
Citation: Wang, C.; Zhan, C.; Lu, B.;

Yang, W.; Zhang, Y.; Wang, G.; Zhao,

Z. SSFAN: A Compact and Efficient

Spectral-Spatial Feature Extraction

and Attention-Based Neural Network

for Hyperspectral Image

Classification. Remote Sens. 2024, 16,

4202. https://doi.org/10.3390/

rs16224202

Academic Editors: Salah Bourennane,

Gangyao Kuang, Siqian Zhang, Xin Su

and Olga Sykioti

Received: 2 September 2024

Revised: 1 November 2024

Accepted: 7 November 2024

Published: 11 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

SSFAN: A Compact and Efficient Spectral-Spatial Feature
Extraction and Attention-Based Neural Network for
Hyperspectral Image Classification
Chunyang Wang 1 , Chao Zhan 1, Bibo Lu 1,*, Wei Yang 2 , Yingjie Zhang 3, Gaige Wang 4 and Zongze Zhao 5

1 School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454000, China;
wcy@hpu.edu.cn (C.W.); 212309010018@home.hpu.edu.cn (C.Z.)

2 Center for Environmental Remote Sensing, Chiba University, Chiba 2638522, Japan; yangwei@chiba-u.jp
3 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing,

Wuhan University, Luoyu Road No.129, Wuhan 430079, China; 2023186190082@whu.edu.cn
4 School of Computer Science and Technology, Ocean University of China, Qingdao 266100, China;

wgg@ouc.edu.cn
5 School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China;

zongze@hpu.edu.cn
* Correspondence: lubibo@hpu.edu.cn

Abstract: Hyperspectral image (HSI) classification is a crucial technique that assigns each pixel in an
image to a specific land cover category by leveraging both spectral and spatial information. In recent
years, HSI classification methods based on convolutional neural networks (CNNs) and Transformers
have significantly improved performance due to their strong feature extraction capabilities. However,
these improvements often come with increased model complexity, leading to higher computational
costs. To address this, we propose a compact and efficient spectral-spatial feature extraction and
attention-based neural network (SSFAN) for HSI classification. The SSFAN model consists of three
core modules: the Parallel Spectral-Spatial Feature Extraction Block (PSSB), the Scan Block, and
the Squeeze-and-Excitation MLP Block (SEMB). After preprocessing the HSI data, it is fed into the
PSSB module, which contains two parallel streams, each comprising a 3D convolutional layer and
a 2D convolutional layer. The 3D convolutional layer extracts spectral and spatial features from
the input hyperspectral data, while the 2D convolutional layer further enhances the spatial feature
representation. Next, the Scan Block module employs a layered scanning strategy to extract spatial
information at different scales from the central pixel outward, enabling the model to capture both
local and global spatial relationships. The SEMB module combines the Spectral-Spatial Recurrent
Block (SSRB) and the MLP Block. The SSRB, with its adaptive weight assignment mechanism in
the SToken Module, flexibly handles time steps and feature dimensions, performing deep spectral
and spatial feature extraction through multiple state updates. Finally, the MLP Block processes the
input features through a series of linear transformations, GELU activation functions, and Dropout
layers, capturing complex patterns and relationships within the data, and concludes with an argmax
layer for classification. Experimental results show that the proposed SSFAN model delivers superior
classification performance, outperforming the second-best method by 1.72%, 5.19%, and 1.94% in OA,
AA, and Kappa coefficient, respectively, on the Indian Pines dataset. Additionally, it requires less
training and testing time compared to other state-of-the-art deep learning methods.

Keywords: deep learning; hyperspectral image classification; attention mechanisms; convolutional
neural networks; spectral-spatial learning; loss function

1. Introduction

Hyperspectral remote sensing technology captures hundreds of spectral bands from
a target area using sensors or imaging spectrometers, thereby acquiring both spatial and

Remote Sens. 2024, 16, 4202. https://doi.org/10.3390/rs16224202 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16224202
https://doi.org/10.3390/rs16224202
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-6060-790X
https://orcid.org/0000-0002-4597-877X
https://orcid.org/0000-0002-3295-8972
https://doi.org/10.3390/rs16224202
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16224202?type=check_update&version=2


Remote Sens. 2024, 16, 4202 2 of 32

spectral information simultaneously. In recent years, advancements in hyperspectral
sensors and spectral imaging technology have significantly enriched the information con-
tained in hyperspectral images (HSIs) [1]. These HSIs not only provide detailed two-
dimensional spatial information of the target but also include one-dimensional spectral
information, making them highly applicable in various fields such as biomedical imag-
ing [2], mineral exploration [3], food safety [4], disaster prevention and mitigation [5],
urban development [6], military reconnaissance [7], and precision agriculture [8]. To fully
leverage the potential of HSI data, researchers have explored various data processing
techniques, such as denoising [9,10], spectral unmixing [11], and target detection and
classification [12–14]. Among these techniques, land cover classification has garnered sig-
nificant attention. The primary objective of HSI classification is to use the rich spatial
and spectral information in HSI to classify each pixel according to land cover types. De-
spite the valuable opportunities provided by such rich data, effectively extracting and
distinguishing relevant features remains a significant challenge. Consequently, researchers
continue to explore various approaches to address the challenges in feature extraction for
HSI classification.

Traditional machine learning techniques were mostly used in the early stages of HSI
classification attempts, which were centered on the extraction of spectrum information.
Various techniques are frequently employed in HSI classification, such as random for-
est [15], k-nearest neighbor [16], support vector machines [17,18], and Bayesian estimation
methods [19]. HSIs, on the other hand, contain a great deal of redundant information
in their vast amounts of spectral information—typically hundreds of bands. In light of
this, the researchers developed reduced dimensionality and feature extraction methods,
such as principal component analysis (PCA) [20,21], independent component analysis
(ICA) [22], and linear discriminant analysis (LDA) [23,24]. These methods map the original
spectral features into the new space using linear or nonlinear transforms in order to achieve
reduced dimensionality and feature extraction, which significantly lowers the number of
spectral features. The process of feature extraction significantly lowers the model’s running
complexity and enhances the effectiveness of conventional machine learning models in HSI
classification tasks. Model classification performance is limited by these approaches’ lim-
ited ability to interpret spatial information, notwithstanding their effectiveness in extracting
spectral features. Thus, there has been a lot of interest in spectrum spatial feature extraction
techniques, and to improve the extraction of spatial features from HSIs, researchers have
created mathematical morphological operators. The techniques of morphological profile
(MP) [25], extended morphological profile (EMP) [26], and extended multiattribute profile
(EMAP) [27] leverage the integration of spatial and spectral information through various
methodologies. These approaches facilitate the identification of the size and shape of
distinct objects within an image, consequently enhancing the accuracy of classification
outcomes. However, these methods, as the starting stage of HSI classification, have shown
effectiveness in understanding the data and its features, but they show limitations when
facing the complexity of real HSI data limitations, especially in how to fuse spatial and
spectral information more effectively.

Deep learning techniques simulate the hierarchical functioning of the human visual
system by constructing deep network models with hierarchical structures based on the
characteristics of input data and artificial neural networks. These models can indepen-
dently learn high-level, discriminative features from the data. With the advancement of
deep learning, leveraging powerful computational resources and abundant data, recent
algorithms such as CNNs [28,29], Transformer [30,31], and Mamba [32,33] have been em-
ployed in hyperspectral image (HSI) classification, demonstrating excellent performance
in this task. CNNs are particularly effective at extracting spatial features and learning
feature representations automatically, thereby improving image classification accuracy
and offering robust feature extraction capabilities. Various CNN architectures have been
proposed for extracting both spectral and spatial features, including 1D CNNs [34], 2D
CNNs [35], 1D-2D CNNs [36], 3D CNNs [37], and 2D-3D CNNs (Hybrid CNNs) [38]. 1D



Remote Sens. 2024, 16, 4202 3 of 32

CNNs [39,40] are primarily used for spectral feature extraction, while 2D CNNs [41,42]
delve into deep spatial features of pixels within spectrally compressed image blocks. 3D
CNNs [43,44] are employed to extract both spectral and spatial features from HSI data,
and Hybrid CNNs [45,46] leverage the advantages of 2D and 3D CNNs for a more com-
prehensive extraction of multi-scale and multi-dimensional information in HSIs. In spatial
convolutional neural networks, the DHCNet [47] model introduces variability convolution
and adaptive pooling operations that can dynamically adjust their size based on input
spatial information, addressing the limitation of fixed-position convolution kernels in
traditional CNNs, which cannot adapt to spatial structures. Zhong et al. [48] proposed a
spatial-spectral residual network, SSRN, for HSI classification, leveraging the information of
front-layer features as complements to back-layer features, significantly enhancing feature
utilization. In the spectral-spatial convolutional neural network, Roy et al. [38] introduced
HybridSN, capable of more efficient learning of spectral-spatial features and more abstract
spatial features, contributing to improved classification accuracy. Li et al. [49] proposed
a dual-channel 2D CNN architecture that considers both local and global spatial features
while capturing spectral features, adaptively combining feature weights from two parallel
streams to enhance the network’s expressive capabilities. Additionally, FADCNN [50]
presents a spatial-spectral dense convolutional neural network framework that employs a
feedback attention mechanism, facilitating improved extraction and integration of spectral
and spatial features, as well as refining these features to leverage semantic information.
Despite the good classification results achieved by CNNs as HSI feature extractors, they
face limitations in processing complex high-dimensional data, insufficient integration of
spatial and spectral information, and a high demand for training samples.

Following the success of CNNs, graph convolutional networks (GCNs) have increas-
ingly been applied in HSI classification due to their advantages in processing graph-
structured data [51]. By constructing relational graphs among pixels, GCNs effectively
model the complex interactions between spatial and spectral information, thereby enhanc-
ing classification performance. Qin et al. [52] proposed a second-order GCN, extending
the standard GCN structure to fully utilize the inter-band relationships in hyperspectral
images, improving classification accuracy. Wan et al. [53] applied superpixel segmentation,
dividing hyperspectral images into multiple superpixels and feeding these as nodes into a
GCN, effectively extracting both internal and neighboring information of superpixels and
enhancing classification results. Additionally, the dynamic multiscale graph convolutional
network classifier (DMSGer) [54] was proposed to capture pixel-level and region-level
features simultaneously, strengthening classification performance in hyperspectral im-
ages. By modeling at multiple scales, DMSGer can better capture complex spatial features,
thereby improving the ability to differentiate between classes. However, GCNs still face
limitations in graph construction, particularly for large-scale graphs where computational
costs become prohibitive, making it challenging for GCNs to classify or identify materials
in large-scale hyperspectral scenes efficiently.

The Transformer architecture, initially introduced for natural language processing [55],
has been creatively adapted for computer vision, leading to the development of Vision
Transformer [56]. This innovation has expanded the application of Transformers into
the field of HSI analysis. Unlike the CNN approach, which focuses on local spatial in-
formation, the Transformer’s self-attention mechanism allows for the effective control of
global sequence information by matching the positional encoding of data. This mechanism
efficiently captures remote dependencies, providing a comprehensive understanding of
the complex relationships between spatial and spectral features in HSI. HSI-BERT [57]
represents a pioneering application of Transformer-based models in HSI classification. It
treats each pixel in the HSI cube as a Transformer token to capture the global context,
demonstrating competitive accuracy. Hong et al. [58] recognized the critical role of long-
range dependencies in spectral bands and proposed SpectralFormer, a model that utilizes
a pure Transformer architecture specialized in processing spectral features and establish-
ing long-range dependencies. Tang et al. [59] proposed a Transformer network with a



Remote Sens. 2024, 16, 4202 4 of 32

dual-attention mechanism, capturing spectral and spatial features separately, and achieved
superior classification results through the introduction of a jump-connection mechanism.

As research progressed, it was found that fusing CNN and Transformer for feature
extraction could achieve better classification results. For instance, the SSFTT [60] method
preprocessed HSI data using 3D and 2D convolutions. 3D convolution was used to capture
both spectral and spatial information features, while 2D convolution focused on extracting
purely spatial features. A Gaussian-weighted feature tagger was then used to generate
input tokens, which were fed into the Transformer encoder for classification by a linear
layer. SSFTT successfully addressed the deep semantic feature extraction problem in HSI
classification and became an important benchmark for subsequent landmark Transformer-
based HSI classification research. Roy et al. [61] proposed a novel morphFormer network
for HSI classification, enhancing feature interaction through the combination of an atten-
tion mechanism with learnable spectral and spatial morphology convolutions, leading to
significantly improved classification performance. Despite its impressive performance,
the Transformer architecture has several drawbacks in real-world applications. Its multi-
layer structure and complexity require significant processing power during training and
inference [62]. Moreover, effective training of the Transformer model often necessitates
a substantial amount of labeled data, which can be costly and difficult to obtain for hy-
perspectral data, especially when samples are limited or imbalanced. This can lead to
overfitting and challenges in applying the model to new data. Additionally, the intricate
self-attention mechanism and high computational complexity of the Transformer model
result in poor real-time performance [63]. Designing a hyperspectral network with few
parameters, good classification performance, and high real-time performance presents a
significant challenge.

This paper introduces the novel HSI classification model SSFAN, as illustrated in
Figure 1. SSFAN integrates advanced spectral-spatial feature extraction and deep learning
algorithms. The model is composed of three key components: the Parallel Spectral-Spatial
Feature Extraction Block (PSSB), the Scan Block, and the Squeeze-and-Excitation MLP
Block (SEMB), designed to effectively extract and process spectral and spatial information,
thereby enhancing the classification accuracy of HSI. The HSI data are initially preprocessed
and fed into the PSSB, which includes two parallel streams. Each stream incorporates a 3D
convolutional layer followed by a 2D convolutional layer. This process utilizes 3D convolu-
tion to extract spectral and spatial information from the input hyperspectral data, and then
enhances the spatial feature representation through 2D convolution. The Scan Block is
responsible for extracting spatial information at different scales from the center pixel, out-
ward, employing a layered scanning strategy. This enables the model to capture both
local and global spatial relationships. The SEMB consists of the Spectral-Spatial Recurrent
Block (SSRB) and an MLP Block, which employs a deep residual structure combined with
LayerNorm. This structure enhances the nonlinear representation of features while main-
taining model stability. The SSRB introduces the SToken Module, a mechanism for adaptive
weight assignment that facilitates flexible handling of time steps and feature dimensions
through multilayered linear transformations and parameterization operations. Multiple
state update operations are utilized to extract deeper spectral-spatial features. Finally,
the MLP Module processes the input features through a series of linear transformations,
activation functions (GELU), and Dropout layers, enabling the capture of complex patterns
and relationships in the input data. The classification is completed through an argmax
layer. The SSFAN model stands out by significantly reducing the number of parameters
and MACs compared to other state-of-the-art models, thereby accelerating the training and
inference speeds and enhancing the model’s deployment capabilities under limited com-
putational resources. The codes are available at https://github.com/one-boy-zc/SSFAN
(accessed on 25 October 2024).

https://github.com/one-boy-zc/SSFAN


Remote Sens. 2024, 16, 4202 5 of 32

HSI

m

𝑙
n

PCA

m

𝑏
n

𝑏s

s

𝑏s

s

𝑏s

s

C
Scan Block

Enhance local spatial features

Parallel Spectral–Spatial Feature Extraction Block

Integrating features of two channels

connection symbols between modules

residual connection

C
ellipsis

multiplicative connection

+ add various operations

+

Concat Learnable Token

𝑇0
cls

Positional Embedding

𝑃𝐸𝑝𝑜𝑠

𝑥in 𝑥out
0

Squeeze-and-Excitation

 MLP Block
argmax

Meadows

Asphalt

Shadow

Classification results

Linear 

Transformations

SToken Module

S
ta

te
 I

n
it

ia
li

za
ti

o
n

 &
 W

ei
g

h
ts

S
ta

te
 U

p
d

at
e 

&
 F

ea
tu

re
 E

x
tr

ac
ti

o
n

O
u

tp
u

t 
L

ay
er

L
ay

er
 N

o
rm

al
iz

at
io

n

𝑥𝑜𝑢𝑡

A
d

ap
ti

v
eA

v
g

P
o

o
l

𝑥in

Sigmoid
𝑧

Spectral-Spatial Recurrent Block

𝑥in
′

L
in

ea
r 

L
ay

er

G
E

L
U

D
ro

p
o

u
t

L
in

ea
r 

L
ay

er

D
ro

p
o

u
t

L
ay

er
 N

o
rm

al
iz

at
io

n

𝑥out
0

MLP Block

𝑥scan

Figure 1. Overall architecture of the proposed SSFAN network for HSI classification. The framework
is composed of three main sections: the Spectral-Spatial Feature Extraction Block, the Scan Block,
and the Squeeze-and-Excitation MLP Block, each with detailed internal composition.

