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Abstract: Given the significant spatial non-uniformity of marine evaporation ducts, accurately
predicting the regional distribution of evaporation duct height (EDH) is crucial for ensuring the
stable operation of radio systems. While machine-learning-based EDH prediction models have been
extensively developed, they fail to provide the EDH distribution over large-scale regions in practical
applications. To address this limitation, we have developed a novel spatiotemporal prediction model
for EDH that integrates multiple environmental information sources, termed the EDH Spatiotemporal
Network (EDH-STNet). This model is based on the Swin-Unet architecture, employing an Encoder–
Decoder framework that utilizes consecutive Swin-Transformers. This design effectively captures
complex spatial correlations and temporal characteristics. The EDH-STNet model also incorporates
nonlinear relationships between various hydrometeorological parameters (HMPs) and EDH. In
contrast to existing models, it introduces multiple HMPs to enhance these relationships. By adopting
a data-driven approach that integrates these HMPs as prior information, the accuracy and reliability
of spatiotemporal predictions are significantly improved. Comprehensive testing and evaluation
demonstrate that the EDH-STNet model, which merges an advanced deep learning algorithm with
multiple HMPs, yields accurate predictions of EDH for both immediate and future timeframes. This
development offers a novel solution to ensure the stable operation of radio systems.

Keywords: evaporation duct height; Swin-Unet; environmental information; hydrometeorological
parameters (HMPs); spatiotemporal prediction

1. Introduction

Evaporation ducts are phenomena resulting from the evaporation of water vapor
over extensive water surfaces, such as the sea [1]. A key characteristic of these ducts is
the sharp decrease in atmospheric refractivity with increasing height. Evaporation ducts
significantly impact the propagation path and energy distribution of radio waves, leading
to trapped propagation phenomena. This can result in adverse effects, including detection
blind zones, target localization failures, and communication interruptions [2]. Since the
evaporation ducts usually exist in the atmosphere below 40 m, they almost cover the
communication heights of marine radio systems [3]. Furthermore, the continuous nature
of evaporation over the sea contributes to the prevalence of these ducts. Consequently,
their wide coverage and frequent occurrence make evaporation ducts a critical atmospheric
structure influencing radio wave propagation at sea [4]. The evaporation duct height (EDH)
is a key parameter that defines the vertical extent of the duct layer, representing the height
between its top and bottom [5]. Given the influence of evaporation ducts on radio wave
behavior, accurate detection of EDH is essential to ensure the optimal performance of radio
systems operating in marine environments.
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The rapid advancement of artificial intelligence has promoted the wide application
of machine learning (ML) in the study of evaporation ducts. Early researchers developed
purely data-driven prediction models for EDH using fundamental ML methods, lever-
aging the nonlinear correlations between hydrometeorological parameters (HMPs) and
EDH. These ML methods mainly include artificial neural network (ANN) [6,7], multilayer
perceptron [8], gradient boosting regression [9], extreme gradient boosting [10], and back
propagation network [11]. Compared to traditional evaporation duct diagnostic models,
these ML-based models show significantly improved accuracy. Subsequently, researchers
undertook comprehensive investigations of measured EDH, identifying its characteristic
temporal patterns [12–16]. This prompted the development of EDH prediction models
utilizing long short-term memory (LSTM) network, which is particularly effective in pro-
cessing temporal data [14]. Han et al. [14] successfully developed an EDH prediction model
based on LSTM network using data collected from the Yellow Sea of China, achieving
superior performance compared to ANN and support vector machine. Zhao et al. [16] not
only considered the temporal characteristics of EDH but also applied a data-driven ap-
proach to build an LSTM-based prediction model. This model effectively captures internal
temporal dynamics of EDH while accurately modeling the relationships between HMPs
and EDH. However, due to different meteorological conditions across different marine
regions, evaporation ducts usually exhibit regionality and non-uniformity. Existing models
typically focus on obtaining EDH at specific fixed locations [6,12–14,17] or along specific
navigation routes [8–11,16,18], and thus cannot accurately obtain EDH distribution over
larger areas. Therefore, these models cannot comprehensively detect regional evaporation
ducts, thereby failing to provide complete protection for marine radio systems.

