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Abstract: As one of the most destructive, hazardous, and frequent marine geohazards, correctly
recognizing submarine landslides holds substantial importance for regional risk assessment, disaster
prevention, and marine resource development. Many conventional approaches to prediction and
mapping necessitate the involvement of expert insights, oversight, and extensive field investigations,
which can result in significant time and effort invested in the prediction process. This paper focuses on
employing a deep neural network semantic segmentation technique to detect submarine landslides
to replace previous methods, such as numerical analysis and physical modeling, to predict and
identify the landslide areas quickly. The peripheral zone of the western Iberian Sea is selected as
the study area. Since the neural network image recognition task usually requires RGB images as
input data, factors such as slope, hillshade, and elevation extracted from digital elevation model
(DEM) data are used to synthesize RGB images through band synthesis methods, and the number
and diversity of data are increased utilizing data enhancement. Based on the classical semantic
segmentation model DeepLabV3, this paper proposes an improved deep learning method, which
strengthens the ability of model feature extraction for complex situations by adding an attention
mechanism module, improving the spatial pyramid pooling module, and improving the landslide
intersection over union metric from 0.4257 to 0.5219 and the F1-score metric from 0.609 to 0.6631 to
achieve effective identification of submarine landslides.

Keywords: deep learning; submarine landslide; semantic segmentation; DEM elevation images

1. Introduction

As a highly destructive marine geohazard, submarine landslides are widely found
in offshore continental shelf areas. Their occurrence is usually caused by gravity and
external triggers such as earthquakes, which are important for seafloor geomorphologic
shaping, seafloor sediment transport, and depositional change [1–3]. Such landslides not
only migrate large amounts of sediment over long distances, but also often damage marine
engineering facilities along the route, such as submarine fiber-optic cables, oil rigs [4],
and submarine pipelines, and may even trigger tsunamis [5], presenting a substantial
risk to the safety of life and property of coastal residents. Historically, in 1969, Hurricane
Camille struck the Mississippi River Delta, triggering submarine landslides leading to
platform damage and causing up to 100 million dollars in economic losses [6]. The huge
tsunami triggered by submarine landslides from the 2004 earthquake in Sumatra, Indone-
sia, which resulted in hundreds of thousands of deaths and huge economic losses [7],
and the communication disruption caused by submarine landslides in the Taiwan Straits
in 2006, have all highlighted the wide influence and serious consequences of submarine
landslide disasters.

The risk of submarine landslides is increasing with the expansion of global marine
engineering construction and the frequent occurrence of extreme weather events. This has
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become a hotspot and a challenge in the assessment and prevention of marine engineering
disasters. Compared with terrestrial landslides, submarine landslides are characterized
by larger scale, longer sliding distance, and greater assessment difficulty. Additionally,
the mobility of the soil body is significantly enhanced after its occurrence, with a wide
range of damage, causing far-reaching impacts on the structure of marine engineering
and the submarine environment. Therefore, accurate identification of the morphology,
location, and scale of submarine landslides is crucial for regional risk assessment and
disaster prevention [8].

Currently, the study of submarine landslides mainly relies on high-precision geo-
physical exploration techniques [9,10], numerical analysis methods [11–13], and physical
modeling experiments [14,15]. Despite the progress made using these traditional methods,
risk assessment and classification studies are still insufficient in the face of the complex
submarine environment and diverse triggering factors. The inherent heterogeneity of
natural environments and subsurface conditions, coupled with the reliance on indirect
measurements, diverse data types, and multiple formats, poses formidable challenges in
underground analysis, potentially leading to errors. The process of organizing, mining,
and processing data for advanced analytics is not only time-consuming but also compu-
tationally intensive. To tackle these complexities, the adoption of diversified and modal
Artificial Intelligence/Machine Learning (AI/ML) model methodologies offers a promising
pathway to accelerate the data collection-to-analysis pipeline while unraveling deeper
insights. Moreover, the projected 50–70% increase in offshore infrastructure by 2028 un-
derscores the dire need for tools capable of rapid analysis to support comprehensive risk
assessments [16]. Consequently, there is an urgent call for innovative approaches to swiftly
analyze these intricate datasets, enabling timely decision-making and the formulation of
effective risk mitigation strategies.

Sections 1 and 2 of this paper provide a pertinent literature review, outlining the
cutting-edge research. Section 3 introduces the study area and data sources, providing a
comprehensive background for the subsequent analysis. Section 4 explicates the method-
ological framework employed in this research, elucidating the models and techniques
adopted. Section 5 presents the experimental section, encompassing experimental con-
figurations, results, and their interpretations, constituting the empirical validation of our
hypotheses. Lastly, the paper concludes with a summary of key findings and a visionary
outlook on potential future directions and avenues for further research.

2. Related Work
2.1. Factors Affecting Submarine Landslides

Submarine landslides are an important geologic hazard, the occurrence and develop-
ment of which are influenced by a variety of factors. These factors can be generally divided
into two primary groups: natural factors and anthropogenic factors.

The natural formation of submarine landslides is influenced by a combination of
complex factors, which are deeply rooted in the physical and mechanical characteristics
of sediments, the seabed topography, and the seabed geological structure. Specifically,
the physical properties of sediments, such as particle size, density, and high water content,
significantly reduce their shear strength, enhance the sensitivity, and expand the range of the
liquid limit and plastic limit [17], thus promoting the breeding of landslides. The conditions
of the slope, valley bottom morphology, and water depth of the seafloor topography can be
a breeding ground for landslides even at minor slopes, along which landslides can continue
to slide for long distances. In addition, widely distributed weak layers on the seafloor, such
as interfaces and fissures formed by biogenic, sedimentary, or tectonic movements, further
weaken the stability of slopes. From a more macroscopic perspective, seafloor landslide-
prone areas, such as fjords, active estuarine deltas, submarine land-canyon sedimentary
fans, open-type large slopes, and oceanic volcanic islands and ridges, are prone to triggering
landslides due to their unique geologic and hydrodynamic environments. As for the
external triggering conditions, tectonic movement affects the stability by changing the
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stratigraphic structure [18], hydrodynamic conditions such as water scouring and storm
wave action directly induce landslide activities, and the sea level rise and fall of global
climate change and changes in rainfall patterns [19] also indirectly contribute to the stability
of sediments, which together constitute a complex and varied system of natural causes of
submarine landslides.