The contributions of this work are summarized as follows:

(1) A Parallel Spectral-Spatial Feature Extraction Block was proposed, which can increase
classification accuracy and extract spectral-spatial information more fully.

(2) The Scan Block, designed for image spreading, allows the model to capture both local
and global spatial relationships through a layered scanning method.

(3) The combination of SSRB and MLP Block in the SEMB introduces an adaptive weight
assignment mechanism, facilitating the extraction of deeper spectral-spatial features
through multi-layer linear transformations and parameterization operations.

(4) SSFAN significantly reduces the number of parameters and MACs compared to
Transformer-based models, speeding up training and inference and improving de-
ployment capabilities.

2. Materials and Methods

The SSFAN model for HSI classification is composed of three primary components:
the Scan Block, the Parallel Spectral-Spatial Feature Extraction Block, and the Squeeze-and-
Excitation MLP Block, as depicted in Figure 1.

2.1. HSI Data Preprocessing

Given the raw Hyperspectral Imaging (HSI) data I ∈ Rm×n×l , where l represents
the number of spectral bands, and m × n denotes the spatial resolution size, each pixel
in I is characterized by l spectral dimensions and is associated with a one-hot vector
Y = (y1, y2, . . . , yC), where C is the number of feature classes. Rich spectrum information
is present in l spectral bands, but they also result in a great deal of information redun-
dancy, which greatly raises the computing cost. Therefore, the computational and spectral
dimensions are reduced by using Principal Component Analysis (PCA) [21]. PCA main-
tains the spatial dimensions of the HSI while reducing its spectral dimensions from l to b.
The particular procedure is:

Ib = (Il − µ)× Vb (1)



Remote Sens. 2024, 16, 4202 6 of 32

where µ ∈ Rl is the mean vector of each spectral channel, Vb ∈ Rl×b is the eigenvector
matrix corresponding to the first b largest eigenvalues of the covariance matrix, and Il ∈
Rm×n×l and Ib ∈ Rm×n×b denote the original hyperspectral data with l bands and the
dimensionality-reduced hyperspectral data with b bands, respectively.

The HSI data were then subjected to 3D-patch extraction following spectral down-
scaling via PCA. Ib was used to generate each neighboring 3D-patch (P ∈ Rs×s×b), where
s × s represents the window size. Every 3D-patch has a center pixel set to (xi, xj), where
0 ≤ i < m and 0 ≤ j < n. The label of each 3D-patch’s center pixel determines the real label
of each patch. However, some pixel values in the patch are unavailable when extracting the
region surrounding a pixel that is situated at the edge of the image because there isn’t any
pixel data beyond the boundary. Consequently, a padding operation with a padding width
of (s − 1)/2 is carried out on these pixels, based on the method in SSFTT [60]. At some
point, m × n determines how many 3D-patches there are in Ib. The width and height of
each patch are [xi − (s − 1)/2, xi + (s − 1)/2], [xj − (s − 1)/2, xj + (s − 1)/2], and b is their
spectral dimension. Every sample is split into train and test datasets once background
pixels with zero labels are eliminated.

2.2. Parallel Spectral–Spatial Feature Extraction Block

After data preprocessing, the spectral-spatial information in each sample patch is
extracted using the Parallel Spectral-Spatial Feature Extraction Block (PSSB). In contrast
to the conventional single pathway, which is unable to sufficiently extract the spectral-
spatial information [60], the PSSB is comprised of two parallel streams, each having a 2D
and 3D convolutional layer. The inputs of both pathways are identical sample patches,
which combine the features that were extracted from the two streams. The PSSB description
follows one pathway since the two streams have the exact identical configuration. The input
of each sample patch (Rs×s×b) is fed into the 3D convolutional layer.

The process of 3D convolution is detailed in Figure 2. Given vα,β,γ
i,j is the value at

the (α, β, γ) position of the i-th convolution kernel’s j-th output, and wi,jα + h, β + w, γ + r
is the value at the i-th convolution kernel’s j-th output used for the jth output. kernel
(α+ h, β+w, γ+ r) at the weight value, and pα+h,β+w,γ+r is the value at (α+ h, β+w, γ+ r)
in the sample patch, which is then given by the computational formula for 3D convolution:

υ
α,β,γ
i,j = ϕ(

Hi−1

∑
h=0

Wi−1

∑
w=0

Ri−1

∑
r=0

wα+h,β+w,γ+r
i,j pα+h,β+w,γ+r + bi,j) (2)

where Hi and Wi represent the height and width of the sample patch, respectively, Ri
represents the number of bands in the sample patch, ϕ(·) denotes the activation function
(ReLU), and bi,j denotes the i-th bias used for the j-th output. Theoretically, k0 3D con-
volutional kernels with a size of k1 × k2 × k3 make up the 3D convolutional layer. k0 3D
feature cubes with spectral-spatial information will be generated after the 3D convolutional
layer. After the 3D convolutional layer, k0 3D feature cubes containing spectral-spatial
information will be generated. The size of each cube is shown in Equation (3), and the total
size of all feature cubes is shown in Equation (4).

Each-cube-size = (s − k1 + 1)× (s − k2 + 1)× (b − k3 + 1) (3)

Total-cubes-size = k0@(s − k1 + 1)× (s − k2 + 1)× (b − k3 + 1) (4)

After the rearrangement operation and fed as an input to the next 2D convolutional
layer, which has a size of (s − k1 + 1)× (s − k2 + 1)× k0(b − k3 + 1), in order to enhance
the spectral spatial features. At the spatial location (α, β) on the jth feature map in the i-th
layer of the 2D convolutional layer, the activation value υ

α,β
i,j is defined as follows:



Remote Sens. 2024, 16, 4202 7 of 32

υ
α,β
i,j = ϕ(∑

k

H
′
i −1

∑
h=0

W
′
i −1

∑
w=0

wh,w
i,j,kmα+h,β+w

k + bi,j) (5)

where H
′
i and W

′
i represent the width and height of the 2D convolutional kernel, and wh,w

i,j,k
represents the weight parameter at the k-th feature map (h, w). ϕ(·) denotes the activation
function (ReLU). mα+h,β+w

k denotes the value of the kth feature map at α + h, β + w. The to-
tal number of feature maps after 2D convolutional layer processing is k

′
0@[s − 2 × (k1 +

1)]× [s − 2 × (k2 + 1)], with k
′
0 being the number of 2D convolutional kernels, and each

convolutional kernel having a size of k1 × k2, which are all set to 3.

Sample Patch

1

2

𝑖 − 1

𝑖

1

j

𝑣𝑖,𝑗
𝛼,𝛽,𝛾

(The value at (α,β,r) of the j-th output of the i-th convolution kernel)

𝜔𝑖,𝑗
𝛼+ℎ,𝛽+𝑤,𝛾+𝑟

𝑏𝑖,𝑗

(used to get the weight value at the i-th convolution kernel (𝛼 + ℎ, 𝛽 + 𝑤, 𝛾 +r) for the j-th output)

𝑝𝛼+ℎ,𝛽+𝑤,𝛾+𝑟

Figure 2. Visualizing 3D Convolution Process.

Moreover, PSSB effectively addresses the high-dimensional nature of HSI data, miti-
gating the computational and representational shortcomings of single-channel methods in
dealing with high-dimensional data. By integrating features from two identical channels,
PSSB circumvents the limitation that single-channel methods cannot fully extract spec-
tral and spatial features. This feature fusion enhances the model’s capability to capture
complex HSI data and facilitates more effective extraction of spectral-spatial information,
thereby improving the classifier’s accuracy, particularly in the classification of edge pixels
or mixed pixels.

2.3. Scan Block

The Scan Block is an enhanced version of the spreading operation, designed to extract
multi-scale features from the central region and its surroundings, enabling the model to
capture local information at different scales. The input to the Scan Block is the multi-channel
feature map output from the PSSB. Initially, the Scan Block calculates the midpoints of the
input tensor’s height and width (cen) to determine the center index. The input tensor’s
dimensions are then reshaped from (B, c, w, h) to (B, h, w, c) to facilitate manipulation of
spatial and spectral information. This reshaping makes it easier to handle the spatial
dimensions h and w (the second and third dimensions of x), aligning them for efficient
slicing operations. Next, an output tensor, xscan, is initialized to store the extracted values,
with dimensions (B, h × w, c). This output tensor represents a multi-channel spread of the
feature map. The center region, cen, is first assigned directly to xscan[:, 0, :]. Subsequently,



Remote Sens. 2024, 16, 4202 8 of 32

features from regions of varying scales are extracted iteratively, starting from the center
and gradually expanding outward. In each i-th layer of this loop, a region containing
2 × i rows and 2 × i columns is extracted, resulting in a total of 4 × i pixels being added,
with five loops in total. As shown in Figure 3, this process transforms the feature map
from 2D to 1D without altering the number of channels. The color distribution in the
figure illustrates how values in the original 2D feature map are accurately mapped to the
corresponding positions in xscan after the spreading process. By progressively extracting
regions at different scales, the Scan Block effectively captures local features of varying sizes,
enhancing spatial information processing. This multi-scale feature extraction improves the
model’s spatial perception, ultimately enhancing overall performance.

Figure 3. Visualizing the Scan Block Process.

Before inputting the output of the Scan Block to the next module, it is necessary to
add position information and a Learnable Token to the output. The Learnable Token is
added to facilitate the subsequent classification work. With the Learnable Token, the model
can gather the global information of the whole sequence, which can provide a useful
global feature for the classification task. Position Embedding is used to label the positional
information of each semantic tokens, allowing the model to process sequences with spatial
or sequential sensitivity, which is crucial for the model’s comprehension. The output after
adding the position information and a Learnable Token is xin with a size of 64 × 122 × 16.

2.4. Squeeze-and-Excitation MLP Block

The Squeeze-and-Excitation MLP Block (SEMB) consists of two core modules: the
Spectral-Spatial Recurrent Block (SSRB) and the MLP Block. The combination of these two
modules enables a more comprehensive extraction and aggregation of the information in
the hyperspectral data, which makes the model able to complex spectral dimensions with
better expressiveness and classification accuracy. For the input feature xin, the shape is
[B, L, D], B is the batch size, L is the length of the sequence, and D is the feature dimension.
xin is input to the SSRB module for processing by the self-attention mechanism to extract
important spectral and spatial features. The output of the SSRB passes through the Adap-
tiveAvgPool and Layer Normalization layers before being passed to the MLP Block for
further deep extraction of feature information from the sequence. Each module contains
a residual linkage mechanism, which not only helps the effective transfer of information,
but also mitigates the gradient vanishing problem and ensures the robust training of the
model. Next, the working principle and implementation of these two key modules will be
introduced in detail.

2.4.1. Spectral-Spatial Recurrent Block

As shown in Figure 1, Spectral-Spatial Recurrent Block (SSRB) combines various
approaches such as Linear Layer, Attention Mechanism, and State Update etc. SSRB consists
of six main parts: Sigmoid, Linear Transformations, SToken Module, State Initialization
& Weights, State Update & Feature Extraction, and Output Layer. Firstly, xin is input into
the Sigmoid function and compressed into the range of [0, 1] to get the activation value z,



Remote Sens. 2024, 16, 4202 9 of 32

which is mainly used for the subsequent output adjustment. Next is the State Initialization
& Weights module, which is used to initialize some tensors for subsequent processing.
Two weight matrices δ0 and A0 are randomly generated in the initial stage to participate
in the subsequent recursive operations. Then, xin is input into two linear transformations
LNB and LNC to generate two intermediate tensors B0 and C0 with the same dimensions
as xin, respectively. Meanwhile, xin is input to SToken Module to get the feature vector
T. The computation of T will be described in detail in the subsequent section, and the
formulae for B and C are as follows:

B = WB · x + bB (6)

C = WC · x + bC (7)

where the bias terms are bB and bC, and the weight matrices of the linear layer are WB and
WC. Then, δ and A are calculated. To obtain δ, the input xin is linearly varied, and the
result is calculated using a Sigmoid nonlinear activation function, which can be computed
as follows:

δ = Sigmoid(LNδ(x) + δ0) (8)

where LNδ(·) denotes the linear transformation. A is obtained from δ0 and A0 for subse-
quent state updates, calculated as follows:

A = δ0 · A0. (9)

B is obtained by the B0 and δ Einstein summation conventions, calculated as:

B = δ · B0. (10)

The state update and feature extraction are carried out in the State Update & Feature
Extraction module following the completion of the initialization tensor. The state update
formula is as follows, assuming that the initialization state s is a zero vector, processing the
state recursively at each time step, and conducting recursive updates for each time step t, t
in the range [0, L − 1], where L is the length of xin.

s(t + 1) = At · s(t) + Bt · xt (11)

where At is A[:, t], Bt is B[:, t], xt is xin[:, t, :], and the output prediction is obtained from
s(t + 1), computed as:

ypred,t = Ct · s(t + 1) + Tt (12)

where Ct is C[:, t], Tt is T[:, t, :], and xt is xin[:, t, :]. After the recursive processing is com-
pleted, the predictions of all time steps are stitched together to obtain the final output xout
and adjusted with z, computed as:

xout = [ypred,0, ypred,1, ..., ypred,L−1]. (13)

The SToken Module plays a crucial role in integrating attention mechanisms within the
SSRB framework, particularly in enhancing input sequence features through an attention
mechanism. This module effectively captures significant spectral information features and
fuses them with the original input by applying a Squeeze-and-Excitation (SE) attention
computation on the input data sequence and combining it with a trainable bias parameter.
The SToken Module is designed to implement an SE attention mechanism, which operates
on the input sequence’s dimensionality to perform attention computation, and then adjusts
the input features’ weights, enabling the model to focus more on important features.
Figure 4 visualizes the SToken Module process.