Previously, researchers have conducted regional prediction studies of evaporation
ducts utilizing numerical forecasting models [19,20]. These studies typically incorporate
meteorological reanalysis data as initial fields and boundary conditions while employing
advanced numerical weather forecasting models, such as the Weather Research and Fore-
casting model (WRF) [19] and the fifth version of the mesoscale model (MM5) [21]. Com-
pared to developed ML models, numerical forecasting models require high-performance
computing resources and extended computation times, which notably limit their prac-
tical applications. These numerical models simulate marine and atmospheric physical
processes based on fundamental physical equations, performing calculations through the
discretization of these equations. Consequently, they rely heavily on accurate initial fields
and boundary conditions. In contrast, the developed ML models can automatically learn
patterns and relationships of evaporation ducts from large datasets. This capability al-
lows for effective predictions under diverse environmental conditions, showcasing greater
practicality and adaptability. According to the recently revised standard of International
Telecommunication Union Recommendation (ITU-R) P.453-14 [22], researchers [23] have
employed the Kriging spatial interpolation method to process data obtained from obser-
vation stations for constructing a digital map of atmospheric refractive index parameters.
However, the Kriging interpolation primarily focuses on the estimation of values for un-
observed areas based on known or neighboring regional data. A significant limitation of
this method is its inadequate consideration of the temporal dependencies inherent within
the data. For evaporative ducts, temporal dependencies are crucial as they elucidate the
dynamic characteristics that evolve over time. Therefore, relying solely on spatial inter-
polation is inadequate for achieving a comprehensive understanding of how temporal
variations impact evaporation ducts.

In previous studies, convolutional neural networks (CNNs) with U-shaped Encoder–
Decoder architecture have excelled in computer vision (CV), particularly in image seg-
mentation (IS) [24]. This architecture effectively extracts spatial correlations and semantic
information through the Encoder while achieving precise pixel-level reconstructions via the
Decoder. IS fundamentally involves using known grid data to produce new grid data [25],
enabling many CV networks to process grid data with temporal characteristics, thereby
excelling in spatiotemporal prediction. Han et al. [25] built a convective precipitation
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prediction model using the Unet. Spatiotemporal prediction requires models to accurately
capture the spatial correlations and temporal variations in grid data to address complex
spatiotemporal dynamics. However, CNNs are limited by their receptive fields, which
restrict their ability to perceive global features and long-term spatiotemporal characteristics.
This limitation arises because convolutional operations are mainly designed for local feature
extraction, often ignoring global and long-term correlations. Inspired by the success of the
Transformer in natural language processing, scholars have applied it to CV and proposed
the Visual Transformer [26]. The shifted window Transformer (Swin-Transformer) [27] employs
a shifted window mechanism to restrict attention to non-overlapping local windows, facili-
tating information exchange between adjacent windows to incorporate global information
comprehensively. It has also been widely applied in spatiotemporal prediction, including
weather forecasting [28–30]. Later, Cao et al. [31] proposed Swin-Unet, which is entirely
based on the Swin-Transformer. The Swin-Unet utilizes consecutive Swin-Transformer
blocks as the Encoder, effectively capturing local and global features. By integrating the
Swin-Transformer into the U-shaped Encoder–Decoder architecture, Swin-Unet enhances
its capability to interpret semantic features more effectively.

In summary, to address the limitations of existing models in EDH spatiotemporal pre-
diction, a novel hydrometeorological data-driven model, termed the EDH spatiotemporal
network (EDH-STNet), has been developed using Swin-Unet. This model leverages the
strengths of Swin-Unet to effectively capture the temporal variations in the spatial distribu-
tion of EDH, combining the efficient feature extraction capabilities of the Swin-Transformer
with the Unet architecture’s global modeling abilities. The EDH-STNet further incorporates
multiple HMPs as environmental prior information, enhancing its capacity to model the
relationships between these parameters and EDH. It not only includes key HMPs such
as temperature, wind, and humidity but also incorporates previously overlooked HMPs,
allowing for a more comprehensive understanding of the complex interactions between the
marine environment and evaporation ducts. This holistic approach leads to more accurate
predictions and interpretations of EDH spatiotemporal variations. Performance testing of
the EDH-STNet model and comparative analysis with various baseline models demonstrate
its superior prediction accuracy. The model effectively captures the intricate spatiotemporal
features of EDH, providing a comprehensive view of its variations within the study area.

The rest of this article is organized as follows: Section 2 introduces the data source and
how the EDH spatiotemporal distribution is calculated. Section 3 details the methodology
employed for developing the EDH-STNet model. The prediction results of the EDH-STNet
model and corresponding analysis are detailed in Section 4. Finally, the conclusion is
presented in Section 5.

2. Data Source and Calculation
2.1. ERA5 Reanalysis Data

The utilization of publicly available ERA5 reanalysis data from the European Centre
for Medium-Range Weather Forecasts (ECMWF) provides a novel approach for obtaining
the distribution of evaporation ducts over large sea regions [32]. The ERA5 reanalysis
dataset is a comprehensive global meteorological resource developed by ECMWF, which
integrates meteorological observations from various sources, including ground-based
stations, ships, radiosondes, aircraft, and satellites. As a result, ERA5 offers atmospheric
and surface parameters with high temporal and spatial resolution, making it a valuable
tool for accurately modeling and analyzing hydrometeorological phenomena, such as
evaporation duct characteristics in marine environments.