Although human activities are not the main culprits of seafloor landslides, some
human behaviors undoubtedly exacerbate the consequences of seafloor landslides. The pro-
found intervention of human activities in the seabed environment, such as the over-
exploitation of seabed resources, large-scale land reclamation projects, and the man-made
adjustment of river flows, has altered the natural distribution of seabed sediments and
the topography of the seabed. These activities not only accelerate the process of sediment
erosion and redeposition but also may lead to significant changes in seafloor topography,
such as an increase in slope, the deepening of seafloor valleys, and the destruction of
existing geological structures. Human activities change the seabed environment in direct
or indirect ways, and these changes often contribute to the occurrence of seabed landslides,
making the already complex and variable seabed geological processes even more difficult
to predict and control.

2.2. Current Status of Research on Submarine Landslides

Submarine landslides, as a common and highly destructive marine geological hazard,
have undergone significant research advances in recent years, with profound implications
for the assessment of seabed stability and the safety of offshore infrastructure. Research
in this field is essentially an extension and deepening of terrestrial landslide studies into
underwater and deep-sea environments. The first human understanding of submarine
landslides dates back to the damage to submarine cables following the 1929 Grand Banks
earthquake, which directly demonstrated the potential threat of submarine geological
activity to underwater infrastructure [2]. Subsequently, pioneers such as Terzaghi initiated
studies on terrestrial landslide mechanisms [20] and gradually broadened their focus to
include nearshore submarine landslides [21], marking the official beginning of scientific
research on submarine landslides.

Given the diversity of sediment instability types, Brunsden and Prior [22] refined the
classification into several major forms, such as rockfalls, slides/collapses, and turbidity
currents, and laid the foundation for subsequent classification research. Mulder and
Cochonat [23] further elaborated on the evolutionary processes of submarine landslides,
pointing out that cohesive sediments can progressively develop into mudflows or even
turbidity currents through water degradation and entrainment, revealing the complexity
of landslide dynamics. Using the examples of Saguenay Fjord, Quebec, Canada (depth
ranges from 0 to 225 m and a total volume of more than 200 million cubic meters); Palos
Verdes Slide, CA, USA; and the Canary Islands rock avalanches, Spain (covering an area
of 2600 km2 for a volume of about 150 km3), Locat and Lee [24] meticulously outlined the
reasons behind submarine landslides, the various classification systems, key characteristics,
geotechnical research methods, and the underlying mechanical processes. Their work
offers a solid theoretical foundation for advancing the field. Harbitz et al. [25] focused
on the effects of landslide magnitude, speed, acceleration, and backward movement on
tsunami generation, deepening the understanding of the disaster chain associated with
submarine landslides.

In terms of triggering mechanisms, the “driving force-resistance” model proposed by
Anderson and Anderson [26] suggested that a landslide is triggered when the driving force
acting on it exceeds the shear resistance of its base material, providing a critical perspec-
tive for understanding the triggering conditions of submarine landslides. The papers by
Zhu et al. [27] and Jia et al. [28] focused on the detailed classification of landslide types,
characterization, discussion of triggering mechanisms, and evaluation of field investigation
methods, demonstrating the breadth and depth of submarine landslide research.
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In terms of research methods, Lu et al. [29] used seismic geomorphology interpretation
and seismic inversion techniques to effectively predict and identify shallow water flow
and natural gas hydrate-related hazards, demonstrating the potential of high-precision
geophysical methods in disaster warning. Hamilton et al. [30] and Daniel Orange et al. [31]
used integrated multi-source geophysical data (multibeam data consisting of 30 kHz Sim-
rad EM-300 data) combined with high-resolution seafloor imagery to achieve detailed
characterization of complex submarine geological structures. Imran et al. [32] and Bla-
sio et al. [33] improved rheological models to simulate the sliding behavior of submarine
sediments and the interaction between turbidity currents and water bodies, improving
the accuracy and applicability of numerical simulations. The lubrication theory model
proposed by Harbitz et al. [34] and the Depth Averaged Material Point Method (DAMPM)
model based on multiphase flow theory by Zakeri et al. [35] reveal the dynamic characteris-
tics of submarine landslides from different perspectives. Capone et al. [36] innovatively
applied the rheological Smoothed Particle Hydrodynamics (SPH) model to accurately re-
produce the complex deformation of submarine landslides and their dynamic interactions
with the water body. Building on this, Wang et al. [37] extended the application by using
the depth-integrated SPH method to systematically investigate the combined effects of
environmental parameters, such as water depth, slope angle, contact friction coefficient,
and erosion rate, on the characteristics of submarine landslides.

In particular, the introduction of advanced technologies, such as three-dimensional
seismic surveys and multibeam bathymetry, has given new impetus to submarine landslide
research. 3D seismic surveys [38–40] and multibeam bathymetry [41] have demonstrated
unique advantages in macrostructure analysis and geometric morphology imaging, re-
spectively, providing abundant data to support a comprehensive understanding of subma-
rine landslides.