Remote Sens. 2024, 16, 4202 10 of 32

[𝐵, 𝐿, 𝐷]

G
lo

b
al

 A
v
er

ag
e 

P
o

o
li

n
g

(d
im

 =
 1

)

Fully connected layer

SE-seq

L
in

ea
r 

L
ay

er

R
el

u

S
ig

m
o

id

+

Learnable bias

Expand to the same size as Se-seq

co
n

ca
tn

at
e

𝑥out
′ [𝐵, 1, 𝐷]

element-wise 

multiplication

𝑥in
′

𝑥out
′ [𝐵, 𝐿, 𝐷]

𝑥out
′ [𝐵, 1, 𝐷]

𝑥in
′ [: , 1: , : ]

𝑥in

Figure 4. Visualizing the SToken Module Process.

The module begins by extracting a compressed feature from the input sequence using
a global average pooling operation. This operation averages the sequence in the sequence
dimension, resulting in a feature vector that represents the average feature of the ith sample
over the sequence dimension, denoted as SE-seqi. Subsequently, this feature vector is fed
into a fully connected layer, which consists of a linear layer, a Sigmoid function, and a ReLU
activation function. The Sigmoid function is used to scale the features within the [0, 1]
interval, while the ReLU activation provides a nonlinear mapping. A learnable bias is then
initialized and extended to the same shape as the SE-seq, followed by a fully connected
layer. The computational formula for this process is:

x
′
out = Sigmoid(ReLU(W1 · SE-seq + b1)) + bias (14)

where b1 represents the bias added in the fully connected layer, and W1 is the weight of the
fully connected layer. The resulting x

′
out has a shape of [B, 1, D], which is then concatenated

with the second to the last element of the original input x
′
in, effectively incorporating

the adjusted features into the sequence while preserving the original sequence features.
The shape of the adjusted x

′
out is restored to [B, L, D]. Finally, x

′
out is element-wise multiplied

with x
′
in, a process analogous to the attention mechanism, which assigns greater weight to

important parts of the sequence, thereby highlighting key features, computed as:

x
′
out = x

′
out ⊙ x

′
in. (15)

This operation adjusts and weights the features of the input sequence, improving the
model’s focus on important features and facilitating subsequent state updates.

2.4.2. MLP Block

Before formally entering the MLP Block, the output xout in the Spectral-Spatial Recur-
rent Block is normalized and adaptive mean pooling is performed in order to homogenize
the features over the sequence dimension. This adaptive average pooling layer serves as a
dimensionality reduction operation on the input tensor xout, transforming it into a compact
feature representation for subsequent processing in the MLP Block. The shape of xout is
[B, L, D], and the transpose operation is first applied to swap dimensions 1 and 2, changing
the shape to [B, D, L]. This step is taken to enable the adaptive average pooling operation to
perform pooling operations on the sequence dimension. Subsequently, the tensor enters the
adaptive average pooling operation, which performs global average pooling over the entire
sequence L for each feature dimension D. The average of all elements in each sequence
is used as the output of that sequence, resulting in a shape of [B, D, 1]. Finally, a squeeze
operation is applied, removing the dimension of size 1, altering the tensor’s shape to



Remote Sens. 2024, 16, 4202 11 of 32

[B, D]. The output after adaptive average pooling, denoted as x
′
in, serves as the input to the

MLP Block.
The MLP Block comprises two linear layers, followed by a GELU activation function

and two Dropout layers, each applied after the linear layers. After the first linear layer,
a GELU activation function is applied, followed by dropout. The input then proceeds
through the second linear layer and dropout before reaching the final output. This MLP
layer is followed by a LayerNormalize layer, which aids in mitigating gradient explosion
and vanishing gradients, facilitating faster training. The output x0

out after the MLP Block
has a size of 64 × 16, and the final result is obtained through the argmax function in the
numpy library.

2.5. Implemention

Compared to the Transformer model, SSFAN has fewer parameters and multiply-
add cumulative number of operations, and is able to accomplish the classification task
more quickly and to a high standard. In this paper, we take the Pavia University dataset
with 9 classes of features and size of 610 × 340 × 103 as an example to illustrate the
proposed SSFAN.

After PCA dimensionality reduction and patch partitioning, each patch has a size of
15 × 15 × 30. The PSSB consists of two identical parallel paths; we will analyze the data
flow using the first path as an example. In the 3D convolution layer of the first path, each
patch generates eight feature cubes of size 13 × 13 × 28, with each patch utilizing eight
3 × 3 × 3 convolution kernels. The purpose of the 3D convolution layer is to extract rich
spectral information from each patch. After rearranging the eight feature cubes, a feature
cube consisting of features of size 13 × 13 × 224 is generated. Next, 64 two-dimensional
convolution kernels are used to perform 2D convolution, resulting in 64 feature maps of size
11× 11. Each feature map is processed through a Scan operation, flattening it into 64 feature
vectors of size 121 × 16, where 16 represents the number of channels. Simultaneously,
a learnable token vector, cls-tokens, initialized to all zeros, of size 64 × 1 × 16 is created
and concatenated with the output of the Scan Block. Subsequently, positional information
is added, yielding xin ∈ R64×122×16, which is then input into the Squeeze-and-Excitation
MLP Block, passing sequentially through the SSRB and MLP Block modules. In the
SSRB, the input undergoes SToken attention mechanism and sequence modeling, and the
resulting output is compressed into a single global representation through adaptive pooling.
After passing through the MLP Block for nonlinear transformation, the final classification
result is obtained. The overall process of the proposed SSFAN method is illustrated in
Algorithm 1.

2.6. Loss Function

The cross-entropy loss function [64] is widely utilized in HSI classification. Its primary
benefit lies in its ability to accurately assess the discrepancy between the model’s predicted
probability distribution and the actual labeling distribution, which aids in achieving rapid
convergence during model training. Nonetheless, the cross-entropy loss function’s sensi-
tivity to class imbalance and outliers can impact model performance in certain scenarios,
necessitating supplementary strategies to address these issues in real-world applications.
In order to achieve this, this paper designs a hybrid cross-entropy loss function (Lmix),
which is more sensitive to the category distribution and robust. It combines the Nor-
malized Generalized Cross Entropy (LNGCE) and the Normalized Cross Entropy (LNCE)
loss functions.



Remote Sens. 2024, 16, 4202 12 of 32

Algorithm 1 SSFAN Model

Input: Input HSI data I ∈ Rm×n×l and ground-truth Y ∈ Rm×n; after PCA bands number
b = 30; test dataset comprises µ = 90% of the total; patch size s = 15;

Output: Output the predicted categories for the test dataset.
1: Set Batchsize to 100; Optimizer Adam, learning rate lr = 0.001; Training epochs

epoch = 100;
2: After PCA transformation, I ∈ Rm×n×b is obtained.
3: Generate sample patches patch from I I ∈ Rm×n×b and divide them into training and

testing datasets.
4: Generate train dataloader and test dataloader.
5: for i = 1 to ∈ do
6: Execute 3D convolutional layer and 2D convolutional layer to obtain x1.
7: Execute another 3D convolutional layer and 2D convolutional layer to obtain x2;
8: x = x1 + x2
9: Perform Scan Block.

10: Initialize learnable tokens, connect them to the output of the Scan Block, and embed
the position to obtain the xin.

11: Perform Spectral-Spatial Recurrent Block;
12: Perform MLP Block.
13: end for
14: Use a trained model to predict categories in the test dataset.
15: return Predicted label.

NGCE is a generalized version of the standard cross-entropy loss function, introducing
a parameter q to control the sensitivity of the loss function. Given the predicted probability
p and the target category y, NGCE is formulated as:

LNGCE =
1 − (∑C

k=1 yk · pk)
q

C − ∑C
k−1 pq

k

(16)

where C denotes the number of categories; yk is the one-hot coding of the target label, with a
value of 1 at the index of only the correct category and 0 for the rest; pk is the probability
value of the model’s prediction output; and q is a hyperparameter controlling the shape of
the loss function, which degrades to standard cross-entropy when q = 1, and increases the
robustness of the loss to incorrect predictions when q < 1. The numerator computes the
difference between the predicted probability and the target label and adjusts the degree
of nonlinearity of the loss by a q power, and the denominator is the number of categories
minus the sum of the q powers of the predicted probabilities for each category, ensuring
that the loss adjusts to category imbalances. As q tends to 0, NGCE will tend to be more
forgiving of uniform predictions for each category, but will be more sensitive to extreme
mispredictions. Therefore, NGCE is suitable for scenarios that require robustness to outliers.
In this paper, we demonstrate through multi-group ablation experiments that the model
works best when the value of q takes 0.7.

NCE is a normalized version of the standard cross-entropy loss, which mainly bal-
ances the effect of category imbalance on the loss by normalizing the denominator term.
The formula of NCE is:

LNCE = −∑C
k=1 yk · log(pk)

−∑C
k=1 log(pk)

(17)

where yk, C, and pk have the same meaning as in Equation (16). In Equation (17), the numer-
ator is the standardized standard deviation loss, which calculates the model’s prediction
loss for the correct category; the denominator is the logarithmic summation of the prediction
probabilities of all categories, which serves as a normalizer and adjusts the prediction prob-
abilities of all categories, preventing the problem of exploding or disappearing gradients in



Remote Sens. 2024, 16, 4202 13 of 32

the case of imbalance of category distributions. The main purpose of the NCE is to adjust
the value of the loss function to make it more stable in the different category distributions.

The hybrid loss function proposed in this paper combines NGCE and NCE by intro-
ducing two hyperparameters α and β to control the weights of the two in the final loss,
respectively. The hybrid loss function is formulated as:

Lmix = α · LNGCE + β · LNCE. (18)

By adjusting the values of α and β, we can control the relative significance of NGCE
and NCE in the loss. If the model is highly sensitive to outliers, increasing the value
of α can enhance the impact of NGCE, and if the model struggles with category imbal-
ance, increasing the value of β can enhance the impact of NCE. NGCE offers robustness
against misclassification, while NCE addresses category imbalance through normalization.
The combination of the two makes this loss function more stable and adaptable in various
data distributions and anomaly scenarios. In this paper, we demonstrate through multiple
sets of ablation experiments that the model achieves its best performance when α and β are
both set to 1.0.

3. Dataset and Experimental Setup
3.1. Datasets Description

In order to evaluate the effectiveness of the proposed SSFAN model more compre-
hensively, we selected three widely used hyperspectral datasets, namely Indian Pines (IP),
Pavia University (PU) and WHU-Hi-LongKou (WHLK) [65].

(1) Indian Pines: The IP dataset, obtained by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) in June 1992, is a HSI depicting an agricultural region in north-
western Indiana, USA. The data consists of 145 × 145 pixels with a spatial resolution
of 20 m and includes 220 continuous spectral bands ranging from 400 nm to 2500 nm.
For practical purposes, 20 bands with low signal-to-noise ratios were excluded, re-
sulting in 200 remaining bands. The imagery mainly focuses on agricultural and
forested regions, containing 10,249 labeled samples across 16 categories, such as corn,
grassland, and forest. Due to its high spectral dimensionality, diverse classes, and un-
even sample distribution, the IP dataset is often used to assess the performance and
reliability of HSI classification algorithms. Figure 5 shows the false color and ground
truth maps related to the IP dataset. Moreover, Table 1 offers a detailed summary of
the sample count per class, along with the distribution of training and testing samples.

(2) Pavia University: The PU dataset consists of a HSI captured by the Reflective Optics
System Imaging Spectrometer (ROSIS) sensor over the University of Pavia in Italy.
The image measures 610 × 340 pixels and has a spatial resolution of 1.3 m. It features
115 spectral bands that span wavelengths from 430 nm to 860 nm, with 103 valid
bands remaining after filtering out noisy data. The dataset is categorized into 9 classes,
including buildings, roads, and vegetation, totaling 42,776 labeled samples. Due to
its high resolution and extensive spectral information, the PU dataset is commonly
used as a standard for evaluating the effectiveness of HSI classification algorithms
in urban settings. Figure 6 shows the false color and ground truth maps related to
the PU dataset. Moreover, Table 1 offers a detailed summary of the sample count per
class, along with the distribution of training and testing samples.

(3) WHU-Hi-LongKou: The WHLK dataset was gathered from an agricultural region
in Longkou Town, Hubei Province, China, on 17 July 2018, between 1:49 p.m. and
2:37 p.m. Data collection was performed using a DJI Matrice 600 Pro drone, which was
fitted with a Headwall Nano-Hyperspec imaging sensor that has an 8 mm focal length.
The area studied featured six different crop types: corn, cotton, sesame, broadleaf
soybean, narrowleaf soybean, and rice. The UAV flew at an altitude of 500 m, taking
images with a resolution of 550 × 400 pixels and capturing 270 spectral bands with
wavelengths from 400 to 1000 nanometers. The images have a spatial resolution of



Remote Sens. 2024, 16, 4202 14 of 32

about 0.463 m. Figure 7 shows the false color and ground truth maps related to the
WHLK dataset. Moreover, Table 1 offers a detailed summary of the sample count per
class, along with the distribution of training and testing samples.

(a) (b)

Corn-mintill

Background

Alfalfa

Corn-notill

Corn

Grass-pasture

Grass-trees

Grass-pasture-mowed

Hay-windrowed

Oats

Soybean-notill

Soybean-mintill

Soybean-clean

Wheat

Woods

Buildings-Grass-Trees

Stone-Steel-Towers

Figure 5. IP dataset. (a) False-color map. (b) Ground-truth map.

Background

Asphalt

Meadows

Gravel

Trees

Painted Metal sheets

Bare soil

Bitumen

Bricks

Shadow

(a) (b)

Figure 6. PU dataset. (a) False-color map. (b) Ground-truth map.

(b)(a)

Background

Corn

Cotton

Sesame

Broad-leaf soybean

Narrow-leaf soybean

Rice

Water

Roads and houses

Mixed weed

Figure 7. WHLK dataset. (a) False-color map. (b) Ground-truth map.



Remote Sens. 2024, 16, 4202 15 of 32

Table 1. The quantities of training and testing samples for the IP dataset, the PU dataset, and the
WHLK dataset are presented.

NO.

IP PU WHLK

Class Training
Samples

Test
Samples Class Training

Samples
Test

Samples Class Training
Samples

Test
Samples

1 Alfalfa 5 41 Asphalt 332 6299 Corn 3452 31,059
2 Corn-notill 143 1285 Meadows 932 17,717 Cotton 838 7536
3 Corn-mintill 83 747 Gravel 105 1994 Sesame 304 2727
4 Corn 24 213 Trees 153 2911 Broad-leaf soybean 6322 56,890
5 Grass-pasture 48 435 Mental sheets 67 1278 Narrow-leaf soybean 416 3736
6 Grass-trees 73 657 Bare soil 251 4778 Rice 1186 10,668
7 Grass-pasture-mowed 3 25 Bitumen 67 1263 Water 6706 60,350
8 Hay-windrowed 48 430 Bricks 184 3498 Roads and houses 713 6411
9 Oats 2 18 Shadow 47 900 Mixed weed 522 4707
10 Soybean-notill 97 875
11 Soybean-mintill 245 2210
12 Soybean-clean 59 534
13 Wheat 20 185
14 Woods 126 1139
15 Buildings-Grass-Trees 39 347
16 Stone-Steel-Towers 9 84

- Total 1024 9225 Total 2138 40,638 Total 20,459 184,084

3.2. Evaluation Indicators

This experiment mainly adopts three evaluation metrics widely used in hyperspectral
classification: overall accuracy (OA), average accuracy (AA) and kappa coefficient (Kappa).
In practice, obtaining labeled data is usually more difficult than obtaining unlabeled data,
so the number of labeled training samples is often more limited. The test set is typically
obtained from more extensive unlabeled real scene data during the model deployment
phase. As a result, we split the dataset into two groups: a test dataset and a train dataset,
with a ratio of 1:9. In the end, the model must be used and its performance confirmed on
a sizable amount of test data, even though it can only rely on a small amount of labeled
data for training. Five experiments were carried out for each method in the comparison
and ablation experiments to prevent errors caused by randomly choosing training and test
samples when dividing the dataset. The better the model’s performance, as indicated by
the larger mean and smaller standard deviation in the experimental results.