First, this article extracts HMPs from the ERA5 for calculating EDH, which include at-
mospheric temperature (AT), atmospheric pressure (AP), u-component of wind, v-component
of wind, dewpoint temperature (DT), and sea surface temperature (SST). The extracted
HMPs and corresponding reanalysis heights are shown in Table 1.
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Table 1. Extracted HMPs and corresponding reanalysis heights.

HMP Reanalysis Height Unit

AT 2 m ◦C
DT 2 m ◦C

u-component of wind 10 m m/s
v-component of wind 10 m m/s

AP Surface hPa
SST Surface ◦C
EVP Surface m of water equivalent

SLHF Surface J/m
TP Surface m

SWH Mean height of the highest
third of waves m

Where the u- and v-components of wind are used to calculate the WS:

WS =
√

u2 + v2 (1)

where u and v are the u- and v-components of wind, respectively. The RH can be calculated
by inputting the AT and DT into the Magnus–Tetens approximation equation [33,34]:

RH = exp
(

17.625 × DT
243.04 + DT

− 17.625 × T
243.04 + T

)
× 100 (2)

Furthermore, previous studies have shown that in addition to the five HMPs used
to calculate EDH, other HMPs such as evaporation (EVP), surface latent heat flux (SLHF),
total precipitation (TP), and sufficient wave height (SWH) also influence the characteristics
of evaporation ducts [35–37]. Fortunately, the neural network model can accept more
HMPs as inputs. Therefore, this article extracts these four additional HMPs from the
ERA5 dataset and incorporates them into the prediction model as environmental prior
information alongside the initial five HMPs. This method enables the prediction model
to comprehensively consider the impacts of marine environment on evaporation ducts.
In this article, the latitude and longitude resolutions for AT, AP, u-component of wind,
v-component of wind, DT, SST, EVP, SLHF, and TP are uniformly set at 0.25◦. In contrast,
the latitude and longitude resolution for SWH is 0.5◦. To ensure uniformity across all
parameters, bilinear interpolation was applied to the SWH data.

2.2. Calculation of Atmospheric Refraction Characteristics

In the lower atmosphere, refraction index n remains relatively constant across the entire
radio frequency range, typically ranging between 1.00025 and 1.00040 [38,39]. To describe
slight variations in the refractive index, aiding radio wave propagation calculations, the
atmospheric refractivity N is introduced:

N = (n − 1)× 106 (3)

Additionally, the atmospheric refraction is influenced by the variation in the gradient of
the propagating medium in the vertical direction. It depends on meteorological parameters
such as AT, AP, and water vapor pressure (WVP). To account for the impact of the Earth’s
curvature on radio wave propagation, a flat Earth model is commonly applied, treating the
spherical Earth surface as flat. Accordingly, the atmospheric modified refractivity M can be
given by [1]:

M(z) = N +

(
z

Re

)
× 106 ≈ N(z) + 0.157z =

77.6
T

×
(

P +
4810e

T

)
+ 0.157z (4)
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where h is height; Re is the Earth’s radius; and P, T, and e are the AP, AT, and WVP profiles,
respectively. The propagation of radio waves is primarily affected by the vertical gradient
of the modified refractivity (i.e., dM/dz). When dM/dz < 0, the curvature of radio wave
rays becomes smaller than the curvature of the Earth. In this case, the radio waves can
become trapped within a certain thickness of the atmospheric layer, which is called the
atmospheric duct. Among the various types of ducts, evaporation ducts are particularly
significant for marine radio systems due to their high frequency and long duration.

2.3. Naval Postgraduate School Evaporation Duct Model

The Naval Postgraduate School (NPS) model [40] is an advanced evaporation duct
prediction tool that is currently operationally utilized by the U.S. Navy. This model employs
the Coupled Ocean-Atmosphere Response Experiment (COARE) bulk flux algorithm,
derived from extensive long-term oceanic surveys, along with empirical relationships
based on oceanic experiments, marking a significant advancement over the Paulus–Jeske
model [41]. Subsequently, Babin et al. [40] conducted a comparative analysis of the NPS
model alongside the Naval Warfare Assessment model, the Naval Research Laboratory
model, and the Babin–Young–Carton (BYC) model [42]. By evaluating the predicted
evaporation duct profiles against measured profiles, they provided insightful analytical
results. Their findings indicated that both the NPS and BYC models are the most effective for
estimating the EDH and evaporation duct profiles. However, the NPS model demonstrated
greater stability; specifically, when the EDH is zero or exceeds the boundary layer height,
the BYC model may yield zero values for the EDH due to its derivation method, leading to
inaccuracies. Consequently, based on existing studies, this article also employs the NPS
model to calculate the EDH.