2.3. Machine Learning/Deep Learning and Submarine Landslides

In recent years, due to the swift advancement of artificial intelligence technology,
machine learning and deep learning technologies have gradually penetrated the field
of submarine landslide disaster research [42], showing great potential in the analysis of
complex geological environments. Tse et al. [43] conducted an in-depth study of synchro-
nization patterns utilizing an unsupervised learning framework of historical landslide
events in the South China Sea region, which provided a new perspective for understanding
the geological dynamics of the seafloor. Qi and Tang [44] further integrated meta-heuristic
algorithms and machine learning techniques to effectively improve the precision or correct-
ness of forecasting slope stability and expand the boundaries of technology applications
(the whole dataset consists of 168 slope cases collected from five published research works).
On the other hand, Dyer et al. [45] innovatively applied the gradient-based decision tree
(GBDT) model to submarine landslide susceptibility mapping (LSM) in the northern Gulf
of Mexico (total area of 386,753 km2), which, combined with the powerful capabilities of the
geographic information system (GIS), significantly improved the accuracy and efficiency of
landslide risk assessment. Although this series of explorations marks the first success of
the application of machine learning and deep learning in the field of submarine landslides,
in general, research in this field is still in its infancy and is in dire need of deeper exploration
and extensive practice.

In view of this, this paper aims to fill this research gap by proposing an innovative
application of the deep neural network semantic segmentation method in deep learning to
the automatic identification of submarine landslides to explore its possibilities.

Several classic deep-learning network models for semantic segmentation tasks are
presented next. FCN [46] is the pioneering model that introduced convolutional neural
networks to the performance of semantic segmentation tasks. Its core idea is to replace the
traditional fully connected layer with a convolutional layer, which preserves the geometric
and positional details of the input image. Features are extracted through a series of convolu-
tional and pooling operations and upsampled using an inverse convolutional (transposed
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convolutional) layer to scale the low-resolution feature maps back to the dimensions of the
original image. UNet [47] was originally designed for biomedical image segmentation tasks,
but its architecture applies to a wide range of semantic segmentation tasks. U-Net achieves
efficient feature extraction and restoration through a symmetric encoder-decoder structure.
PSPNet [48] is a deep learning model for semantic segmentation proposed by Huawei
Noah’s Ark Lab and the University of Science and Technology of China in 2017. By combin-
ing the deep features extracted by the backbone network and the features extracted across
multiple scales by utilizing a pyramid architecture, pooling module, PSPNet achieves
an effective fusion of global and local information and can efficiently capture contextual
information at different scales, thus improving segmentation performance. GCN [49] is
a neural network model specialized in processing graph-structured data. By applying
convolutional operations to graph nodes, it can effectively capture local and global infor-
mation in graph structures. Similar to UNet, GCN uses an encoder-decoder architecture
along with a large convolutional kernel to capture more global features and help the model
learn the full view of the image. DeepLabV3 [50] revisits the use of dilated convolution for
semantic segmentation. By introducing various techniques such as null convolution and
spatial pyramid pooling, a larger sensory field is obtained while maintaining computational
efficiency, mitigating the problem of image size reduction and enhancing the ability to
capture multi-scale contextual information. DeepLabV3+ [51] is a further improvement on
DeepLabV3 by introducing an encoder-decoder architecture, where the encoder extracts
features while the decoder restores spatial resolution of the features for finer segmentation
of the target boundaries. Its ASPP module contains multiple parallel null convolutional
layers, each with a different null rate, to produce multi-scale feature maps. It can capture
better and reconstruct detail and improve the segmentation accuracy of object boundaries
and small targets.

3. Study Area and Data Sources

The peripheral zone of the western Iberian Sea, especially its southwestern and north-
eastern Atlantic margins, which covers the geographical area from 33◦45′ N to 43◦ N and
from 6◦22′ W to 16◦15′ W, constitutes a geologically significant risk area. The exact loca-
tion is shown in Figure 1. This region is characterized by the continuous northwesterly
convergence of the African and European tectonic plates. This process exacerbates the accu-
mulation of crustal stresses in the region and induces frequent seismicity [52,53], including
strong earthquakes with magnitudes greater than 7 on the Richter scale (Mw > 7). In the
historical record, the Lisbon earthquake of 1755 and the resulting tsunami are an example
of a highly destructive natural disaster [54]. At the same time, due to the mixing wedge
created by subduction that started west of the Gulf of Cadiz, submarine landslides are
common in the area [55], highlighting the seriousness of the seafloor risks there.

In addition, the large chain of seamounts widely distributed in the region, with their to-
pography rising dramatically from the abyssal plains up to several kilometers in height, not
only constitutes a distinctive marine topographic feature but is also closely associated with
moderate- to high-intensity seismicity. Such geotectonic conditions are widely recognized
as one of the key factors triggering submarine landslides. Recent stability assessments of the
study area have revealed a wide range of potential instabilities on continental slopes and
seamounts, predicting the vulnerability of these areas to destructive processes. Despite the
significant geologic risks in the region, in-depth studies on the phenomenon of submarine
landslides are relatively scarce and focus on individual case studies [56–58].

Therefore, this work develops a more in-depth study of submarine landslides in the
region to better assess and mitigate the geohazard risks. The study utilizes the open-source
MAGICLAND database (Marine Geological Hazards Induced by Submarine Landslides
along the Western Iberian Margin) provided by Davide Gamboa, which focuses on marine
geological hazards caused by underwater landslides in the western Iberian margin. This
database comprises 41 items of data, including landslide characteristics, confidence levels
of landslide mapping quality, and seafloor depths of the landslides. For this study, data
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from the digital elevation model (DEM) bathymetric grids and the geomorphological data
of 1552 underwater landslides have been employed [59], as shown in Figures 2–4.

Figure 1. The black area represents a geographical map of the study area.

Figure 2. Elevation images and bathymetry data in the western Iberian Sea area.
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Figure 3. Areas of submarine landslides in the western Iberian Sea area. Three areas have been
selected to zoom in and show.

Figure 4. An area was selected to show the slope schematic of the landslide area containing the
evacuation length, deposit length, and deposit area.

4. Methodology

This section presents the data preprocessing method for submarine landslide elevation
data images and the deep convolutional neural network architecture for DeepLabV3-based
semantic segmentation with improvements developed in this paper.