OA is a metric used to assess the overall performance of the classification model
on all test samples. It is defined as the ratio of the number of samples that the model
correctly classified to the total number of samples. This indicates the overall accuracy
of the model’s classification on the entire dataset. When used on datasets with a fairly
balanced distribution of sample categories, OA is a more understandable statistic for rapidly
assessing the model’s overall performance. However, if the categories are imbalanced, it
may obscure the model’s performance on smaller categories. With N total samples and M
being the number of samples that the model properly classified, the overall accuracy can
be computed as follows:

OA =
M
N

. (19)

AA is a commonly used performance evaluation metric to measure the average classi-
fication accuracy of a classification model over all categories, which can be a good indicator
of the ability of a classification model to recognize each category, especially in the case
of category imbalance. There are K categories, and for each category i, its classification
accuracy Ai is defined as:

Ai =
TPi

TPi + FNi
(20)

where TPi is the number of correctly categorized samples in the i th class, and FNi is the
number of samples in the i th class that have been incorrectly categorized as other classes.
Thus AA is calculated as:



Remote Sens. 2024, 16, 4202 16 of 32

AA =
1
K

K

∑
i=1

Ai. (21)

Kappa is a statistical metric used to evaluate the consistency between the predicted
results of a classification model and the true labels. Compared to OA, Kappa takes into
account chance consistency (i.e., the correct classification results that could have been
produced when the classifier made a random guess), and as a result, it is more dependable
when there is an imbalance in categories. The Kappa statistic assesses how much better
the classifier’s performance is compared to random guessing. It evaluates the performance
of the model by calculating the difference between the actual accuracy and the desired
random accuracy. Let Pe be the desired stochastic accuracy, i.e., the correctness of the
model’s prediction when randomly classifying, which is calculated from the marginal
distributions of the true and predicted categories. The calculation formula is:

Pe =
K

∑
i=1

(
Ntruei

N
·

Npredicti

N
) (22)

here, Ntruei denotes the number of samples that actually belong to the ith class, while
Npredicti

represents the number of samples predicted to be in the ith class. The Kappa
statistic is then computed as follows:

Kappa =
OA − Pe

1 − Pe
. (23)

In addition to using evaluation metrics for model results, we introduce evalua-
tion metrics for the model itself: parameters [66] and Multiply-Accumulate Operations
(MACs) [67,68]. The number of parameters directly affects the storage requirements and
computational complexity of the model. Larger models require more memory and com-
putational resources for training and inference. MACs refers to the total number of multi-
plication and addition operations. It is a measure of the computational complexity of the
model, especially in the inference process. When comparing experiments, the introduction
of model parameters and MACs helps to fully assess the complexity and computational
requirements of the model. The number of model parameters provides an indication of the
model’s capacity, which helps to determine its learning capability and storage requirements.
MACs, on the other hand, measure the computational burden during inference and help to
compare the computational efficiency of different models.

3.3. Comparison Methods and Implement Details

This research chooses and compares several comparison approaches for HSI classi-
fication in order to show the efficacy of the proposed SSFAN method. They fall into two
categories specifically: transformer-based and convolutional neural network-based. 1D
CNN [34], 2D CNN [35], 3D CNN [37], SSRN [48], and Hybrid CNN [38] are among the
CNN-based comparison techniques; SpectralFormer [58] and SSFTT [60] are Transformer-
based techniques.

We use Pytorch [69,70] framework to write the model and training code to train the
model on NVIDIA GeForce RTX 2080 Ti. Three datasets, IP, PU and WHLK, which are
very widely used and representative, are selected for training. The IP and PU datasets are
mainly used for comparison and ablation experiments, while WHLK is mainly used in the
Discussion section to discuss the model’s ability to handle large datasets. A combination of
NGCE and NCE is used for the loss function, which is set to have a q value of 0.7 for NGCE
and 1.0 for both loss function weight parameters. The network parameters were updated
using the Adam optimizer, and the learning rate was set to 0.001. The entire training process
was set to 100 epochs, and every 5 epochs we evaluated the performance of the model on
the test set. The batch size of training is set to 100 to ensure convergence and reasonable
utilization of computational resources during the training process. Hyperspectral image



Remote Sens. 2024, 16, 4202 17 of 32

data is limited, so a larger test set with diverse samples is essential to ensure robust model
generalization. This approach enhances the stability, representativeness, and validity of
the evaluation while helping to mitigate overfitting in high-dimensional data. To optimize
generalization performance, 10% of the dataset is used for training, while the remaining
90% is reserved for testing.

4. Experimental Results and Analysis
4.1. Compare Experiment

The classification performance of various models on the Indian Pine dataset is dis-
played in Table 2. The tabular data shows that the SSFAN model outperforms other models
in terms of classification accuracy across the majority of classes, particularly in more com-
plicated classes like Alfalfa, Corn-mintill, Grass-pasture, and Soybean-clean. Compared
to 1D CNN (43.75%), the SSFAN model achieves a classification accuracy of 96.85% on
the Alfalfa class. The accuracy of classification compared to 1D CNN (43.75%), 2D CNN
(48.78%), and 3D CNN (41.46%) is noticeably greater. In contrast, the SpectralFormer and
SSFTT models have accuracies of 92.30% and 92.39% on this class, which are also excellent
but still lower than the performance of SSFAN. For the Corn-notill category, the SSFAN
model achieves a classification accuracy of 99.33%, which is slightly lower than that of
SpectralFormer (99.72%) and SSFTT (99.61%), but the overall performance is still very
good, showing SSFAN’s The robustness of SSFAN in dealing with spectral-spatial features.
In the Corn-mintill class, the SSFAN model again performs well, achieving an accuracy of
97.31%, outperforming all other models. In comparison, 1D CNN only achieved 56.72%
accuracy, 3D CNN 79.36%, and SSRN 94.23%, indicating that SSFAN is more capable of
feature extraction on complex classes. In the Grass-pasture class, the SSFAN model leads
all other models with an accuracy of 99.68%, indicating its significant advantage in dealing
with vegetation-based features. Similarly, the SSFAN model also performs well in the
Grass-pasture-mowed and Hay-windrowed categories, achieving 99.23% and 100.00%
accuracies, respectively. In the Oats class, although the SSFAN model achieved 95.66%
accuracy, which is slightly lower than SSFTT’s 97.89%, it still outperforms most of the other
models and shows high classification ability. In terms of OA, AA, and the Kappa, the SS-
FAN model exhibits strong performance, achieving an overall accuracy of 98.68%. This is
significantly higher than the 79.37% and 84.47% recorded by the 1D CNN and 2D CNN,
respectively, and the 91.03% obtained by the 3D CNN. The SSFAN model also surpasses the
Transformer-based models, SpectralFormer and SSFTT, by 2.22% and 1.72% in OA, 4.00%
and 5.19% in AA, and 2.94% and 1.94% in the Kappa, respectively. SSFAN demonstrates a
notable improvement in classification accuracy across the majority of classes, particularly in
challenging categories like Corn-mintill and Grass-pasture. This enhancement is primarily
attributed to the model’s innovative approach to spectral-spatial feature extraction, which
incorporates an attention mechanism and optimizes the feature extraction module.

Table 3 shows the classification performance of various models on the PU dataset.
Based on the PU dataset, the experimental findings demonstrate that SSFAN achieves
an OA of 99.83%, which is much greater than the other models. SpectralFormer and
SSFTT had OAs of 99.11% and 99.51%, respectively, among them. SSFAN outperforms
SpectralFormer by 0.72% and SSFTT by 0.32% percentage points. This suggests that SSFAN
can improve overall classification accuracy by more effectively extracting information
from spectral and spatial variables. SpectralFormer (98.35%) and SSFTT (98.95%) perform
substantially worse on AA than SSFAN (99.58%).Compared to SpectralFormer, SSFAN
outperforms it by 1.23% and SSFTT by 0.63% percentage points on AA. This outcome
demonstrates how stable and consistent SSFAN is when handling different kinds of data,
particularly when it comes to categorization accuracy. The highest performance of any
model is achieved by SSFAN, with a Kappa coefficient of 99.77%. By contrast, SSFAN
outperforms SpectralFormer by 1.52% and SSFTT by 0.42%. The Kappa coefficients of
SpectralFormer and SSFTT are 98.25% and 99.35%, respectively. This suggests that in terms
of classification accuracy and consistency, SSFAN has a considerable advantage when



Remote Sens. 2024, 16, 4202 18 of 32

processing data that is imbalanced between categories and complex scenarios. In terms of
specific classes, the SSFAN model demonstrates excellent performance in several classes.
For example, the accuracy on the Asphalt class reaches 99.93%, which is significantly higher
than the accuracy in other models. Specifically, with 98.99% and 99.79% for SpectralFormer
and SSFTT, SSFAN improves 0.94% and 0.14%, respectively. This indicates that SSFAN
shows a significant advantage in dealing with the Asphalt surface, a category with high
complexity. On the Gravel class, SSFAN achieves a classification accuracy of 100.00%,
which is significantly higher than that of SpectralFormer (98.98%) and SSFTT (99.71%),
with an improvement of 1.02% and 0.29% percentage points, respectively. This indicates
that SSFAN has excellent performance on fine-grained classification and complex texture
categories. In the Bare Soil class, SSFAN achieves an accuracy of 99.98%, outperforming
other models. Especially, compared with the 99.43% of Hybrid CNN and the 99.85% of
SSFTT, SSFAN improves 0.55% and 0.13%, respectively, which further validates SSFAN’s
ability to deal with the soil category with high classification accuracy. In the Bitumen class,
the classification accuracy of SSFAN is 99.99%, which is significantly higher than that of
1D CNN (19.40%) and 2D CNN (70.92%), which demonstrates its superior performance
in dealing with high-contrast categories. In the Shadows class, the classification accuracy
of SSFAN is 99.95%, which is higher than that of SpectralFormer (97.40%) and SSFTT
(96.50%), with an improvement of 2.55% and 3.45% percentage points, respectively, which
demonstrates the strong performance of SSFAN in dealing with Shadows, which is a
category with complex spectral features. The experimental results of the SSFAN model on
the PU dataset demonstrate its significant advantages in HSI classification tasks. SSFAN
not only outperforms other models in metrics such as OA, AA, and Kappa, but also shows
higher accuracy and stability in class-specific classification tasks. These results demonstrate
the power of the SSFAN model in dealing with complex spectral-spatial data.

Table 2. An evaluation of the classification performance of the IP dataset utilizing different methods.
(The optimal result is highlighted in bold, with comparisons made by first examining the mean and
then the standard deviation).

Class 1D
CNN [34]

2D
CNN [35] 3D CNN [37] SSRN [48] Hybrid

CNN [38] SpectralFormer [58] SSFTT [60] SSFAN
(Ours)

Alfalfa 43.75 ± 0.01 48.78 ± 0.09 41.46 ± 0.15 83.15 ± 0.00 87.80 ± 0.15 92.30 ± 0.14 92.39 ± 0.04 96.85 ± 0.04
Corn-notill 77.93 ± 0.12 78.13 ± 0.05 90.51 ± 0.01 95.31 ± 0.02 94.39 ± 0.03 99.72 ± 0.12 99.61 ± 0.02 99.33 ± 0.00

Corn-mintill 56.72 ± 0.05 83.51 ± 0.01 79.36 ± 0.18 94.23 ± 0.09 96.52 ± 0.01 96.12 ± 0.01 95.95 ± 0.00 97.31 ± 0.02
Corn 45.18 ± 0.00 47.42 ± 0.12 46.01 ± 1.44 90.68 ± 0.02 83.89 ± 0.02 98.98 ± 0.10 99.06 ± 0.00 99.72 ± 0.00

Grass-pasture 87.57 ± 0.01 75.12 ± 0.04 95.17 ± 0.34 97.79 ± 0.05 98.16 ± 0.14 95.14 ± 0.00 94.94 ± 0.00 99.68 ± 0.00
Grass-trees 98.63 ± 0.00 92.99 ± 0.06 99.70 ± 0.16 98.67 ± 0.01 99.54 ± 0.02 97.18 ± 0.01 97.80 ± 0.00 99.15 ± 0.00

Grass-pasture-mowed 65.11 ± 0.03 60.00 ± 0.05 88.00 ± 0.05 97.92 ± 0.04 92.97 ± 0.00 96.15 ± 0.14 97.85 ± 0.04 99.23 ± 0.01
Hay-windrowed 97.36 ± 0.01 98.37 ± 0.00 100.00 ± 0.00 99.26 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.73 ± 0.00 100.00 ± 0.00

Oats 37.14 ± 1.34 66.67 ± 0.34 48.89 ± 0.13 89.49 ± 0.01 86.27 ± 0.02 94.69 ± 0.25 97.89 ± 0.04 95.66 ± 0.04
Soybean-notill 66.03 ± 0.01 87.77 ± 0.01 86.06 ± 0.07 97.48 ± 0.06 97.94 ± 0.04 93.13 ± 0.21 93.63 ± 0.00 97.67 ± 0.02

Soybean-mintill 82.49 ± 0.00 89.09 ± 0.03 97.51 ± 0.07 98.16 ± 0.03 99.50 ± 0.16 95.92 ± 0.36 96.82 ± 0.01 97.45 ± 0.01
Soybean-clean 73.49 ± 0.34 63.67 ± 0.14 74.91 ± 0.06 93.07 ± 0.11 94.57 ± 0.01 96.66 ± 0.01 95.08 ± 0.01 99.25 ± 0.00

Wheat 99.30 ± 0.02 100.00 ± 0.01 99.46 ± 0.04 98.59 ± 0.01 94.59 ± 0.05 99.01 ± 0.02 98.25 ± 0.03 99.89 ± 0.00
Woods 93.78 ± 0.04 95.33 ± 0.11 99.74 ± 0.12 99.72 ± 0.18 99.29 ± 0.02 98.45 ± 0.07 99.75 ± 0.00 99.51 ± 0.00

Buildings-Grass-Trees-Drives 55.39 ± 0.08 66.76 ± 0.02 84.10 ± 0.07 93.31 ± 0.13 92.35 ± 0.06 97.17 ± 0.21 97.87 ± 0.01 97.82 ± 0.01
Stone-Steel-Towers 81.54 ± 0.01 91.57 ± 0.05 93.98 ± 0.00 93.79 ± 0.10 97.98 ± 0.00 91.10 ± 0.03 91.14 ± 0.08 95.65 ± 0.02

OA (%) 79.37 ± 0.02 79.37 ± 0.02 91.03 ± 0.24 94.78 ± 0.16 96.62 ± 0.18 96.46 ± 0.02 96.96 ± 0.42 98.68 ± 0.23
AA (%) 70.87 ± 0.75 77.83 ± 2.33 82.18 ± 1.33 94.67 ± 0.41 96.66 ± 0.13 94.45 ± 1.98 93.26 ± 1.75 98.45 ± 0.32

Kappa (×100) 76.28 ± 0.04 82.24 ± 1.14 89.68 ± 1.23 94.08 ± 0.12 96.29 ± 0.08 95.53 ± 0.78 96.53 ± 0.48 98.47 ± 0.27



Remote Sens. 2024, 16, 4202 19 of 32

Table 3. An evaluation of the classification performance of the PU dataset utilizing different methods.
(The optimal result is highlighted in bold, with comparisons made by first examining the mean and
then the standard deviation).