The NPS model utilizes AT, AP, wind speed (WS), relative humidity (RH), and sea
surface temperature (SST), which can be collected at the same or different altitudes near the
sea surface. Using these inputs, the NPS model generates the modified refractivity profile
(M-profile) corresponding to the given environmental conditions. The height corresponding
to the minimum refractivity in the M-profile is the EDH. According to the Monin–Obukhov
similarity (MOS) theory [43], the vertical profiles of AT and specific humidity (SH) above
the near sea surface can be given by:

T(z) = T0 +
θ∗
κ

[
ln
(

z
z0θ

)
− Ψh(ζ)

]
− Γdz (5)

q(z) = q0 +
q∗
κ

[
ln
(

z
z0θ

)
− Ψh(ζ)

]
(6)

where T0 and q0 are the AT and SH of the sea surface, respectively; ζ = z/L, L is the Monin–
Obukhov length; θ∗ and q∗ are the related MOS scaling parameters of potential temperature
(PT) and SH, respectively; z0θ and z0q are PT and SH roughness lengths, respectively;
Γd is dry adiabatic lapse rate; κ is the von Karman constant; and Ψh is the temperature
correction function. The original NPS model applies the COARE bulk flux algorithm with
version 2.6 developed from the Tropical Ocean-Global Atmosphere program for calculating
the MOS scaling parameters [44]. To enhance the accuracy and performance of the NPS
model, this study applies the upgraded COARE3.0 algorithm to calculate the MOS scaling
parameters [45].

Additionally, the original NPS model uses the temperature correction function pro-
posed by Beljaar and Holtslag under stable conditions [46]. However, the Beljjar and Holt-
slag’s correction function has shown suitability exclusively under weak stable conditions,
and it tends to yield excessively high EDH in the presence of strong stable conditions [47].
The correction function proposed by Gorbachev et al., derived from the Surface Heat Bud-
get of the Arctic Ocean Experiment (SHEBA), is widely used to calculate turbulent flux [48].
Therefore, the correction function proposed by Gorbachev et al. is used to improve the
original correction function and has the following form based on the SHEBA data:
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Ψh SHEBA(ζ) = − bh
2

ln(1 + chζ + ζ2) +

(
− ah

Bh
+

bhch
2Bh

)
×
(

ln
2ζ + chBh

2ζ + ch + Bh
− ln

ch − Bh
ch + Bh

)
(7)

where ah ≡ bh = 5, ch = 3, and Bh =
√

c2
h − 4 =

√
5.

To determine the M-profile near the sea surface, it is essential to obtain the vertical
profiles of AP and WVP. The AP profile is determined by integrating the ideal gas law and
hydrostatic equation [40] with the following equation:

P(z2) = P(z1) exp
(

g(z1 − z2)

RTν

)
(8)

Furthermore, the WVP profile can be derived from the calculated profiles of SH and
AP using the following equation:

e(z) =
q(z)P(z)

ε + (1 − ε)q(z)
(9)

where Tν is the mean value of the virtual temperature at height z1 and z2, and ε is a
constant with a value of 6.22. According to the AT, SH, and WVP profiles calculated from
Equations (5)–(9), the M-profile can be calculated from Equation (4), and thus the EDH can
be determined. Based on the given five HMPs, this article uses the NPS model to calculate
the M-profile. In the calculated M-profile (see Figure 1), when the modified refractivity is
at a minimum value of 353.4 M-units, the corresponding height is EDH, which has a value
of 15.7 m [49].
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Figure 1. M-profile obtained by the NPS model.

2.4. Calculation of EDH Spatiotemporal Distribution

The study region selected is in the South China Sea (SCS) (4◦N–23◦N, 105◦E–118◦E),
which is influenced by various tropical circulations and surrounded by many islands and
coastlines. These topographies interact with the circulations, resulting in high temperatures
and high humidity conditions throughout the year in the SCS.