4.1. Data Preparation

The DEM data used in this study come from the MAGICLAND database. These
data were acquired using high-precision surveying techniques with a spatial resolution
of approximately 115.6 m × 115.6 m and 9773 × 11,380 pixels. These data not only reflect
the fine variations in the seafloor topography but also contain rich precursor information
on geological hazards. To accurately identify and analyze landslide areas, a polygon
annotation method was adopted to meticulously label the landslide phenomena within the
DEM data, clearly delineating the shape, boundaries, and coverage area of the landslides,
thereby laying a solid foundation for subsequent data processing and analysis.

To fully exploit the topographic feature information contained in the DEM data [60],
the study utilized advanced GIS tools. GIS not only possesses powerful spatial data process-
ing capabilities but also effectively integrates multi-source data, enabling precise extraction
of topographic features [61]. In this study, GIS was used to derive key topographic feature
parameters from the DEM data, including slope, elevation, and hillshade. These parameters
respectively represent the inclination of the seabed terrain, the changes in height, and the
three-dimensional morphology under lighting conditions. These elements hold significant
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importance in comprehending the mechanisms that lead to the formation of landslides and
their spatial distribution characteristics [62].

The three extracted topographic parameters, slope, elevation, and hillshade, were
treated as different “color” channels and combined through a band synthesis operation to
generate images similar to RGB (red, green, blue) images. This process not only achieved an
intuitive visualization of the topographic features but also preserved the rich information
of the original data. On the basis of the synthesized RGB images, the large-sized original
images were cropped into square patches. During the cropping process, the principle that
each cropped patch should either fully contain a submarine landslide area or not contain any
landslide area at all was strictly adhered to to ensure the accuracy and representativeness
of the training samples. The cropped images were all of the same size: 1 m × 1 m spatial
resolution and 128 × 128 pixels. The specific workflow is illustrated in Figure 5. At the
same time, four final obtained data were selected for comparative representation with the
original image, as shown in Figure 6.

Figure 5. Schematic diagram of data process. Firstly, the three topographic features of features, slope,
elevation, and hillshade, are extracted from the DEM image, then band synthesis is carried out to a
three-channel image, and finally, clipping is performed.

Figure 6. Comparison of the final data obtained after data processing with the source data. Compari-
son of images on the left, masks on the right.

Finally, we obtain landslide samples of 128 × 128 pixels, each with 3 channels denoted
R (red), G (green), and B (blue), i.e., x ∈{0, 1, . . . , 255}, with an annotated mask y ∈{0, 1},
where 0 and 1 denote non-landslides and landslides, respectively.
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4.2. Data Augmentation

In the field of deep learning, especially for semantic segmentation tasks involving
complex natural phenomena, such as the automatic identification of submarine landslide
areas in this study, the scale and diversity of the dataset play a crucial role in training
high-performance deep neural network models. However, a significant challenge often
faced in real-world situations is the extremely limited number of reliably labeled samples
for specific disaster events (such as landslides) [63]. This data scarcity directly constrains
the learning ability and generalization performance of deep neural network models, as deep
learning is inherently a data-driven technique whose performance is highly dependent on
the richness and representativeness of the training data.

Specifically, when the number of landslide area samples is insufficient, deep neural
network models may not be able to fully capture the complex feature differences and
boundary variations between landslide and non-landslide areas during the training process.
In such cases, the model is prone to overfitting [64], meaning that while it performs
excellently on the training set and can accurately identify landslide areas in each training
sample, its recognition ability drastically decreases when faced with new, unseen test
samples, failing to generalize accurately to broader data distribution. The occurrence of
overfitting is essential because the model overfits the noise and details in the training
data during the training process rather than genuinely learning the general and essential
features of landslide areas. This not only wastes computational resources but also severely
limits the model’s reliability and effectiveness in practical applications [65].

Therefore, this paper employs data augmentation techniques to increase the quantity
and diversity of the existing data. Based on the data obtained through the aforemen-
tioned methods, data augmentation techniques such as rotation, flipping, transposition,
and blurring were applied to transform and perturb the data in terms of spatial and visual
appearance, thereby increasing the quantity and diversity of the data. The specific data
augmentation operations are shown in Table 1. These methods can alleviate, to some extent,
the adverse effects of data scarcity on the training of deep neural network models, thereby
enhancing the model’s performance in the semantic segmentation task of landslide areas.

Table 1. Data augmentation.

Method Remarks

RandomRotate90
Randomly rotate the image by multiples of 90 degrees
(0 degrees, 90 degrees, 180 degrees, 270 degrees)

Flip Random horizontal image flip

Transpose
Randomly transpose the image, i.e., swap the width and height
of the image

GaussianBlur Randomly selected to apply Gaussian fuzzy (fuzzy between 3 and 7)

MotionBlur
Apply motion blur to make the image look like it was taken while
the camera was moving

MedianBlur
Apply median blurring to reduce noise by replacing each pixel of
an image with the median of its neighboring pixels

Blur Apply mean blur to reduce image detail
OpticalDistortion Apply optical aberrations to simulate lens distortions

CLAHE
Apply adaptive histogram equalization to enhance the contrast
of images

Sharpen Apply sharpening to enhance the details of the image
Emboss Apply an embossing effect to make the image look engraved
RandomBrightnessContrast Randomize the brightness and contrast of the image
HueSaturationValue Randomize the hue, saturation, and brightness of images