Class 1D CNN [34] 2D CNN [35] 3D CNN [37] SSRN [48] Hybrid CNN [38] SpectralFormer [58] SSFTT [60] SSFAN (Ours)

Asphalt 84.91 ± 0.01 93.28 ± 0.31 93.38 ± 0.01 95.35 ± 0.21 95.51 ± 0.15 98.99 ± 0.01 99.79 ± 0.00 99.93 ± 0.00
Meadows 94.14 ± 0.08 94.90 ± 0.18 93.99 ± 0.11 94.69 ± 0.00 99.49 ± 0.00 99.16 ± 0.00 99.96 ± 0.00 99.99 ± 0.00

Gravel 47.38 ± 0.11 75.55 ± 0.13 90.19 ± 0.23 96.48 ± 0.13 94.18 ± 0.12 98.98 ± 0.01 99.71 ± 0.00 100.00 ± 0.00
Trees 82.28 ± 0.09 93.87 ± 0.19 91.29 ± 0.09 96.37 ± 0.19 99.55 ± 0.00 97.37 ± 0.02 98.07 ± 0.00 98.77 ± 0.00

Painted metal sheets 99.76 ± 0.17 97.98 ± 0.07 95.47 ± 0.02 99.69 ± 0.00 96.71 ± 0.01 98.18 ± 0.01 99.78 ± 0.00 100.00 ± 0.00
Bare Soil 77.67 ± 0.10 70.05 ± 0.02 93.85 ± 0.06 97.49 ± 0.02 99.43 ± 0.0 99.25 ± 0.00 99.85 ± 0.00 99.98 ± 0.00
Bitumen 19.40 ± 0.22 70.92 ± 0.12 81.45 ± 0.14 95.36 ± 0.01 99.99 ± 0.00 99.07 ± 0.01 99.26 ± 0.00 99.75 ± 0.00

Self-Blocking Bricks 70.01 ± 0.03 90.30 ± 0.23 92.73 ± 0.03 91.49 ± 0.02 95.97 ± 0.01 97.84 ± 0.02 98.14 ± 0.00 99.35 ± 0.00
Shadows 98.55 ± 0.04 97.89 ± 0.15 95.46 ± 0.14 95.90 ± 0.12 95.22 ± 0.16 97.40 ± 0.00 96.50 ± 0.00 99.95 ± 0.00

OA (%) 83.50 ± 0.13 90.19 ± 0.56 92.01 ± 0.16 95.87 ± 0.02 98.16 ± 0.12 99.11 ± 0.14 99.51 ± 0.09 99.83 ± 0.04
AA (%) 74.90 ± 0.24 87.31 ± 0.21 90.45 ± 0.15 95.86 ± 0.23 97.35 ± 0.34 98.35 ± 0.33 98.95 ± 0.14 99.58 ± 0.08

Kappa (×100) 77.90 ± 0.02 87.52 ± 0.12 90.87 ± 0.02 95.78 ± 0.17 97.57 ± 0.16 98.25 ± 0.15 99.35 ± 0.12 99.77 ± 0.03

Figures 8 and 9 illustrate the classification performance of various models on the
IP dataset and the PU dataset, respectively. As can be seen from the figures, 1D CNN
mainly utilizes the spectral information for classification but ignores the spatial information,
and there is significant noise and misclassification in the image, especially in the boundary
region between different categories, indicating the limitation of 1D CNN in capturing spatial
features. 2D CNN focuses on spatial feature extraction but does not make full use of the
spectral information, and has a better boundary than 1D CNN in terms of boundary clarity
and coherence, but there are still some misclassifications, especially in regions with high
heterogeneity. 3D CNN utilizes both spectral and spatial information, and thus provides
more accurate classification results with significantly less noise compared to 1D and 2D
CNN. However, there are still classification errors in some complex regions, suggesting that
3D CNN, although effective, may still have some deficiencies when dealing with complex
spectral-spatial information. SSRN is a model based on spectral-spatial residual networks,
and the classification accuracy of SSRN is higher than that of the previous CNN models,
especially in terms of the category boundaries and details that are closer to the real labels.
Hybrid CNN combines the advantages of 1D and 2D CNNs, taking into account both
spectral and spatial features. The classification results of this model are relatively smoother
and the improvement of classification accuracy is obvious, especially in the complex region,
which is better than the simple 1D or 2D CNN. SpectralFormer and SSFTT are the models
based on the Transformer architecture, which emphasize the global dependence of spectral
information. The classification outcomes indicate that SpectralFormer is more effective
at handling intricate spectral data, with its results aligning more closely with the actual
labels in terms of overall structure. However, it may fall short in accurately capturing
certain details and spatial characteristics. SSFTT adopts the advanced spectral-spatial
feature extraction and fusion technology, which better preserves the spatial details, and the
classification results are clear and close to the real labels. Compared with the previous
models, SSFTT performs more stably when dealing with complex regions. The SSFAN
model provides the best classification results, fusing spectral and spatial features, and is
further optimized based on the use of the attention mechanism. The classification outcomes
indicate that the model excels in accuracy and detail preservation, closely resembling
the actual labeled maps, which highlights its robust classification capabilities. SSFAN
achieves the highest performance by effectively utilizing both spectral and spatial features
while maintaining detail, significantly surpassing both the CNN and Transformer models.
The figure shows that the SSFAN model performs exceptionally well on the PU dataset,
almost completely matching the classification results of the actual labels, highlighting its
outstanding capability in HSI classification tasks. The rest of the models also achieve good
results, such as Hybrid CNN with smoother classification performance after fusing the
advantages of 1D and 2D CNN. SpectralFormer slightly underperforms the other methods
in details although it improves the global dependence on spectral information. SSFTT
performs better in details and accuracy, close to the real labeled image.



Remote Sens. 2024, 16, 4202 20 of 32

(e) SSRN(a) Ground-truth map (b)1D CNN (c) 2D CNN (d) 3D CNN

(f) Hybrid CNN (g) SpectralFormer (h) SSFTT (i) SSFAN (Ours)

Corn-mintill

Background

Alfalfa

Corn-notill

Corn

Grass-pasture

Grass-trees
Grass-pasture-mowed

Hay-windrowed

Oats
Soybean-notill

Soybean-mintill

Soybean-clean

Wheat

Woods
Buildings-Grass-Trees
Stone-Steel-Towers

Figure 8. Classification map of IP dataset with different models.

(a) Ground-truth map (b)1D CNN (c) 2D CNN (d) 3D CNN (e) SSRN

(f) Hybrid CNN (g) SpectralFormer (h) SSFTT (i) SSFAN (Ours)

Painted Metal sheets

Background

Asphalt

Meadows

Gravel

Trees

Bare soil

Bitumen

Bricks

Shadow

Figure 9. Classification map of PU dataset with different models.

The heat map of the confusion matrix illustrates the accuracy of the classification
model’s predictions for each class using color gradients. It allows for quick identification of
misclassifications, aids in assessing model performance, and highlights areas for potential
improvement, making it a valuable visual tool for diagnosing and optimizing classification
issues. Figure 10 presents the confusion matrix derived from experiments conducted on
three datasets. In Figure 10a, the heat map for the IP dataset shows OA, AA, and Kappa



Remote Sens. 2024, 16, 4202 21 of 32

values of 98.87%, 98.77%, and 98.71%, respectively. Figure 10b displays the heat map for the
PU dataset, with OA, AA, and Kappa values of 99.83%, 99.58%, and 99.78%, respectively.
Figure 10c depicts the heat map for the WHLK dataset, showing OA, AA, and Kappa values
of 99.90%, 99.77%, and 99.87%, respectively. The confusion matrix heat map allows for a
quick assessment of the samples across the five classifications. For instance, in Figure 10a,
52 samples correctly identified as Corn-notill are mistakenly classified as Soybean-notill,
which has the highest error rate in the IP dataset. In Figure 10b, 19 samples correctly labeled
as Self-Blocking Bricks are incorrectly categorized as Trees, the class with the highest error
rate in the PU dataset. Similarly, in Figure 10c, 35 samples correctly identified as Roads and
houses are misclassified as Mixed weed, the class with the highest error rate in the WHLK
dataset. Analyzing the heat map of the confusion matrix provides a clear understanding of
the model’s performance across each class.

(a) Indian Pines dataset confusion matrix heatmap

(b) Pavia University dataset confusion matrix heatmap (c) LongKou dataset confusion matrix heatmap

Figure 10. Heat map of SSFAN’s confusion matrix on three different datasets. (a) IP. (b) PU. (c) WHLK.



Remote Sens. 2024, 16, 4202 22 of 32

4.2. Ablation Experiment

To thoroughly assess the effectiveness of the proposed SSFAN method, we performed
ablation experiments on the PU dataset, examining various combinations of the model’s
components. We evaluated three distinct combinations to determine the contribution of
each component to SSFAN’s classification accuracy. The results of all experiments are
presented in Table 4. Specifically, the model was divided into three components: PSSB, Scan
Block, and SEMB. The PSSB plays a crucial role in the overall model. When the PSSB module
is removed, the SSFAN model experiences a reduction in OA, AA, and Kappa values by
12.71%, 16.24%, and 10.54%, respectively, when tested on the PU dataset. We also replaced
the Scan Block with a simple flattening operation for ablation experiments, which led to a
decrease in OA, AA, and Kappa values by 3.11%, 2.42%, and 3.14%, respectively. This result
indicates that the Scan Block, by extracting multi-scale features from the central region and
its surroundings, enhances the model’s ability to capture local information of varying sizes,
thereby improving classification performance. In the third scenario, which excluded the
SEMB module, the SSFAN model experienced a decrease in OA, AA, and Kappa values by
6.06%, 5.34%, and 5.01%, respectively, when tested on the PU dataset. The SEMB module
effectively captures complex sequential features and dependencies, with adaptive feature
weight assignment, enabling SSFAN to handle more complex features, particularly in
large-scale hyperspectral datasets. Overall, the comprehensive analysis of experimental
results further confirms the effectiveness of the SSFAN model.

Table 4. Ablation analysis of the SSFAN model based on the PU dataset. (The optimal result is
highlighted in bold, with comparisons made by first examining the mean and then the standard
deviation).

Cases
Component Indicators

PSSB Scan Block SEMB OA (%) AA (%) Kappa (×100)

1 ✗ ✓ ✓ 87.12 ± 1.14 83.34 ± 1.45 89.23 ± 1.13
2 ✓ ✗ ✓ 96.72 ± 0.68 97.16 ± 0.34 96.63 ± 0.56
3 ✓ ✓ ✗ 93.77 ± 0.23 94.24 ± 1.01 94.76 ± 0.47

4 ✓ ✓ ✓ 99.83 ± 0.04 99.58 ± 0.08 99.77 ± 0.05

5. Discussion
5.1. Advantages of Parallel Spectral–Spatial Feature Extraction Block

Compared with the single-channel Spectral-Spatial Feature Extraction Block (SSSB),
the parallel-channel Parallel Spectral-Spatial Feature Extraction Block (PSSB) can extract
richer spectral-spatial information. To assess the performance of this module, we carried out
several experiments using three distinct datasets, evaluating the No Spectral-Spatial Fea-
ture Extraction Block (NSSB), the single streams Spectral-Spatial Feature Extraction Block
(SSSB), and the parallel streams Spectral-Spatial Feature Extraction Block (PSSB). The ex-
perimental findings are presented in Table 5. The table indicates that the Spectral-Spatial
Feature Extraction Block greatly improves the classification performance. Specifically,
the OA metrics on the IP, Pavia University, and WHLK datasets are improved by 11.91%,
12.71%, and 12.32%, respectively, using PSSB compared to NSSB, and the AA and Kappa
metrics also show similar increases. These ablation experimental results indicate that the
PSSB module has a significant performance enhancement in the overall model, further
validating its importance and effectiveness in the classification task. To further illustrate
the advantages of the parallel streams, we performed comparative experiments between
PSSB and SSSB. The results indicate that PSSB surpasses SSSB in all three metrics: OA, AA
and Kappa, highlighting the enhanced effectiveness of the parallel channel in extracting
spectral-spatial features.



Remote Sens. 2024, 16, 4202 23 of 32

Table 5. Ablation Experiment of Parallel Spectral–Spatial Feature Extraction Block. (The optimal
result is highlighted in bold, with comparisons made by first examining the mean and then the
standard deviation).

Module
IP

OA (%) AA (%) Kappa (×100) Training Time (s) Test Time (s)

NSSB 86.77 ± 1.33 76.65 ± 2.78 85.47 ± 1.56 64.65 ± 0.38 1.34 ± 1.23
SSSB 98.57 ± 0.66 97.91 ± 1.45 98.37 ± 0.76 69.80 ± 0.53 1.68 ± 0.53
PSSB 98.68 ± 0.23 98.45 ± 0.32 98.47 ± 0.27 78.66 ± 0.15 1.87 ± 0.01

Module
PU

OA (%) AA (%) Kappa (×100) Training Time (s) Test Time (s)

NSSB 87.12 ± 1.14 83.34 ± 1.45 89.23 ± 1.13 245.72 ± 4.56 6.12 ± 1.34
SSSB 99.80 ± 0.03 99.62 ± 0.09 99.65 ± 0.17 272.05 ± 1.29 7.31 ± 0.08
PSSB 99.83 ± 0.04 99.58 ± 0.08 99.77 ± 0.05 310.72 ± 0.52 8.17 ± 0.06

Module
WHLK

OA (%) AA (%) Kappa (×100) Training Time (s) Test Time (s)

NSSB 87.56 ± 1.08 85.10 ± 1.10 86.34 ± 1.31 980.66 ± 78.34 30.45 ± 6.26
SSSB 99.68 ± 0.20 99.72 ± 0.07 99.84 ± 0.07 1364.08 ± 6.19 36.34 ± 1.20
PSSB 99.88 ± 0.02 99.70 ± 0.05 99.85 ± 0.03 1452.56 ± 51.53 37.05 ± 2.22

To validate the effectiveness of the proposed PSSB, which employs two Spectral–Spatial
Feature Extraction Blocks, we conducted a series of comparative experiments on the PU
hyperspectral dataset, with the results presented in Table 6. From the results, the OA and
Kappa value using PSSB reached 99.83% and 99.77%, respectively, further demonstrating
the effectiveness of PSSB. Meanwhile, as the number of Spectral–Spatial Feature Extraction
Blocks increased, the model’s parameter count gradually increased; however, its perfor-
mance did not improve and instead exhibited a declining trend. This may indicate that the
model is experiencing overfitting.

Table 6. Effect of Different Number of Spectral-Spatial Feature Extraction Block on Experimental
Results on PU Dataset. (The optimal result is displayed in bold, compare the mean first, then compare
the standard deviation).