Firstly, this study extracts the HMPs listed in Table 1 from the ERA5 for the years 2022
and 2023. Figure 2 shows the spatial distribution of AT, AP, and SST, as well as calculated
WS and RH, at different time periods in June 2023. Each HMP exhibits regionality and
non-uniformity due to varying degrees of meteorological influences across different areas.
Consequently, the HMPs within the region demonstrate dynamic characteristics that change
over time.
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After calculating the WS and RH, this study inputs them into the NPS model along
with AT, AP, and SST to calculate the EDH distribution in the SCS region for the years
2022 and 2023. The ERA5 provides daily reanalysis data with a temporal resolution
from 00:00 to 23:00 (UTC). Consequently, each extracted HMP for the two-year period
comprises 26,280 spatial distribution samples, while the calculated EDH distribution
includes 17,520 samples. The EDH distributions in the SCS during different periods in
June are shown in Figure 3. The spatial variations of these HMPs make the evaporation
ducts over the large-scale sea surface also regionally non-uniform. Furthermore, as
the dynamic characteristics of HMPs vary with time, the evaporation ducts also show
temporal dynamic characteristics.
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3. Methodology
3.1. Problem Definition

From the perspective of ML, EDH spatial distribution prediction can be viewed as
a spatiotemporal sequence prediction problem. This involves the temporal relationships
and spatial distributions of EDH grid data. For the EDH distribution in a sea area at
moment t, it is represented by a two-dimensional (2D) grid of size W × H. Here, W
and H correspond to the number of grids along the longitude and latitude, respectively.
Furthermore, the EDH distribution at all moments can be arranged chronologically to
form a spatiotemporal sequence of EDH grids [50]. Therefore, a spatiotemporal sequence{

EDH1, EDH2, . . . , EDHT
∣∣EDHi ∈ RW×H } can be obtained, where EDHi is also a grid

of size W × H. The objective of EDH spatiotemporal prediction is to predict the next K
distributions in the future given the previous J distributions:

EDHpred
t+1 , EDHpred

t+2 , . . . , EDHpred
t+K = F (EDHt−J+1, EDHt−J+2, . . . , EDHt) (10)

where EDHpred
i is the predicted EDH distribution, and F is a prediction model. By defining

the EDH spatiotemporal prediction, it becomes clear that the EDH spatiotemporal pre-
diction is different from the traditional time sequence prediction. This distinction places
higher demands on the prediction model. The model not only needs to accurately capture
the temporal characteristics of EDH distributions but also comprehensively account for the
spatial correlations among different grid data within the EDH distribution.

3.2. Feature Engineering and HMPs–EDH Mapping Set Construction

To enable the developed prediction model to thoroughly learn the mapping rela-
tionships between HMPs and EDH, this article constructs an HMPs–EDH mapping set
(HMP&EDH; EDH) based on the prediction model’s input and output variables, utilizing
calculated EDH spatiotemporal sequence and extracted HMPs. Within this mapping set,
the model’s input HMP&EDH is represented as multidimensional feature vectors of HMPs
and EDH distributions at different moments. These HMPs include core parameters such
as AT, RH, and AP used in EDH calculation, supplemented by additional parameters
EVP, SLHF, TP, and SWH. The design of input variables comprehensively considers the
multifaceted impact of marine environment for EDH. By incorporating additional HMPs, it
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further enhances the mapping relationships between HMPs and EDH. Furthermore, for
accurate prediction of EDH, the EDH-STNet model needs to capture the internal temporal
relationships within EDH. Therefore, the EDH must also be included as one of the model’s
input variables, alongside multiple HMPs. Therefore, the model input HMP&EDH in the
mapping set can be expressed as:

HMP&EDH =
{
[HMPs, EDH]1, . . . , [HMPs, EDH]T

∣∣[HMPs, EDH]i ∈ R10 }
where [HMPs, EDH]i = [AT, RH, WS, AP, SST, EVP, SLHF, TP, SWH, EDH]i

(11)

This article regards the future distribution of EDH as the output of the EDH-STNet
model. Therefore, EDH is designated as the output variable of the EDH-STNet model and
represented by EDH distribution at different moments:

EDH =
{

EDH1, EDH2, . . . , EDHT

∣∣∣EDHi ∈ R1
}

(12)

3.3. EDH-STNet Model
3.3.1. Principle of the Swin-Unet

Unlike traditional CNNs, the Swin-Unet is the first pure Transformer-based U-shaped
architecture [31]. Its basic building module consists of two consecutive Swin-Transformer
blocks, where Layer Norm (LN) is applied to standardize the input features, which helps
to accelerate the convergence speed and improve training stability. Next, two multi-
layer perceptron (MLP) blocks are used to perform nonlinear transformations and feature
extraction on the input, in which the Gaussian Error Linear Units activation function can
effectively capture the nonlinear relationship in the data. Finally, a window multi-head
self-attention (W-MSA) is introduced to capture the long-term dependencies between input
features. This windowed design significantly reduces computational complexity while
improving the model’s scalability and efficiency. The shifted window multi-head self-
attention (SW-MSA) function is like W-MSA, but utilizes a sliding window mechanism
to calculate attention weights. Self-attention is computed within each window, further
decreasing computational complexity and memory consumption. Based on this shifted
window mechanism, successive Swin-Transformer blocks can be represented as:

ẑl = W − MSA(LN(zl−1)) + zl−1 (13)

zl = MLP(LN(ẑl)) + ẑl (14)

ẑl+1= SW − MSA(LN(ẑl)) + ẑl (15)

zl+1 = MLP(LN(ẑl+1)) + ẑl+1 (16)

where ẑl and zl are the outputs of the lth W-MSA and MLP, respectively. In the Encoder,
a local-to-global self-attention mechanism is implemented, defined by the following self-
attention equation:

Attention(Q, K, V) = So f tmax

(
QK⊤
√

d
+ B

)
V (17)

where Q ∈ RM2×d, K ∈ RM2×d, and V ∈ RM2×d represent the Query, Key, and Value
matrices. M2 represents the number of patches in the window, and d represents the
dimension of the Query or Key. B represents the relative position bias.

3.3.2. Development of the EDH-STNet Model

This article develops a model using Swin-Unet and HMPs specifically to predict the
distribution of EDH, as shown schematically in Figure 4. To integrate the Swin-Unet into
research on EDH spatiotemporal prediction, several modifications have been made to the
network architecture. Firstly, the grid data of EDH and multiple HMPs are concatenated as
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inputs, consolidating these variables into a unified 3D matrix. Additionally, linear interpo-
lation and upsampling are performed on this 3D matrix input to ensure consistency in the
dimensions of the grid data. Subsequently, the Swin-Transformer blocks in the Encoder
extract and abstract features from the input data at multiple levels through their unique
W-MSA and SW-MSA mechanisms. These blocks effectively capture spatial information
while deepening the understanding of temporal characteristics. Next, the Decoder employs
upsampling techniques to progressively reconstruct the advanced features extracted by
the Encoder and restore detailed information, thereby generating output that aligns with
the original input data. Additionally, in the EDH-STNet model, skip connections are uti-
lized to integrate features from different levels of the Encoder with upsampled features
from the Decoder. This design enhances the EDH-STNet model’s ability to perceive local
information and effectively mitigates spatial information loss caused by downsampling
operations. Finally, the advanced features mapped by the EDH-STNet model are outputted
through an upsampling layer, which adjusts the spatial resolution of the output features
to match the dimensions of the input EDH grid data. Thus, the EDH-STNet model has
successfully implemented the ability to predict the distribution of EDH at future moments
by integrating multiple HMPs.
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3.4. Model Training

This article utilizes reanalysis data of meteorological parameters from years 2022 and
2023. To evaluate the EDH-STNet model’s performance in predicting EDH spatiotemporal
distribution across different years, two HMPs–EDH mapping sets are constructed. Each
mapping set is divided into training and test sets in an 80%-to-20% ratio, ensuring the
model’s generalization capabilities and predictive accuracy during the training process,
where the two test sets based on the reanalysis data from years 2022 and 2023 are designated
as Test2022 and Test2023, respectively. The two training sets are utilized to train the EDH-
STNet model, allowing it to learn the relationships between the input variables and the
corresponding output variable through multiple iterative training experiments. The two
test sets are used to test the performance of the EDH-STNet model on unseen data. All
training experiments in this article were conducted on a Microsoft Windows 10 22H2
system equipped with an Inter Core i7-10700F CPU and an NVIDIA GeForce RTX 4070Ti
SUPER 16 GB GPU. Meanwhile, the deep learning programs were developed using Python
V3.6.13 and the GPU-based framework PyTorch V1.10.2.

In multiple training experiments, this study comprehensively considers the model
efficiency, accuracy, and platform configurations. To achieve optimal training results,
hyperparameters such as epochs, batch size, and learning rate are adjusted. Furthermore,
to effectively apply the traditional Swin-Unet for predicting EDH distribution, the loss
function is modified. The study selects the mean square error (MSE) function, commonly
used in regression tasks, as the new loss function. During the model training process,
adaptive moment estimation with momentum is employed to optimize the EDH-STNet
model for backpropagation [51]. Finally, the configured hyperparameters are as follows—
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epochs: 200, batch size: 64, learning rate: 0.001, and momentum: 0.9, with the weight
decay 0.0001.