4.3. Improved DeepLabV3 with Spatial and Channel Attention

We present a novel model architecture, which is built upon the principles of deep
optimization of the ResNet50 backbone, inspired by DeepLabV3 and specifically improved
to enhance the accuracy of landslide area recognition in complex geological environments.
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This model integrates a multi-level feature processing mechanism, including efficient fea-
ture extraction, refined attention mechanisms, spatial pyramid pooling, multi-scale feature
aggregation strategies, advanced channel attention modules, and efficient decoder de-
signs. Together, these components form a powerful and compact deep learning framework.
As illustrated in Figure 7, the core innovation of this model lies in its carefully designed
spatial and channel attention modules. The spatial attention module enhances the model’s
sensitivity to spatial layout and structural information in images. By capturing the differ-
ences in features across different spatial locations in the image, this module significantly
improves the model’s ability to distinguish key spatial areas (such as landslide boundaries
and internal structures of landslides) from background areas. This ensures that during
the training process, the model focuses more on the spatial details crucial for landslide
recognition, thereby enhancing its spatial resolution and localization accuracy. The channel
attention module, on the other hand, aims to optimize feature representation by dynam-
ically adjusting the importance weights of feature channels. It automatically identifies
and amplifies the feature channels that contribute most to landslide recognition while
suppressing or diminishing the influence of non-critical channels. This adaptive feature
recalibration strategy not only enhances the model’s feature representation capability in
the channel dimension but also promotes the effective extraction and utilization of critical
information in complex scenarios, further improving the accuracy and robustness of land-
slide recognition. Together, these modules complement each other, significantly enhancing
the model’s ability to understand and represent deep-level features in images [66].

At the workflow level, we adhered to a strict data partitioning and training evalua-
tion process. To ensure the independence and non-interference of the model’s training,
evaluation, and testing phases, the dataset was initially partitioned into distinct sets for
training, validation, and testing purposes. During the training phase, iterative optimization
algorithms were used to enable the model to gradually learn and internalize the feature
representation of landslide areas, achieving precise recognition of these areas. Subse-
quently, the model’s performance was comprehensively evaluated using the validation set,
with quantitative metrics such as accuracy, recall, and F1-score objectively reflecting the
model’s learning effectiveness and generalization ability. Finally, the trained model was
applied to the test set to verify its predictive performance on unseen data, from which the
final landslide recognition predictions were derived (Figure 8).

Next, we will give a full introduction to each module of the model.

Figure 7. Framework structure for the improved DeepLabV3 models.
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Figure 8. The overall workflow of the entire experimental procedure.

4.3.1. AttentionModule

Global average pooling is first applied to average the input feature map, which
averages the values of all spatial locations of each channel of the input feature map to
generate a global feature vector. This global feature vector captures the global spatial
information of each channel and is used to represent the importance of that channel.
The global feature vector is then dimensionalized by a 1 × 1 convolutional layer to reduce
computational complexity and suppress some of the unimportant information. This process
can be seen as a further feature extraction of the global features to obtain a more compact
representation of each channel. Applying the ReLU activation function to the downscaled
feature vector allows the network to learn nonlinear features. The downscaled features
are again upscaled by a 1 × 1 convolutional layer so that the quantity of output channels
matches the quantity of input channels. The goal is to rescale the compact representation
after dimensionality reduction back to the original number of channels so that it matches the
channel dimension when multiplied with the input feature map. The upscaled features are
passed through a Sigmoid activation function to generate a set of channel weight coefficients
between [0, 1], which are used to adjust the feature strength for each channel. Ultimately,
an element-wise multiplication is performed between the original input feature map x and
the attention coefficient avg-out, which has been computed. In this way, the feature map
of each channel is weighted and adjusted according to its attention coefficients. Figure 9
shows the module’s network structure diagram.

Figure 9. Framework for AttentionModule and ASPP module.

4.3.2. ASPP Module

Based on the ASPP [67] module in the original DeepLabv3, the model is extended
and optimized so that the ASPP module can better capture multi-scale information and
improve the accuracy of feature fusion, resulting in a boost to the model’s feature extraction
prowess, especially for complex scenes.
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Firstly, the input feature map is globally average pooled, and the spatial dimension
is compressed into a 1 × 1 feature map to capture the global information. Then, dimen-
sionality reduction is performed by 1 × 1 convolution to lower the computational cost and
adjust the number of channels of the features. Compared to the original DeepLabV3, here,
not only is global pooling performed, but the features are further processed by additional
convolution, batch normalization (BatchNorm), and activation function (ReLU), which
makes the extraction and representation of global information more refined. The input
feature maps are then processed directly using 1 × 1 convolution to extract local features,
which are normalized and activated by BatchNorm and ReLU. The output features are
made more stable and have the ability of nonlinear expression. Next, three 3 × 3 convolu-
tional layers with different expansion rates are used to capture different scales of contextual
information, and BatchNorm and ReLU activation functions are added to each expansion
convolutional layer to maintain the clarity and expressive ability of the features when
dealing with multi-scale information. Finally, after the multi-scale features are extracted by
different convolutional layers, these feature maps are spliced in the channel dimension to
obtain a feature map containing rich multi-scale information. This multi-scale information
is then further fused by adjusting the channel count to match the number of output channels
out-features through 1 × 1 convolutional layers (bottleneck layers). Figure 9 shows the
module’s network structure diagram.

4.3.3. SEBlock Attention Module

Compared with AttentionModule, SEBlock focuses on the weighting of the channel
dimension, emphasizes the relationship between different channels, and is a channel-based
attention mechanism, the main purpose of which is to enhance the feature expression by
adjusting the weights between channels, and improve the model’s capability to represent
features specifically along the channel dimension. The main purpose of AttentionModule
is to improve the model’s grasp of the spatial structure information of the image, so as to
strengthen the model’s competence to discriminate the features of different spatial locations,
which emphasizes the holistic picture of spatial locations. The specific workflow of the
SEBlock module is shown in Figure 10.

Figure 10. Framework for SEBlock attention module.