Number of Spectral–Spatial
Feature Extraction Block

Evaluation Indicators

OA (%) AA (%) Kappa (×100) Parameters

1 99.80 ± 0.03 99.62 ± 0.09 99.65 ± 0.17 22.80 K
2 (Ours) 99.83 ± 0.04 99.58 ± 0.08 99.77 ± 0.05 39.86 K

3 99.81 ± 0.01 99.55 ± 0.04 99.75 ± 0.02 59.10 K
4 99.76 ± 0.14 99.50 ± 0.24 99.69 ± 0.19 77.51 K

5.2. Discussion About Patch Size

HSIs not only contain rich spectral information, but also carry spatial information.
Classification using a pixel point alone may ignore the spatial context around the pixel point,
while segmenting the image into patches can effectively utilize the local spatial information.
Each patch’s size, or the amount of the extension from the center pixel to the outermost pixel,
is determined by its patch size. A more detailed categorization might come from a smaller
patch size, but the accuracy of the classification might suffer from insufficient contextual
data. Using a larger patch size gathers more contextual details, enhancing the reliability of
the classification. However, this also raises computational complexity, potentially resulting
in longer training durations or increased memory requirements. Therefore, it is crucial
to choose an appropriate patch size. To validate the effectiveness of different patch size
values used in this study, a series of experiments were carried out on three datasets with
varying patch size values, as presented in Table 7. The results shows that a patch size
of 11 consistently leads to the fastest training and testing times; however, the other three
metrics do not achieve optimal values. As the value of patch size increases, the training
time and testing time both increase, while the values of the remaining three metrics first
increase and then decrease. There are two main reasons for this: first, as the patch size
grows, the spatial information may increase, but the “purity” of the spectral information



Remote Sens. 2024, 16, 4202 24 of 32

could diminish. This happens because a larger patch might include spectral features from
various categories, causing the spectral characteristics of the central pixel to be mixed
with those of the surrounding pixels. Second, increasing the patch size also raises the
dimensionality of the input data, which can complicate the model and increase the risk
of overfitting. Therefore, the decision to set the patch size at 15 in this study is based on
experimental evidence.

Table 7. The impact of different patch sizes on three datasets. (The optimal result is highlighted in
bold, with comparisons made by first examining the mean and then the standard deviation).

Patch Size
IP

OA (%) AA (%) Kappa (×100) Training Time (s) Test Time (s)

11 × 11 98.66 ± 0.36 98.24 ± 0.23 98.45 ± 0.24 75.62 ± 2.69 1.68 ± 0.33
13 × 13 98.75 ± 0.15 98.23 ± 0.16 98.47 ± 0.23 77.44 ± 1.94 1.74 ± 0.08
15 × 15 98.68 ± 0.23 98.45 ± 0.32 98.47 ± 0.27 78.66 ± 0.15 1.87 ± 0.01
17 × 17 98.65 ± 0.31 98.48 ± 0.53 98.42 ± 0.21 79.07 ± 0.57 2.02 ± 0.14
19 × 19 98.12 ± 0.90 97.62 ± 0.66 98.37 ± 0.36 80.01 ± 0.17 2.25 ± 0.09

Patch Size
PU

OA (%) AA (%) Kappa (×100) Training Time (s) Test Time (s)

11 × 11 99.52 ± 0.30 99.41 ± 0.30 99.37 ± 0.22 303.12 ± 3.21 8.05 ± 0.16
13 × 13 99.44 ± 0.19 99.44 ± 0.25 99.43 ± 0.18 306.33 ± 3.50 8.47 ± 0.39
15 × 15 99.83 ± 0.04 99.58 ± 0.08 99.77 ± 0.05 310.72 ± 0.52 8.17 ± 0.06
17 × 17 99.47 ± 0.26 99.58 ± 0.15 99.46 ± 0.25 329.81 ± 9.97 8.87 ± 0.48
19 × 19 99.56 ± 0.15 99.54 ± 0.13 99.37 ± 0.16 365.12 ± 4.28 9.60 ± 0.15

Patch Size
WHLK

OA (%) AA (%) Kappa (×100) Training Time (s) Test Time (s)

11 × 11 99.56 ± 0.17 99.66 ± 0.16 99.37 ± 0.39 1315.36 ± 57.84 31.45 ± 1.65
13 × 13 99.66 ± 0.05 99.52 ± 0.21 99.47 ± 0.38 1411.16 ± 60.54 34.74 ± 1.81
15 × 15 99.88 ± 0.02 99.70 ± 0.05 99.85 ± 0.03 1452.56 ± 51.53 37.05 ± 2.22
17 × 17 99.79 ± 0.15 99.72 ± 0.22 99.60 ± 0.28 1609.76 ± 110.09 46.23 ± 2.55
19 × 19 99.74 ± 0.14 99.69 ± 0.16 99.51 ± 0.23 1706.76 ± 105.00 57.43 ± 4.44

5.3. Discussion About Loss Function

The choice of loss function directly affects the optimization process and final per-
formance of the model. Different tasks and data distributions may require different loss
functions. In order to verify the effectiveness of the hybrid loss function proposed in this
paper, a series of experiments are conducted and the results are shown in Table 8. We use
the regular cross-entropy loss function (CE) as a comparison in order to mimic the scenario
without applying the hybrid loss function (NCE+ NGCE) described in this research, i.e., to
conduct loss function ablation experiments. On three datasets, we conducted four sets
of experiments: CE, NCE, NGCE and NCE + NGCE. The experimental findings indicate
that among the four different loss functions, the hybrid loss function introduced in this
paper yields the best performance. Notably, on the PU dataset, the NCE + NGCE hybrid
loss function stands out as the most effective, achieving optimal results in the three key
evaluation metrics: Overall Accuracy (OA), Average Accuracy (AA), and Kappa. Due
to the inclusion of two loss functions in our proposed hybrid loss function, both train-
ing and testing times will be extended. However, when applied to the WHLK dataset,
these times are shorter compared to other combinations of loss functions. This may be
attributed to the extensive data and experimental samples available in the WHLK dataset.
The NCE + NGCE hybrid loss function yields the best performance across the three pri-
mary evaluation metrics: OA, AA and Kappa. NCE + NGCE hybrid function’s advantage
is more obvious on the data with large samples. Multiple sets of experiments on three
datasets demonstrate the effectiveness of the hybrid loss function proposed in this paper.



Remote Sens. 2024, 16, 4202 25 of 32

Table 8. Ablation Experiment of Loss Function. (The optimal result is highlighted in bold, with com-
parisons made by first examining the mean and then the standard deviation).

Loss Function
IP

OA (%) AA (%) Kappa (×100) Training Time (s) Test Time (s)

CE 98.60 ± 0.44 98.81 ± 0.55 98.40 ± 0.51 70.60 ± 0.47 1.68 ± 0.01
NCE 98.42 ± 0.90 98.77 ± 0.51 98.23 ± 1.01 71.06 ± 0.84 1.67 ± 0.02

NGCE 97.46 ± 0.39 94.47 ± 3.62 97.10 ± 0.44 70.62 ± 0.19 1.66 ± 0.01
NCE + NGCE 98.68 ± 0.23 98.45 ± 0.32 98.47 ± 0.27 78.66 ± 0.15 1.87 ± 0.01

Loss Function
PU

OA (%) AA (%) Kappa (×100) Training Time (s) Test Time (s)

CE 99.82 ± 0.07 99.54 ± 0.08 99.76 ± 0.09 276.76 ± 3.10 7.18 ± 0.08
NCE 99.79 ± 0.02 99.48 ± 0.09 99.72 ± 0.02 272.96 ± 3.22 7.14 ± 0.12

NGCE 99.20 ± 1.40 97.42 ± 4.97 98.94 ± 1.86 275.86 ± 1.03 7.33 ± 0.08
NCE + NGCE 99.83 ± 0.04 99.58 ± 0.08 99.77 ± 0.05 310.72 ± 0.52 8.17 ± 0.06

Loss Function
WHLK

OA (%) AA (%) Kappa (×100) Training Time (s) Test Time (s)

CE 99.85 ± 0.01 99.66 ± 0.03 99.87 ± 0.01 1493.53 ± 60.12 38.92 ± 1.55
NCE 99.76 ± 0.29 99.58 ± 0.13 99.68 ± 0.38 1477.56 ± 48.55 38.13 ± 1.31

NGCE 99.86 ± 0.01 99.74 ± 0.07 99.81 ± 0.02 1444.56 ± 45.33 37.45 ± 1.44
NCE + NGCE 99.88 ± 0.02 99.70 ± 0.05 99.85 ± 0.03 1452.56 ± 51.53 37.05 ± 2.22

5.4. Training Time and Test Time

Training time is the stage when the model learns on the training dataset, which directly
affects the model’s fitting ability and complexity, while testing time is the stage when the
model is deployed to make predictions on new data, which affects the model’s real-time
performance and application scenarios. The balance between training time and testing time
is an important consideration in designing an efficient model, which is directly related to
the usability and practicality of the model. In order to verify the effectiveness of the model
proposed in this paper, we conducted a series of experiments, the results of which are
shown in Table 9. In terms of training time, the SSFAN model performs best on all datasets.
Specifically, on the IP dataset, the training time of SSFAN is 78.66 s, showing a significant
advantage over other models. For example, compared to 2D CNN (87.51 s), SSFAN’s
training time is reduced by 8.85 s, which indicates that SSFAN is more efficiently trained
when dealing with this dataset. On the dataset, the training time of SSFAN is 310.72 s,
which is slightly higher than that of 2D CNN (114.63 s), but still shows a large time saving
compared to SSRN (704.40 s) and 3D CNN (688.85 s). On the WHLK dataset, the training
time of SSFAN is 1452.56 s, which is not as long as SpectralFormer (1567.77 s) and Hybrid
CNN (2145.48 s), but is significantly lower than SSRN (5689.40 s) and 3D CNN (2490.97 s),
showing its higher training efficiency. SSFAN also shows excellent performance in terms
of testing time. On the IP dataset, the test time of SSFAN is 1.87 s, which is significantly
lower than that of 2D CNN (3.32 s) and all other models. This shows that SSFAN not only
performs well in the training phase, but also provides fast response time in the testing
phase. SSFAN took 8.17 s to test on the PU dataset, while 2D CNN and SpectralFormer took
4.82 and 19.54 s, respectively. Although SSFAN’s test time on this dataset is not the shortest,
its overall performance is still optimal. On the WHLK dataset, the test time of SSFAN is
37.05 s, which shows a significant advantage over 2D CNN (78.56 s) and Hybrid CNN
(134.45 s), and the gap is more obvious when compared to SSRN (267.67 s) and 3D CNN
(222.56 s). These results indicate that the SSFAN model can provide higher computational
efficiency when dealing with complex datasets, which is especially important for large-scale
data processing in practical applications. Its shorter training and testing time not only
improves the practical efficiency of the experiment, but also reduces the consumption of
resources, providing a reliable solution for efficient data processing.



Remote Sens. 2024, 16, 4202 26 of 32

Table 9. The duration of training and evaluation for various models across three distinct datasets.
(The optimal result is highlighted in bold, with comparisons made by first examining the mean and
then the standard deviation).

Compare Methods
IP PU WHLK

Training Times (s) Test Time (s) Training Times (s) Test Time (s) Training Times (s) Test Time (s)

2D CNN 87.51 ± 1.33 3.32 ± 0.04 114.63 ± 4.33 4.82 ± 0.16 560.50 ± 58.74 78.56 ± 2.45
3D CNN 435.65 ± 10.34 6.90 ± 0.34 688.85 ± 12.33 14.62 ± 0.16 2490.97 ± 30.74 222.56 ± 8.34

SSRN 704.40 ± 11.45 8.83 ± 0.41 876.67 ± 15.17 24.23 ± 1.67 5689.40 ± 108.67 267.67 ± 12.56
Hybrid CNN 396.56 ± 7.28 7.93 ± 0.53 559.23 ± 12.33 28.40 ± 2.17 2145.48 ± 73.43 134.45 ± 5.59

SpectralFormer 266.71 ± 3.28 6.44 ± 1.33 579.13 ± 14.23 19.54 ± 1.78 1567.77 ± 64.54 180.34 ± 4.65
SSFTT 137.40 ± 0.15 5.29 ± 0.15 367.66 ± 1.67 9.85 ± 0.16 1496.65 ± 34.74 67.56 ± 4.47

SSFAN(Ours) 78.66 ± 0.15 1.87 ± 0.01 310.72 ± 0.52 8.17 ± 0.06 1452.56 ± 51.53 37.05 ± 2.22

5.5. Discussion About Parameters and MACs

Parameters and MACs are two key metrics when discussing the efficiency of deep
learning models. The number of parameters influences the model size and the memory
needed for training, whereas MACs indicate the computational complexity during the in-
ference process. To demonstrate the effectiveness of the models presented in this paper, we
compare the parameter counts and MACs across different models, with the experimental
results summarized in Table 10. In terms of the number of parameters, the SSFAN model
has the least 39.86K parameters, showing a significant advantage over other models. For ex-
ample, the 1D CNN, although also smaller in the number of parameters (20.43 K), is far
inferior to SSFAN in terms of performance metrics. In terms of computational complexities
(MACs), SSFAN also exhibits lower computational complexity (10.35 M), which shows
significant computational savings compared to 2D CNN (30.45 M) and 3D CNN (98.67 M).
This shows that SSFAN has a strong advantage in terms of computational efficiency and
is able to achieve efficient performance with reduced consumption of computational re-
sources. The SSFAN model surpasses all other models evaluated on the PU dataset. Its
benefits in terms of parameter count and computational complexity enable it to deliver
effective classification results even with restricted resources. Regarding accuracy, SSFAN
achieves the best results in OA, AA and Kappa, demonstrating its overall excellence in
classification tasks. This enhancement in performance is due not only to the optimization of
the model’s architecture but also to its effectiveness in feature extraction and data handling.
Figure 11 demonstrates the scatter plot of SSFAN model on PU dataset, where the size of
the circle represents the size of the MACs value, from which it can be seen that the SSFAN
model is able to maintain the highest OA and AA values with fewer number of parameters
and MACs values.

Table 10. Parameters, MACs, and Classification Performance for Various Models on the PU Dataset.
(The optimal result is highlighted in bold, with comparisons made by first examining the mean and
then the standard deviation).

Evaluation
Indicators Parameters MACs OA (%) AA (%) Kappa (×100)

1D CNN 20.43 K 8.14 M 83.50 ± 0.13 74.90 ± 0.24 77.90 ± 0.02
2D CNN 108.45 K 30.45 M 90.19 ± 0.56 87.31 ± 0.21 87.52 ± 0.12
3D CNN 546.78 K 98.67 M 92.01 ± 0.16 90.45 ± 0.15 90.87 ± 0.02

SSRN 360.01 K 15.09 M 95.87 ± 0.02 95.86 ± 0.23 95.78 ± 0.17
Hybrid CNN 2234.98 K 150.56 M 98.16 ± 0.12 97.35 ± 0.34 97.57 ± 0.16

SpectralFormer 198.12 K 51.43 M 99.11 ± 0.14 98.35 ± 0.33 98.25 ± 0.15
SSFTT 153.22 K 11.43 M 99.51 ± 0.09 98.95 ± 0.14 99.35 ± 0.12

SSFAN (Ours) 39.86 K 10.35 M 99.83 ± 0.04 99.58 ± 0.08 99.77 ± 0.03

As shown in Figure 11, the scatter plots of different models on the Pavia University
dataset are demonstrated, where the size of the scatter represents the size of the MACs
values, from which it can be seen that the SSFAN model is able to maintain the highest OA
and AA values with fewer number of parameters and MACs values, which illustrates that
this paper’s proposed effectiveness of the model.