4. Results and Analysis
4.1. Experimental Settings
4.1.1. Evaluation Indicators

To quantitatively evaluate prediction errors and highlight the superiority of the EDH-
STNet model, this article calculates the evaluation indicators for all prediction models using
the test set. Three categories of indicators are employed, including root mean square error
(RMSE), mean absolute error (MAE), and relative RMSE (RRMSE). These indicators are
crucial standards for evaluating the performance of prediction models by measuring the
mean errors between the predicted results and the test labels. Specifically, smaller values of
these indicators indicate relatively lower prediction errors of the model, thereby reflecting
a higher accuracy in the model’s predictions [52]:

RMSE =

√
1
N ∑N

i=1 (EDHi − EDHpred
i )

2
(18)

MAE =
1
N ∑N

i=1

∣∣∣EDHi − EDHpred
i

∣∣∣ (19)

RRMSE =

[
RMSE/

(
1
N ∑N

i=1 EDHi

)]
(20)

where N is the size of the test set.

4.1.2. Baseline Models

To demonstrate the advantages of the EDH-STNet model for spatiotemporal prediction
of EDH, this article compares it with multiple learning-based methods that serve as baseline
models. These baseline models are well-established and validated in existing studies, and
are detailed as follows.

1. Unet [53]: In a manner similar to the study in [25], which applies Unet for convec-
tive precipitation nowcasting, this study utilizes Unet for EDH spatial distribution
prediction and establishes it as a baseline model.

2. Swin-Transformer [27]: The Swin-Transformer has been extensively utilized across
various fields of CV and has subsequently gained widespread adoption in weather
forecasting. Therefore, we employ the Swin-Transformer as a baseline model for the
EDH spatiotemporal prediction, comparing it with the EDH-STNet model.

3. Swin-Unet: To comprehensively evaluate the impact of HMPs on the prediction
performance of the EDH-STNet model, this study establishes an additional EDH spa-
tiotemporal prediction model using Swin-Unet for comparison. A key distinguishing
feature of the Swin-Unet model is its exclusion of multiple HMPs from its inputs,
focusing solely on EDH spatiotemporal prediction. Additionally, this model was
developed using methods consistent with those applied to the EDH-STNet model.

4. SwinUnet-5: To verify the enhancement of prediction performance in the EDH-STNet
model with the inclusion of additional parameters such as EVP, SLHF, TP, and SWH,
this study develops an additional baseline model called SwinUnet-5. This model
integrates five HMPs—AT, AP, SST, RH, and WS—and takes EDH as its joint input.

4.2. Prediction Results and Analysis
4.2.1. One-Step Prediction Results and Analysis

First, we input the two test sets into EDH-STNet and the baseline models to obtain
their respective prediction results. Subsequently, we visualize the prediction results for both
test sets to provide a more intuitive reflection of the models’ performance. Furthermore, to
evaluate the accuracy of the model predictions, we calculate the absolute error between the
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predicted results and the EDH values in the test sets. The partial prediction results from
all models for the two test sets are illustrated in Figures 5 and 6, while the partial absolute
prediction errors are presented in Figures 7 and 8. The spatial distribution of EDH shows a
gradually changing trend over time. This variation is evident not only in the increase or
decrease of EDH values but also in the movement of high-EDH regions.

Through a comprehensive analysis of the prediction results and error distributions
of all models, we can conclude that the developed EDH-STNet model exhibits superior
predictive performance, significantly outperforming the other models. Additionally, the
SwinUnet-5 model also demonstrates commendable predictive performance, although
it is still inferior to the proposed model. In contrast, the Unet model shows relatively
poor predictive performance, indicating its limitations. The main reason for the poor
performance of the Unet is the limitation of convolutional operations in the Unet model,
which mainly focuses on extracting local spatial correlations and cannot effectively capture
temporal characteristics. Meanwhile, the research in [54] indicates that meteorological
elements in the marine environment typically do not exhibit significant variations of less
than 6 h. This implies a close correlation between the evaporation duct distributions at the
previous and subsequent moments. In practice, the neglect of temporal characteristics in
the Unet model can cause significant limitations on the EDH spatiotemporal prediction.

The Swin-Transformer outperforms the Unet model. Leveraging its Transformer
architecture, Swin-Transformer effectively captures both global and local features. However,
despite its excellent performance in feature extraction and representation, the complex
structure of the Swin-Transformer introduces gradient propagation issues, thereby limiting
its capability to handle long-term dependencies. That is why the predicted EDH of the Swin-
Transformer in this article is generally higher than the labels in the test set. This constraint
hinders Swin-Transformer from achieving superior predictive performance across extensive
spatiotemporal domains. The Swin-Unet, SwinUnet-5, and the EDH-STNet models utilize
the Swin-Transformer for construction, which excels in extracting spatial correlations.
Moreover, through an Encoder–Decoder structure, all three models effectively capture
long-term temporal features in EDH spatiotemporal sequence. Furthermore, the model
developed in this article shows higher prediction accuracy. This is primarily attributed to its
utilization of a data-driven approach that integrates various marine environmental data as
input. This comprehensive input feature design enhances the model’s ability to understand
complex variations in marine environments, significantly improving the accuracy and
reliability of prediction results. The EDH-STNet model leverages the Swin-Transformer
block to extract comprehensive spatial correlations of EDH distribution. By effectively
capturing temporal characteristics and integrating multiple HMPs, it outperforms all
baseline models.