SEBlock [68] consists of three main parts: Squeeze, Excitation, and Reweighting.
In the Squeeze phase, the spatial extent (height, width) within the input feature maps are
compressed to 1 × 1 by a global average pooling operation to obtain the global sensory fields
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for each channel. This process serves to aggregate the spatial information and condense it
into a single scalar for each channel, allowing the model to focus on the importance of each
channel in the entire feature map rather than on localized regions, thus providing global
information to support the weighting between channels; in the Excitation phase, SEBlock
learns anew the channel relationships through two fully connected layers (implemented in
the code via 1 × 1 convolution) relationships. First, the number of channels is reduced from
in-channels to in-channels/reduction by fc1 (the first 1 × 1 convolution), where reduction
is a hyperparameter, usually set to 16, to reduce the computational effort and introduce
nonlinear relationships. Next, after the ReLU activation function, which introduces the
nonlinear variation, the number of channels is reduced to the original in-channels by fc2
(the second 1 × 1 convolution). Finally, the weights for each channel are obtained by
restricting the output to (0, 1) with the Sigmoid activation function. This stage of processing
introduces nonlinearities and inter-channel dependencies, allowing the network to better
understand and represent the correlations between different channels, thus providing
a basis for subsequent feature weighting. In the Reweighting phase, SEBlock reapplies
the previously computed channel weights y (after Sigmoid activation) to each channel of
the original input feature map x utilizing element-by-element multiplication. Through
this weighting operation, the model is able to adaptively adjust the importance of each
channel, emphasize more relevant features, and suppress irrelevant features, which makes
the model have better expressive ability at the channel level, and is able to dynamically
adjust the importance of different features throughout the training stage, so as to improve
the recognition and classification ability of the model.

4.3.4. Decoder Module

The core of the decoding module is a convolutional block containing several convolu-
tional layers and activation functions designed to gradually recover the spatial resolution
of the feature map and generate the final semantic segmentation result. The input channel
count in-channels is converted into 256 channels by first passing through the first convolu-
tional layer, which receives the feature maps processed by the encoder and other modules,
such as the ASPP and the attention module. The dimensions of the convolution kernel are
3 × 3, keeping the spatial dimensions of the feature map constant (achieved by padding = 1).
The convolution output’s activation values are then normalized using a batch normalization
layer, ensuring a more stable model during training, accelerating convergence, and reduc-
ing sensitivity to parameter initialization. The ReLU (Rectified Linear Unit) activation
function is applied to the normalized feature map, introducing nonlinear properties that
strengthen the model’s capability to learn more intricate features. The second layer of
convolution further processes the feature map, maintaining 256 channels and continuing
to enhance the feature representation. The third layer of convolution converts the feature
map into several segmentation class numbers. The convolution kernel is 1 × 1 in size and is
mainly used to compress the 256 channels into the final number of class channels, so that
the output feature map is of the same resolution as the input, and contains the probability
values or classification results that each pixel point belongs to a different class.

5. Experiments
5.1. Experimental Setup
5.1.1. Data Preprocessing

The raw remotely sensed images were acquired from DEM data from the MAGI-
CLAND (Marine Geohazards due to Underwater Landslides on the Western Iberian Mar-
gin) database. After the data preparation process elaborated in Section 4.1, each image was
processed to contain one or more landslides with 128 × 128 pixels. The whole dataset was
partitioned as a 70% training set, a 15% validation set, and a 15% test set. The training set
contains 128 images, the test set contains 28 images, and the validator contains 28 images.

Due to the limited landslide data provided in the database, the amount of data we
obtained was very small and could not support the training of the deep neural network,
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so we used data enhancement to increase the amount and diversity of the data in terms
of space and appearance, so as to avoid the occurrence of problems such as overfitting
during the training of the model, which would affect the final experimental results. For the
training and test set data, we used various data enhancement means such as rotation,
inversion, transposition, and blurring, which were operated with different probabilities,
and the process is shown in Figures 11 and 12. For the test set, different cropping strategies
were used to generate five sub-images from one original image.

Figure 11. Image spatial transformation.

Figure 12. Image appearance disturbance.

5.1.2. Evaluation Indicators

In this paper, five performance metrics are used, including pixel accuracy, precision,
recall, F1-score, and mean intersection over union (mIoU), which are defined as follows:

Pixel accuracy measures the fraction of pixels that are accurately predicted by the
model to the total pixels:

PA =
TP + TN

TP + TN + FP + FN
(1)

Precision measures how many of the samples predicted by the model as positive
classes are positive classes. It is concerned with how many of the predictions are correct:

Precision =
TP

TP + FP
(2)
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Recall measures how many of all samples that are positive classes are correctly identi-
fied as such. It is concerned with how many of the actual results were correctly predicted:

Recall =
TP

TP + FN
(3)

The F1-score combines precision and recall into a single, balanced evaluation metric:

F1 = 2 × Precision × Recall
Precision + Recall

(4)

The mIoU is a commonly used metric in image segmentation, which calculates the ratio
of intersection and concatenation between predicted and true values, and then averages
the overall categories:

mIoU =
1
2
×

(
TP

TP + FP + FN
+

TN
TN + FN + FP

)
(5)

where TP (true positive), TN (true negative), FP (false positive), and FN (false negative)
are accurately predicted landslide pixels, accurately predicted non-landslide pixels, land-
slide pixels misperceived as non-landslide, and non-landslide pixels misperceived as
landslide, respectively.

5.1.3. Experimental Configurations

In this paper, six classical image semantic segmentation methods: FCN, UNet, GCN,
PSPNet, DeepLab V3, and DeepLabV3+ are used to compare with the improved DeepLabV3
model. The experiments were conducted using the PyTorch framework, with the learning
rate at the beginning of the model training value set to 1.0 × 10−4 and automatically
reduced during training using the ReduceLROnPlateau module. The batch size of the
model is set to 2, the epoch of training is 150, and the optimizer is Adam. Since the model is
mainly used to identify landslide areas, but the landslide areas and non-landslide areas are
not balanced in the sample images, the weights of the landslide areas are set to 2.0, and the
weights of the non-landslide areas are set to 1.0.