Remote Sens. 2024, 16, 4202 27 of 32

(a) Overall Accuracy Scatter Plot for Different Models (b) Average Accuracy Scatter Plot for Different Models 

Figure 11. The scatterplot illustrates the relationship between the quantity and performance of
various model parameters. (The size of each scatter point corresponds to the value of the MACs,
with smaller MAC values indicating superior performance).

5.6. Discussion of Model Robustness

To assess the robustness [71] of the SSFAN model proposed in this study, we introduced
various levels of Gaussian, Salt-and-Pepper, and Poisson noise into the dataset. Gaussian
noise consists of random noise with amplitudes that follow a normal distribution, Poisson
noise represents discrete events that occur randomly, while Salt-and-Pepper noise causes
abrupt shifts in pixel values to extreme levels. By adjusting the parameters for each noise
type, we progressively increased noise intensity to evaluate model performance across
these different noise levels. The experimental results are summarized in the Table 11.

For Gaussian noise, the mean was set to zero, with standard deviation (std) values
tested at 1, 5, and 10. As the standard deviation increased, classification accuracy metrics
showed slight improvements. At an std of 1, the OA was 99.78%, AA reached 99.62%,
and the Kappa was 99.79%. When the std rose to 10, these metrics increased slightly,
with OA reaching 99.86%, AA at 99.67%, and Kappa at 99.81%. This indicates that moder-
ate Gaussian noise does not hinder model robustness; instead, it may enhance the model’s
generalization ability. For salt-and-pepper noise, the noise level was controlled by set-
ting the parameters salt_prob and pepper_prob, both tested at levels of 0.1, 0.3, and 0.5.
As noise levels increased, classification accuracy metrics gradually declined. For instance,
with salt_prob and pepper_prob at 0.1, OA reached 99.23%, AA was 98.32%, and Kappa
stood at 98.98%. When these parameters were raised to 0.5, OA fell to 95.01%, AA dropped
to 92.05%, and Kappa decreased to 93.34%. These results suggest that high levels of salt-
and-pepper noise significantly impact model accuracy, likely due to the noise’s disruptive
effect on image pixels. For Poisson noise, intensity was controlled by adjusting the scale
parameter, tested at values of 1, 10, and 20. It was observed that classification accuracy did
not decrease significantly as the scale increased. At a scale of 1, OA was 99.83%, AA reached
99.63%, and Kappa was 99.78%. With the scale at 10, OA rose slightly to 99.87%, AA reached
99.71%, and Kappa was 99.83%. At a scale of 20, OA showed a slight decrease to 99.73%.
This indicates that Poisson noise has a minimal effect on model performance and may
even positively contribute to model generalization. In summary, the results demonstrate
that moderate levels of Gaussian and Poisson noise can enhance model generalization and
robustness. In contrast, high levels of salt-and-pepper noise significantly reduce model
performance, suggesting a more destructive impact on the data.



Remote Sens. 2024, 16, 4202 28 of 32

Table 11. Effect of Different Noise Types on Classification Performance Metrics for the PU Dataset.

Different Noise
Evaluation Indicators

OA (%) AA (%) Kappa (×100)

Gaussian Noise
(mean, std)

mean: 0 std: 1 99.78 ± 0.13 99.62 ± 0.10 99.79 ± 0.03
mean: 0 std: 5 99.85 ± 0.04 99.66 ± 0.07 99.80 ± 0.05
mean: 0 std: 10 99.86 ± 0.03 99.67 ± 0.03 99.81 ± 0.04

Salt and Pepper Noise
(salt_prob, pepper_prob)

salt_prob: 0.1 pepper_prob: 0.1 99.23 ± 0.28 98.32 ± 0.47 98.98 ± 0.37
salt_prob: 0.3 pepper_prob: 0.3 97.75 ± 0.82 96.86 ± 0.65 97.55 ± 0.20
salt_prob: 0.5 pepper_prob: 0.5 95.01 ± 1.81 92.05 ± 2.16 93.34 ± 2.49

Poisson Noise
(scale)

scale: 1 - 99.83 ± 0.05 99.63 ± 0.13 99.78 ± 0.07
scale: 10 - 99.87 ± 0.01 99.71 ± 0.08 99.83 ± 0.01
scale: 20 - 99.73 ± 0.12 99.48 ± 0.16 99.64 ± 0.16

No Noise - - 99.83 ± 0.04 99.58 ± 0.08 99.77 ± 0.05

5.7. Limitations and Future Perspectives

The SSFAN model innovatively integrates the PSSB, Scan Block, and SEMB modules to
create a compact and lightweight architecture capable of efficiently extracting and process-
ing spectral and spatial information. This results in excellent classification performance and
robust real-time processing capability. However, there remains room for further optimiza-
tion. Although the Scan module introduces an innovative spatial feature arrangement, its
manually defined center scanning process may limit its ability to capture complex spatial
relationships, particularly when dealing with hyperspectral data that exhibit significant
spatial variability. This scanning method lacks flexibility, which may hinder the model’s
ability to fully utilize spatial information at each pixel. Furthermore, while the SSRB se-
quence processing mechanism within the SEMB module effectively integrates sequence
information, its computational complexity remains high when processing long sequences,
potentially increasing model inference time and computational resource demands. In data
preprocessing stage, this study+ did not account for potential overlap between training
and testing datasets caused by the use of patches.

Future research will explore more flexible and efficient spatial feature extraction
methods to enhance the model’s ability to capture spatial features at multiple scales. Ad-
ditionally, optimizing the computational efficiency of the SSRB module will be a primary
focus, particularly by introducing more lightweight sequence processing mechanisms to
reduce the model’s complexity and computational cost. Further studies will also investi-
gate the effective integration of multimodal data or other complementary information to
provide more contextual insights, thereby enhancing the accuracy of hyperspectral image
classification. Moreover, we should explore new dataset partitioning methods to minimize
overlap between training and testing datasets during data preprocessing, which is essential
for reliable model evaluation.

6. Conclusions

In this paper, a lightweight SSFAN method based on spectral-spatial feature extraction
and attention mechanism is proposed to improve the classification performance of HSI.
SSFAN mainly consists of three modules, namely, PSSB, Scan Block, and SEMB, which
can effectively capture and process the spectral and spatial information in HSIs. The PSSB
preliminarily extracts the spectral and spatial features of the HSIs, which lays a solid
foundation for subsequent processing. The PSSB initially extracts the spectral and spatial
features in HSIs, laying a solid foundation for subsequent processing; the Scan Block
captures both local and global spatial relationships, enhancing the ability to understand
complex scenes and ensuring that the model can fully utilize the spatial context information
in the images, thus improving the classification accuracy; the SEMB module, consisting
of the SSRB and the MLP Block, is mainly used for further processing and fusion of
the spectral and spatial features, of which the SSRB is used for further processing and
fusion of the spectral and spatial features. By introducing the adaptive weight allocation
mechanism SToken Module, it is able to flexibly process the time step and dimension of
features, and deeply extract complex spectral and spatial features through multiple state



Remote Sens. 2024, 16, 4202 29 of 32

updates. The experimental results show that compared with other models, SSFAN can still
maintain the highest classification accuracy while reducing the number of parameters and
the value of MACs, which significantly accelerates the training and inference speed of the
model, and improves its potential for practical applications in environments with limited
computational resources.

Author Contributions: Conceptualization, C.Z.; Methodology, C.W., C.Z. and W.Y.; Software, C.Z.
and B.L.; Validation, C.Z. and Y.Z.; Formal analysis, C.Z.; Investigation, C.Z.; Resources, C.W., C.Z.
and G.W.; Data curation, C.Z. and Z.Z.; Writing—original draft, C.Z.; Writing—review & editing,
C.Z.; Visualization, C.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by the Chunhui Program Cooperative Research Project of Chinese
Ministry of Education (HZKY20220279), Henan Provincial Science and Technology Research Project
(232102211019, 222102210131), the Key Research Project Fund of Institution of Higher Education in
Henan Province (23A520029), Henan Polytechnic University for the Double First-Class Project of
Surveying and Mapping Disciplines (GCCYJ202413), and Japan Society for the Promotion of Science
(JSPS) KAKENHI Grant (No.23K18517).

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Data Availability Statement: The Indian Pines and Pavia University datasets are available at:
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes (accessed
on 5 August 2024). The WHU-Hi-LongKou datasets are available at http://rsidea.whu.edu.cn/
resource_WHUHi_sharing.htm (accessed on 5 August 2024).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bioucas-Dias, J.M.; Plaza, A.; Camps-Valls, G.; Scheunders, P.; Nasrabadi, N.; Chanussot, J. Hyperspectral remote sensing data

analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–36. [CrossRef]
2. Noor, S.S.M.; Michael, K.; Marshall, S.; Ren, J.; Tschannerl, J.; Kao, F.J. The properties of the cornea based on hyperspectral

imaging: Optical biomedical engineering perspective. In Proceedings of the IEEE 2016 International Conference on Systems,
Signals and Image Processing (IWSSIP), Bratislava, Slovakia, 23–25 May 2016; pp. 1–4.

3. Wang, J.; Zhang, L.; Tong, Q.; Sun, X. The Spectral Crust project—Research on new mineral exploration technology. In Proceedings
of the IEEE 2012 4th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS),
Shanghai, China, 4–7 June 2012; pp. 1–4.

4. Dale, L.M.; Thewis, A.; Boudry, C.; Rotar, I.; Dardenne, P.; Baeten, V.; Pierna, J.A.F. Hyperspectral imaging applications in
agriculture and agro-food product quality and safety control: A review. Appl. Spectrosc. Rev. 2013, 48, 142–159. [CrossRef]

5. Veraverbeke, S.; Dennison, P.; Gitas, I.; Hulley, G.; Kalashnikova, O.; Katagis, T.; Kuai, L.; Meng, R.; Roberts, D.; Stavros, N.
Hyperspectral remote sensing of fire: State-of-the-art and future perspectives. Remote Sens. Environ. 2018, 216, 105–121. [CrossRef]

6. Zhong, Y.; Cao, Q.; Zhao, J.; Ma, A.; Zhao, B.; Zhang, L. Optimal decision fusion for urban land-use/land-cover classification
based on adaptive differential evolution using hyperspectral and LiDAR data. Remote Sens. 2017, 9, 868. [CrossRef]

7. Ardouin, J.P.; Lévesque, J.; Rea, T.A. A demonstration of hyperspectral image exploitation for military applications. In Proceedings
of the IEEE 2007 10th International Conference on Information Fusion, Quebec, QC, Canada, 9–12 July 2007; pp. 1–8.

8. Gevaert, C.M.; Suomalainen, J.; Tang, J.; Kooistra, L. Generation of spectral–temporal response surfaces by combining multispec-
tral satellite and hyperspectral UAV imagery for precision agriculture applications. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
2015, 8, 3140–3146. [CrossRef]

9. Sun, L.; He, C.; Zheng, Y.; Tang, S. SLRL4D: Joint Restoration of S ubspace L ow-R ank L earning and Non-Local 4-D Transform
Filtering for Hyperspectral Image. Remote Sens. 2020, 12, 2979. [CrossRef]

10. He, C.; Sun, L.; Huang, W.; Zhang, J.; Zheng, Y.; Jeon, B. TSLRLN: Tensor subspace low-rank learning with non-local prior for
hyperspectral image mixed denoising. Signal Process. 2021, 184, 108060. [CrossRef]

11. Sun, L.; Wu, F.; Zhan, T.; Liu, W.; Wang, J.; Jeon, B. Weighted nonlocal low-rank tensor decomposition method for sparse unmixing
of hyperspectral images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1174–1188. [CrossRef]

12. Yang, S.; Shi, Z. Hyperspectral image target detection improvement based on total variation. IEEE Trans. Image Process. 2016,
25, 2249–2258. [CrossRef]

13. Sun, L.; Wu, Z.; Liu, J.; Xiao, L.; Wei, Z. Supervised spectral–spatial hyperspectral image classification with weighted Markov
random fields. IEEE Trans. Geosci. Remote Sens. 2014, 53, 1490–1503. [CrossRef]

14. Sun, L.; Ma, C.; Chen, Y.; Zheng, Y.; Shim, H.J.; Wu, Z.; Jeon, B. Low rank component induced spatial-spectral kernel method for
hyperspectral image classification. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 3829–3842. [CrossRef]

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://rsidea.whu.edu.cn/resource_WHUHi_sharing.htm
http://rsidea.whu.edu.cn/resource_WHUHi_sharing.htm
http://doi.org/10.1109/MGRS.2013.2244672
http://dx.doi.org/10.1080/05704928.2012.705800
http://dx.doi.org/10.1016/j.rse.2018.06.020
http://dx.doi.org/10.3390/rs9080868
http://dx.doi.org/10.1109/JSTARS.2015.2406339
http://dx.doi.org/10.3390/rs12182979
http://dx.doi.org/10.1016/j.sigpro.2021.108060
http://dx.doi.org/10.1109/JSTARS.2020.2980576
http://dx.doi.org/10.1109/TIP.2016.2545248
http://dx.doi.org/10.1109/TGRS.2014.2344442
http://dx.doi.org/10.1109/TCSVT.2019.2946723


Remote Sens. 2024, 16, 4202 30 of 32

15. Jain, V.; Phophalia, A. Exponential weighted random forest for hyperspectral image classification. In Proceedings of the IEEE
IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019;
pp. 3297–3300.

