Xuanwu District of
Nanjing for vegetation semantic segmentation. Each remote sensing image encompasses an
actual area of approximately 4.51 square kilometers. These remote sensing images capture
various landform types, including buildings, lakes, wasteland, and vegetation, effectively
representing the characteristics of urban forests. In contrast, the high-resolution remote
sensing images obtained from Dongtai Huanghai Forest Farm in Yancheng cover an area of
10,000 square meters and possess a resolution of 54,700 × 34,800 pixels. The predominant
tree species in this region are poplars; both the planting density and overall condition are
favorable. Thus, these images serve as representative examples of plantation forests.

The vegetation segmentation outcomes for certain remote sensing images from Xu-
anwu District, Nanjing, are depicted in Figure 11. After conducting semantic segmentation
using FA-HRNet, the extraction of vegetation cover within urban areas can be effectively
accomplished. In relation to locality, as illustrated in Figure 11a, FA-HRNet exhibits a
reduced incidence of misclassification for confusing landforms such as wastelands and
water bodies. Furthermore, it demonstrates strong performance in segmenting urban
trees that are obscured by shadows. Overall, FA-HRNet is capable of achieving relatively
accurate vegetation segmentation for remote sensing images characterized by complex
and diverse landforms. Subsequent analysis involving the calculation of average coverage
values indicates that the vegetation coverage in Xuanwu District is approximately 29.50%.
According to data released by the Nanjing Municipal Green Garden Bureau regarding
forest coverage rates and green land statistics in 2024, as of the end of 2023, the forest
coverage area in Nanjing is recorded at 1980.73 hectares, resulting in a forest coverage rate
of 31.96% [50]. In the report, it is noted that the forest coverage rate in Nanjing stands at
31.96%, which closely aligns with our calculated vegetation coverage of 29.50% for Xuanwu
District within Nanjing. Through a comparative analysis of segmentation effects and data
evaluation, it can be observed that FA-HRNet demonstrates commendable performance in
the semantic segmentation of remote sensing images pertaining to urban forest areas.

Furthermore, based on our analysis of plots from Huanghai Forest Farm in Dongtai,
Yancheng. It is estimated that the vegetation coverage rate in the study area of Dongtai
Huanghai Forest Farm is 86.55%, as illustrated in Figure 12. The Dongtai Huanghai Forest
Farm falls within the Dongtai Huanghai National Forest Park located in Yancheng, Jiangsu,
both exhibiting similar characteristics typical of plantation forest landforms. Consequently,
vegetation data from the Dongtai Huanghai National Forest Park can be utilized to substan-
tiate the segmentation performance discussed above. According to a special presentation
by the Jiangsu Forestry Administration on 24 May 2021, the forest coverage rate within
this park exceeds 80 percent [51]. This figure closely aligns with the calculated result of
86.55% presented in this work, thereby providing relevant evidence and support for our
findings. In this segmentation map, various vegetation features—including trees, shrubs,
and grasslands—were accurately identified by our model.

To further validate the performance of the FA-HRNet model for vegetation semantic
segmentation on non-dataset images, we selected remote sensing images from Nanjing
Forestry University in Jiangsu. The total area covered is 238,320 square meters, with a
resolution of 36,580 × 20,100 pixels. The remote sensing image encompasses various
geomorphological features including trees, shrubs, rivers, and buildings. The feature
map resulting from semantic segmentation using FA-HRNet is presented in Figure 13.
An analysis of this feature map reveals that the FA-HRNet network model demonstrates
a commendable ability to identify vegetation obscured by buildings; furthermore, it ex-
hibits relatively complete and clear segmentation edges. These findings substantiate that
FA-HRNet performs effectively in segmenting vegetation within high-resolution remote
sensing images.
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sity, Nanjing.

6. Conclusions

To achieve high-precision vegetation segmentation from remote sensing images, we
fuse an optimized spatial attention mechanism module and a channel attention mechanism
module. Compared with the baseline HRNet network, the mean Intersection over Union
(MIoU) and pixel accuracy (PA) of our model improved by 2.08% and 4.76%, respectively.
Furthermore, after incorporating the multi-level upsampling mechanism, MIoU and PA
increased by an additional 2.17% and 4.85%, respectively. The vegetation segmentation
performance of the proposed model is notably superior to other existing segmentation
models. When compared with the U-Net network model, MIoU and PA are enhanced by
5.39% and 7.70%, respectively. When compared with DeepLabV3+, MIoU increases by
8.14% while PA rises by 10.06%.

Despite the high accuracy, experiment results show that the incorporation of multiple
modules requires high hardware specifications, resulting in a relatively complex model
structure and much more training times. To address these issues, future research should
focus on optimizing the lightweight operation of the model and refining its internal network
architecture to reduce both training duration and hardware requirements.
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