5.2. Results

The above experimental results are shown in Table 2, and Figure 13 depicts the imaging
results. The table and pictures allow us to derive the following conclusions:

1. Through experiments, the performance of seven semantic segmentation models was
evaluated. The results for the landslide detection task are as follows: UNet: landslide
IoU of 0.27, pixel accuracy of 0.7561, precision of 0.3994, recall of 0.68, and F1-score
of 0.4636. FCN: landslide IoU of 0.1961, pixel accuracy of 0.8201, precision of 0.3516,
recall of 0.3473, and F1-score of 0.3716. PSPNet: landslide IoU of 0.1013, pixel ac-
curacy of 0.7579, precision of 0.2425, recall of 0.2305, and F1-score of 0.2363. GCN:
landslide IoU of 0.1691, pixel accuracy of 0.8358, precision of 0.3608, recall of 0.2449,
and F1-score of 0.2918. DeepLabV3: landslide IoU of 0.4257, pixel accuracy of 0.8911,
precision of 0.6569, recall of 0.563, and F1-score of 0.6093. DeepLabV3+: landslide IoU
of 0.1574, pixel accuracy of 0.8095, precision of 0.3623, recall of 0.2684, and F1-score
of 0.3084. Improved DeepLabV3: landslide IoU of 0.1574, pixel accuracy of 0.8095,
precision of 0.3623, recall of 0.2684, and F1-score of 0.3084. Among classic semantic
segmentation models, the DeepLabV3 model has demonstrated particularly outstand-
ing performance in the semantic segmentation task for submarine landslide scenarios.
This conclusion is based on a detailed analysis of experimental results. Specifically,
the model achieved remarkable results in key evaluation metrics, including a land-
slide IoU of 0.4257, reflecting the overlap between the predicted and actual regions—a
key indicator of segmentation accuracy. Additionally, the pixel accuracy reached
0.8911, highlighting the model’s high accuracy in pixel-level classification. Further
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analysis of the precision (0.6569) and recall (0.563) data shows the model’s precision
and recall capabilities in identifying landslide areas. The combined result of these two
metrics—the F1-score—reached 0.6093, further validating the DeepLabV3 model’s
advantage in balancing precision and recall. Meanwhile, according to the images,
it can be found that the Unet, FCN, PSPNet, GCN, and DeepLabV3plus generated
images have roughly the same area of landslides as the labeled images, but the specific
shapes are more different, and the areas and shapes of landslides are roughly the
same as the labeled images in the images generated by DeepLabV3. In conclusion,
DeepLabV3 emerges as the best-performing classic model for this task, while the
other classic models, including FCN, PSPNet, GCN, and DeepLabV3+, exhibited less
satisfactory results.

2. A comparative analysis reveals that although DeepLabV3+, as an advanced version
of DeepLabV3, theoretically has a more complex network structure and potentially
stronger learning capabilities, its performance did not surpass DeepLabv3 in this
experiment. This phenomenon can be reasonably explained from a data-driven per-
spective; there is a balance between model complexity and the amount of training
data required when the training data sample size is limited. More complex mod-
els, such as DeepLabv3+, often require more training samples to adequately learn
and optimize their internal parameters to achieve the desired generalization ability.
Therefore, in environments where sample resources are limited, the relatively sim-
pler DeepLabv3 model can more effectively utilize the limited data resources, avoid
overfitting, and thus exhibit better segmentation performance.
Meanwhile, in the in-depth exploration and enhancement of applying semantic seg-
mentation techniques to submarine landslide detection, this study found that the
DeepLabV3 model, through a series of targeted improvements, showed significant
performance enhancements compared to its original version. Specifically, the im-
proved model achieved a substantial leap in the accuracy of landslide area identi-
fication, with a landslide IoU value reaching 0.5219, a 22.6% increase compared to
DeepLabV3’s 0.4257. From the image results, the landslide areas generated by the
Improved DeepLabV3 are more similar to the labeled landslide areas. This significant
improvement not only highlights the effectiveness of the model optimization strate-
gies but also underscores the importance of customizing the model according to data
characteristics in specific application scenarios.
A key innovation in this study is that the input images are not traditional RGB three-
channel color images but rather single-band images extracted and synthesized based
on a DEM, which are then transformed into simulated three-band images through
specific algorithms. Although such images have significant importance in geographic
information science, their unique data distribution and representation are more com-
plex than natural images. Particularly, the subtle variations in terrain features are
difficult to intuitively reflect in the synthesized images, which undoubtedly increases
the difficulty of automatically identifying landslide areas.
To overcome this challenge, the improved model integrates advanced modules such as
attention mechanisms based on the DeepLabv3 framework. These modules enhance
and suppress key feature information through the dynamic weighting of feature maps,
effectively addressing the problem of landslide features being easily overlooked
or misidentified in complex backgrounds. Specifically, the attention mechanism
allows the model to focus on the most discriminative parts of the image, which are
crucial features for distinguishing between landslide and non-landslide areas, thereby
significantly enhancing the model’s feature representation capability and the accuracy
of landslide area identification.
Moreover, the improved model also achieved encouraging progress in several evalua-
tion dimensions, including pixel accuracy, precision, recall, and F1-score. The pixel
accuracy increased to 0.9284, indicating the model’s robustness in pixel-level classi-
fication. The simultaneous improvement in precision and recall (0.664 and 0.6695,
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respectively) reflects the model’s ability to identify landslide areas while maintain-
ing good recall capability accurately. The growth in the F1-score (to 0.6631) directly
reflects the balanced optimization of precision and recall, further demonstrating the
comprehensive performance optimization of the model.