16. Zhao, S.; Bai, Y.; Shao, S.; Liu, W.; Ge, X.; Li, Y.; Liu, B. SELM: Self-Motivated Ensemble Learning Model for Cross-Domain
Few-Shot Classification in Hyperspectral Images. IEEE Geosci. Remote Sens. Lett. 2024, 21, 5503805. [CrossRef]

17. Ye, Q.; Huang, P.; Zhang, Z.; Zheng, Y.; Fu, L.; Yang, W. Multiview learning with robust double-sided twin SVM. IEEE Trans.
Cybern. 2021, 52, 12745–12758. [CrossRef] [PubMed]

18. Ye, Q.; Zhao, H.; Li, Z.; Yang, X.; Gao, S.; Yin, T.; Ye, N. L1-Norm distance minimization-based fast robust twin support vector
k-plane clustering. IEEE Trans. Neural Netw. Learn. Syst. 2017, 29, 4494–4503. [CrossRef]

19. Zhang, J.; Liu, L.; Zhao, R.; Shi, Z. A Bayesian meta-learning-based method for few-shot hyperspectral image classification. IEEE
Trans. Geosci. Remote Sens. 2022, 61, 1–13. [CrossRef]

20. Licciardi, G.; Marpu, P.R.; Chanussot, J.; Benediktsson, J.A. Linear versus nonlinear PCA for the classification of hyperspectral
data based on the extended morphological profiles. IEEE Geosci. Remote Sens. Lett. 2011, 9, 447–451. [CrossRef]

21. Prasad, S.; Bruce, L.M. Limitations of principal components analysis for hyperspectral target recognition. IEEE Geosci. Remote
Sens. Lett. 2008, 5, 625–629. [CrossRef]

22. Villa, A.; Benediktsson, J.A.; Chanussot, J.; Jutten, C. Hyperspectral image classification with independent component discriminant
analysis. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4865–4876. [CrossRef]

23. Ye, Q.; Yang, J.; Liu, F.; Zhao, C.; Ye, N.; Yin, T. L1-norm distance linear discriminant analysis based on an effective iterative
algorithm. IEEE Trans. Circuits Syst. Video Technol. 2016, 28, 114–129. [CrossRef]

24. Bandos, T.V.; Bruzzone, L.; Camps-Valls, G. Classification of hyperspectral images with regularized linear discriminant analysis.
IEEE Trans. Geosci. Remote Sens. 2009, 47, 862–873. [CrossRef]

25. Fauvel, M.; Benediktsson, J.A.; Chanussot, J.; Sveinsson, J.R. Spectral and spatial classification of hyperspectral data using SVMs
and morphological profiles. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3804–3814. [CrossRef]

26. Benediktsson, J.A.; Palmason, J.A.; Sveinsson, J.R. Classification of hyperspectral data from urban areas based on extended
morphological profiles. IEEE Trans. Geosci. Remote Sens. 2005, 43, 480–491. [CrossRef]

27. Dalla Mura, M.; Villa, A.; Benediktsson, J.A.; Chanussot, J.; Bruzzone, L. Classification of hyperspectral images by using extended
morphological attribute profiles and independent component analysis. IEEE Geosci. Remote Sens. Lett. 2010, 8, 542–546. [CrossRef]

28. Xiao, F.; Xiang, H.; Cao, C.; Gao, X. Neural Architecture Search-based Few-shot Learning for Hyperspectral Image Classification.
IEEE Trans. Geosci. Remote Sens. 2024, 62, 5513715. [CrossRef]

29. Wang, Z.; Zhao, S.; Zhao, G.; Song, X. Dual-Branch Domain Adaptation Few-Shot Learning for Hyperspectral Image Classification.
IEEE Trans. Geosci. Remote Sens. 2024, 62, 5506116. [CrossRef]

30. Bai, J.; Wen, Z.; Xiao, Z.; Ye, F.; Zhu, Y.; Alazab, M.; Jiao, L. Hyperspectral image classification based on multibranch attention
transformer networks. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [CrossRef]

31. Yu, H.; Xu, Z.; Zheng, K.; Hong, D.; Yang, H.; Song, M. MSTNet: A multilevel spectral–spatial transformer network for
hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [CrossRef]

32. Huang, L.; Chen, Y.; He, X. Spectral-spatial mamba for hyperspectral image classification. arXiv 2024, arXiv:2404.18401. [CrossRef]
33. Li, Y.; Luo, Y.; Zhang, L.; Wang, Z.; Du, B. MambaHSI: Spatial-Spectral Mamba for Hyperspectral Image Classification. IEEE

Trans. Geosci. Remote Sens. 2024, 62, 5524216. [CrossRef]
34. Zhao, W.; Du, S. Spectral–spatial feature extraction for hyperspectral image classification: A dimension reduction and deep

learning approach. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4544–4554. [CrossRef]
35. Sun, H.; Zheng, X.; Lu, X.; Wu, S. Spectral–spatial attention network for hyperspectral image classification. IEEE Trans. Geosci.

Remote Sens. 2019, 58, 3232–3245. [CrossRef]
36. Huang, L.; Chen, Y. Dual-path siamese CNN for hyperspectral image classification with limited training samples. IEEE Geosci.

Remote Sens. Lett. 2020, 18, 518–522. [CrossRef]
37. Xu, Q.; Xiao, Y.; Wang, D.; Luo, B. CSA-MSO3DCNN: Multiscale octave 3D CNN with channel and spatial attention for

hyperspectral image classification. Remote Sens. 2020, 12, 188. [CrossRef]
38. Roy, S.K.; Krishna, G.; Dubey, S.R.; Chaudhuri, B.B. HybridSN: Exploring 3-D–2-D CNN feature hierarchy for hyperspectral

image classification. IEEE Geosci. Remote Sens. Lett. 2019, 17, 277–281. [CrossRef]
39. Zhang, H.; Li, Y. Spectral-spatial classification of hyperspectral imagery based on deep convolutional network. In Proceedings

of the IEEE 2016 International Conference on Orange Technologies (ICOT), Melbourne, VIC, Australia, 18–20 December 2016;
pp. 44–47.

40. Hu, W.; Huang, Y.; Wei, L.; Zhang, F.; Li, H. Deep convolutional neural networks for hyperspectral image classification. J. Sens.
2015, 2015, 258619. [CrossRef]

41. Tian, C.; Zhang, Y.; Zuo, W.; Lin, C.W.; Zhang, D.; Yuan, Y. A heterogeneous group CNN for image super-resolution. IEEE Trans.
Neural Netw. Learn. Syst. 2022, 35, 6507–6519. [CrossRef]

42. Li, Y.; Zhang, H.; Shen, Q. Spectral–spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote
Sens. 2017, 9, 67. [CrossRef]

http://dx.doi.org/10.1109/LGRS.2024.3369169
http://dx.doi.org/10.1109/TCYB.2021.3088519
http://www.ncbi.nlm.nih.gov/pubmed/34546934
http://dx.doi.org/10.1109/TNNLS.2017.2749428
http://dx.doi.org/10.1109/TGRS.2022.3232784
http://dx.doi.org/10.1109/LGRS.2011.2172185
http://dx.doi.org/10.1109/LGRS.2008.2001282
http://dx.doi.org/10.1109/TGRS.2011.2153861
http://dx.doi.org/10.1109/TCSVT.2016.2596158
http://dx.doi.org/10.1109/TGRS.2008.2005729
http://dx.doi.org/10.1109/TGRS.2008.922034
http://dx.doi.org/10.1109/TGRS.2004.842478
http://dx.doi.org/10.1109/LGRS.2010.2091253
http://dx.doi.org/10.1109/TGRS.2024.3385478
http://dx.doi.org/10.1109/TGRS.2024.3356199
http://dx.doi.org/10.1109/TGRS.2022.3196661
http://dx.doi.org/10.1109/TGRS.2022.3186400
http://dx.doi.org/10.3390/rs16132449
http://dx.doi.org/10.1109/TGRS.2024.3430985
http://dx.doi.org/10.1109/TGRS.2016.2543748
http://dx.doi.org/10.1109/TGRS.2019.2951160
http://dx.doi.org/10.1109/LGRS.2020.2979604
http://dx.doi.org/10.3390/rs12010188
http://dx.doi.org/10.1109/LGRS.2019.2918719
http://dx.doi.org/10.1155/2015/258619
http://dx.doi.org/10.1109/TNNLS.2022.3210433
http://dx.doi.org/10.3390/rs9010067


Remote Sens. 2024, 16, 4202 31 of 32

43. Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep feature extraction and classification of hyperspectral images based on
convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251. [CrossRef]

44. Zhang, H.; Li, Y.; Jiang, Y.; Wang, P.; Shen, Q.; Shen, C. Hyperspectral classification based on lightweight 3-D-CNN with transfer
learning. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5813–5828. [CrossRef]

45. Ahmad, M.; Shabbir, S.; Raza, R.A.; Mazzara, M.; Distefano, S.; Khan, A.M. Hyperspectral image classification: Artifacts of
dimension reduction on hybrid CNN. arXiv 2021, arXiv:2101.10532.

46. Liu, X.; Wang, H.; Liu, J.; Sun, S.; Fu, M. HSI classification based on multimodal CNN and shadow enhance by DSR spatial-spectral
fusion. Can. J. Remote Sens. 2021, 47, 773–789. [CrossRef]

47. Lin, S.; Xiao-wei, W.; Long-po, Y.; Zong-fang, M. Hyperspectral Image Classification Based on the Fusion of Superpixels and
Deformable Features. In Proceedings of the IEEE 2024 36th Chinese Control and Decision Conference (CCDC), Xi’an, China,
25–27 May 2024; pp. 1742–1746.

48. Zhong, Z.; Li, J.; Luo, Z.; Chapman, M. Spectral–spatial residual network for hyperspectral image classification: A 3-D deep
learning framework. IEEE Trans. Geosci. Remote Sens. 2017, 56, 847–858. [CrossRef]

49. Yue, G.; Zhang, L.; Zhou, Y.; Wang, Y.; Xue, Z. S2TNet: Spectral-Spatial Triplet Network for Few-Shot Hyperspectral Image
Classification. IEEE Geosci. Remote Sens. Lett. 2024, 21, 5501705. [CrossRef]

50. Yu, C.; Han, R.; Song, M.; Liu, C.; Chang, C.I. Feedback attention-based dense CNN for hyperspectral image classification. IEEE
Trans. Geosci. Remote Sens. 2021, 60, 1–16. [CrossRef]

51. Hong, D.; Gao, L.; Yao, J.; Zhang, B.; Plaza, A.; Chanussot, J. Graph convolutional networks for hyperspectral image classification.
IEEE Trans. Geosci. Remote Sens. 2020, 59, 5966–5978. [CrossRef]

52. Qin, A.; Shang, Z.; Tian, J.; Wang, Y.; Zhang, T.; Tang, Y.Y. Spectral–spatial graph convolutional networks for semisupervised
hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2018, 16, 241–245. [CrossRef]

53. Wan, S.; Gong, C.; Zhong, P.; Pan, S.; Li, G.; Yang, J. Hyperspectral image classification with context-aware dynamic graph
convolutional network. IEEE Trans. Geosci. Remote Sens. 2020, 59, 597–612. [CrossRef]

54. Yang, Y.; Tang, X.; Zhang, X.; Ma, J.; Liu, F.; Jia, X.; Jiao, L. Semi-supervised multiscale dynamic graph convolution network for
hyperspectral image classification. IEEE Trans. Neural Netw. Learn. Syst. 2022, 35, 6806–6820. [CrossRef]

55. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need.
Adv. Neural Inf. Process. Syst. 2017, 30.

56. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

57. He, J.; Zhao, L.; Yang, H.; Zhang, M.; Li, W. HSI-BERT: Hyperspectral image classification using the bidirectional encoder
representation from transformers. IEEE Trans. Geosci. Remote Sens. 2019, 58, 165–178. [CrossRef]

58. Hong, D.; Han, Z.; Yao, J.; Gao, L.; Zhang, B.; Plaza, A.; Chanussot, J. SpectralFormer: Rethinking hyperspectral image
classification with transformers. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–15. [CrossRef]

59. Tang, P.; Zhang, M.; Liu, Z.; Song, R. Double attention transformer for hyperspectral image classification. IEEE Geosci. Remote
Sens. Lett. 2023, 20, 1–5. [CrossRef]

60. Sun, L.; Zhao, G.; Zheng, Y.; Wu, Z. Spectral–spatial feature tokenization transformer for hyperspectral image classification. IEEE
Trans. Geosci. Remote Sens. 2022, 60, 1–14. [CrossRef]

61. Roy, S.K.; Deria, A.; Shah, C.; Haut, J.M.; Du, Q.; Plaza, A. Spectral–spatial morphological attention transformer for hyperspectral
image classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–15. [CrossRef]

62. Han, K.; Wang, Y.; Chen, H.; Chen, X.; Guo, J.; Liu, Z.; Tang, Y.; Xiao, A.; Xu, C.; Xu, Y. A survey on vision transformer. IEEE
Trans. Pattern Anal. Mach. Intell. 2022, 45, 87–110. [CrossRef]

63. Zhuang, B.; Liu, J.; Pan, Z.; He, H.; Weng, Y.; Shen, C. A survey on efficient training of transformers. arXiv 2023, arXiv:2302.01107.
64. LeCun, Y.; Bottou, L.; Orr, G.B.; Müller, K.R., Efficient backprop. In Neural Networks: Tricks of the Trade; Springer: Berlin/Heidelberg,

Germany, 2002; pp. 9–50.
65. Zhong, Y.; Hu, X.; Luo, C.; Wang, X.; Zhao, J.; Zhang, L. WHU-Hi: UAV-borne hyperspectral with high spatial resolution (H2)

benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with CRF. Remote
Sens. Environ. 2020, 250, 112012. [CrossRef]

66. Bamber, D.; Van Santen, J.P. How many parameters can a model have and still be testable? J. Math. Psychol. 1985, 29, 443–473.
[CrossRef]

67. Kumar, M.S.; Kumar, D.A.; Samundiswary, P. Design and performance analysis of Multiply-Accumulate (MAC) unit. In
Proceedings of the IEEE 2014 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2014], Nagercoil,
India, 20–21 March 2014; pp. 1084–1089.

68. Schober, P.; Najafi, M.H.; TaheriNejad, N. High-accuracy multiply-accumulate (MAC) technique for unary stochastic computing.
IEEE Trans. Comput. 2021, 71, 1425–1439. [CrossRef]

69. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L. Pytorch: An
imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32.

http://dx.doi.org/10.1109/TGRS.2016.2584107
http://dx.doi.org/10.1109/TGRS.2019.2902568
http://dx.doi.org/10.1080/07038992.2021.1960810
http://dx.doi.org/10.1109/TGRS.2017.2755542
http://dx.doi.org/10.1109/LGRS.2024.3350659
http://dx.doi.org/10.1109/TGRS.2020.3040273
http://dx.doi.org/10.1109/TGRS.2020.3015157
http://dx.doi.org/10.1109/LGRS.2018.2869563
http://dx.doi.org/10.1109/TGRS.2020.2994205
http://dx.doi.org/10.1109/TNNLS.2022.3212985
http://dx.doi.org/10.1109/TGRS.2019.2934760
http://dx.doi.org/10.1109/TGRS.2022.3172371
http://dx.doi.org/10.1109/LGRS.2023.3248582
http://dx.doi.org/10.1109/TGRS.2022.3144158
http://dx.doi.org/10.1109/TGRS.2023.3242346
http://dx.doi.org/10.1109/TPAMI.2022.3152247
http://dx.doi.org/10.1016/j.rse.2020.112012
http://dx.doi.org/10.1016/0022-2496(85)90005-7
http://dx.doi.org/10.1109/TC.2021.3087027


Remote Sens. 2024, 16, 4202 32 of 32

70. Rogozhnikov, A. Einops: Clear and reliable tensor manipulations with einstein-like notation. In Proceedings of the International
Conference on Learning Representations, Vienna, Austria, 3–7 May 2021.

71. Taori, R.; Dave, A.; Shankar, V.; Carlini, N.; Recht, B.; Schmidt, L. Measuring robustness to natural distribution shifts in image
classification. Adv. Neural Inf. Process. Syst. 2020, 33, 18583–18599.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Materials and Methods
	HSI Data Preprocessing
	Parallel Spectral–Spatial Feature Extraction Block
	Scan Block
	Squeeze-and-Excitation MLP Block
	Spectral-Spatial Recurrent Block
	MLP Block

	Implemention
	Loss Function

	Dataset and Experimental Setup
	Datasets Description
	Evaluation Indicators
	Comparison Methods and Implement Details

	Experimental Results and Analysis
	Compare Experiment
	Ablation Experiment

	Discussion
	Advantages of Parallel Spectral–Spatial Feature Extraction Block
	Discussion About Patch Size
	Discussion About Loss Function
	Training Time and Test Time
	Discussion About Parameters and MACs
	Discussion of Model Robustness
	Limitations and Future Perspectives

	Conclusions
	References