3. Data augmentation techniques were used in this experiment to expand the dataset’s
size and diversity. Critical geological characteristics were not distorted or disrupted
by the spatial transformations and appearance disturbances utilized in data augmen-
tation, according to realism. Following augmentation, important geological features,
like the distribution and shape of faults and sedimentary strata, maintained their
original patterns. To further validate the effectiveness of data augmentation, the aug-
mentation operations were removed in a subsequent experiment, with the results
presented in Table 3. The results show that the IoU and F1-score for the landslide
regions dropped when data augmentation was eliminated. For example, the Im-
proved DeepLabV3’s F1-score declined from 0.6631 to 0.4747, while its landslide
IoU dropped from 0.5219 to 0.3021. This illustrates the need for and efficacy of the
data augmentation procedure and further validates the representativeness of the
supplemented samples. These findings suggest that the supplemented samples retain
a certain level of representativeness and help to improve the model’s capacity for
generalization. By simulating the diversity and complexity of the data, data augmen-
tation can effectively increase the dataset’s size in cases where there is a lack of data.
This allows the model to observe more types of changes and perturbations, which
enhances the model’s capacity to generalize on previously unseen data and perform
better in real-world applications, enhancing the model’s training impact.

Table 2. Experimental results.

Model Miou (Mean/Background/Landslide) Pixel Acc Precision Recall F1-Score

UNet 0.4981 0.7261 0.27 0.7561 0.3516 0.68 0.4636
FCN 0.5039 0.8117 0.1961 0.82 0.3994 0.3473 0.3716

PSPNet 0.4233 0.7454 0.1013 0.758 0.2425 0.2305 0.2363
GCN 0.4944 0.8196 0.1691 0.836 0.361 0.2449 0.2918

DeepLabV3 0.6468 0.8679 0.4257 0.891 0.664 0.563 0.6093
DeepLabV3plus 0.4767 0.796 0.1574 0.81 0.362 0.2684 0.3084

Improved DeepLabV3 0.7165 0.9112 0.5219 0.9284 0.664 0.6695 0.6631

Figure 13. Experimental results. (1) RGB image, (2) label, (3) UNet, (4) PSPNet, (5) GCN, (6) FCN,
(7) DeepLabV3plus, (8) DeepLabV3, (9) Improved DeepLabv3.
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Table 3. Experimental results without augmentation.

Model Miou (Mean/Background/Landslide) Pixel Acc Precision Recall F1-Score

UNet 0.5564 0.8809 0.232 0.8872 0.3413 0.5602 0.4242
FCN 0.5223 0.8555 0.1891 0.8618 0.2739 0.5431 0.3641

PSPNet 0.4752 0.8624 0.0881 0.8713 0.1977 0.2349 0.2147
GCN 0.5336 0.905 0.1523 0.9079 0.3067 0.3192 0.2831

DeepLabV3 0.6082 0.9518 0.2874 0.9528 0.5321 0.354 0.4251
DeepLabV3plus 0.5224 0.8973 0.1376 0.8082 0.2778 0.3343 0.3015

Improved DeepLabV3 0.6236 0.9452 0.3021 0.9466 0.5409 0.423 0.4747

6. Conclusions and Future Work

This paper implements a deep neural network to identify submarine landslides using
DEM data images and landslide areas provided by the MAGICLAND database. Based
on the DeepLabV3 model, spatial and channel attention mechanism modules are added.
The model is compared with six classic semantic segmentation models (FCN, UNet, PSPNet,
GCN, DeepLabV3, and DeepLabV3+) and validated on the submarine landslide prediction
problem using commonly used experimental metrics for semantic segmentation (pixel
accuracy, precision, recall, F1-score, and mean intersection over union). The feasibility of
the model in predicting submarine landslides is demonstrated, and the improved model’s
accuracy in experimental results is verified. Compared to traditional methods, the use
of deep learning neural networks accelerates submarine landslide prediction, reduces
workload, and enhances the ability to process complex data.

The innovations of this paper include the following aspects: Since submarine images
are not as clear and easy to obtain as surface images, research on the susceptibility of
submarine landslides is very challenging. This paper formalizes landslide susceptibility
as a semantic segmentation problem on optical remote sensing images and applies deep
learning neural networks to submarine landslide susceptibility detection; Deep learning
neural networks typically require input data in the form of three-channel RGB images.
Since submarine landslide images can only be presented through elevation DEM data, three
geological factors were extracted from the DEM data to serve as the RGB channels, resulting
in synthesized input image data. Regarding the model, spatial attention mechanisms
and channel attention mechanisms were added on top of DeepLabv3 to improve the
model’s ability to distinguish features at different spatial locations, while focusing more on
important channel information, thereby increasing the accuracy of the prediction results.

Given that submarine landslide images are directly extracted from DEM, their intrinsic
attributes are significantly different from the color and texture features of traditional RGB
images, a characteristic that poses a significant challenge to the learning effectiveness of the
deep learning model in the image recognition task [69]. Specifically, DEM data focus on the
three-dimensional geometric description of the terrain and lack the rich visual information
and intuitive color hierarchy of RGB images, which exacerbates the difficulty of the model
in capturing the features of the landslide area, and consequently affects the performance
on the final test set, which fails to achieve the desired recognition accuracy [70].

To address this challenge, future research and experiments should focus on deep
preprocessing and enhancement strategies for seabed image data, which can explore the
implementation of terrain feature enhancement techniques to extract and highlight the
specific terrain markers of the landslide area; secondly, image segmentation and feature
enhancement algorithms, such as edge detection and texture analysis, can be used to
enhance the contrast between the landslide area and the surrounding environment, so as to
make it easier for the model to capture key information. Also, we can consider introducing
multi-source data fusion strategies, such as combining marine geophysical data, such as
acoustic sounding and side-scan sonar, in order to construct a more comprehensive and
multi-dimensional description of the seabed environment, and to provide a richer source
of information for model learning.
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Finally, in this work, we only validate the effectiveness of the semantic segmentation
model for submarine landslides. As more and more seafloor hazard datasets become
available, future research could expand its application to include the identification of other
seafloor features that contribute to geohazards, such as faulting and gas seepage.
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