To quantitatively evaluate the prediction errors of all models, this article calculates
RMSE, MAE, and RRMSE indicators, as shown in Tables 2 and 3. For Test2022, the Unet
exhibits the highest prediction errors, with RMSE, MAE, and RRMSE evaluation indicators
of 1.121, 0.708, and 0.214, respectively. It is followed by Swin-Transformer with RMSE,
MAE, and RRMSE indicators of 0.968, 0.599, and 0.184, respectively. Compared to the
Swin-Transformer model, the Swin-Unet model shows improvements of 14.050%, 18.364%,
and 14.130% in its RMSE, MAE, and RRMSE indicators, respectively. This indicates that
the Swin-Unet through its unique architectural design can capture dynamic variations
and complex patterns in EDH spatiotemporal sequences more effectively compared to the
Unet and Swin-Transformer models. Additionally, both the SwinUnet-5 and EDH-STNet
models have better indicators than the Swin-Unet model, indicating that the SwinUnet-5
and EDH-STNet models exhibit superior prediction performance. Compared to the Swin-
Unet, the SwinUnet-5 model shows improvements of 7.091%, 7.771%, and 6.962% in its
three indicators. This indicates that incorporating multiple HMPs as prior information
helps the Swin-Unet to more comprehensively understand and capture the complex factors
influencing EDH. This improvement not only enhances the Swin-Unet model’s accuracy
but also increases its interpretability. Additionally, the EDH-STNet model has the best
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prediction performance and shows improvements of 12.419%, 6.652%, and 12.245% in its
three indicators compared to the SwinUnet-5.
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Table 2. Evaluation indicators for Test2022.

Model
Indicator

RMSE MAE RRMSE

Unet 1.121 0.708 0.214
Swin-Transformer 0.968 0.599 0.184

Swin-Unet 0.832 0.489 0.158
SwinUnet-5 0.773 0.451 0.147
EDH-STNet 0.677 0.421 0.129

Table 3. Evaluation indicators for Test2023.

Model
Indicator

RMSE MAE RRMSE

Unet 1.596 1.014 0.167
Swin-Transformer 1.353 0.839 0.142

Swin-Unet 1.038 0.641 0.109
SwinUnet-5 0.878 0.533 0.092
EDH-STNet 0.793 0.484 0.083

For Test2023, the Unet again demonstrates the highest prediction errors, with RMSE,
MAE, and RRMSE evaluation indicators of 1.596, 1.014, and 0.167, respectively. Following
this, the Swin-Transformer model has RMSE, MAE, and RRMSE values of 1.353, 0.839,
and 0.142, respectively. When compared to the Swin-Transformer model, the Swin-Unet
model shows improvements of 23.282%, 23.600%, and 23.239% in its RMSE, MAE, and
RRMSE indicators, respectively. Moreover, both the SwinUnet-5 and EDH-STNet models
achieve better performance metrics than the Swin-Unet model, indicating their superior
prediction capabilities. Specifically, the SwinUnet-5 model improves upon the Swin-Unet by
15.414%, 16.849%, and 15.596% in RMSE, MAE, and RRMSE, respectively. The EDH-STNet
model exhibits the best predictive performance overall. This indicates that the additional
introduction of HMPs helps to improve the performance of the model. The utilization of
more multi-dimensional environmental information for training enables the EDH-STNet
model to better adapt to the dynamic variations in the marine environment, thus providing
more accurate prediction results.

4.2.2. Multiple-Step Prediction Results and Analysis

To evaluate the performance of the EDH-STNet model in predicting the EDH distribu-
tion for multiple future moments, this study further compares the evaluation indicators
of the EDH-STNet model with other baseline models at multiple prediction steps (2, 4, 8,
and 16). The evaluation indicators for different prediction steps across the two test sets are
presented in Tables 4 and 5. As the prediction steps gradually increase, the prediction errors
of all the models also increase significantly, which indicates that the prediction performance
of the models keeps worsening with the increase of the prediction step. In addition, as
the prediction steps increase, the EDH-STNet model consistently has the smallest predic-
tion errors, followed by the SwinUnet-5 model, and finally the Unet model has the worst
prediction performance. This shows the superiority of the EDH-STNet model among all
prediction models. In addition, the EDH-STNet model also exhibits superior prediction
performance at a prediction step size of 16.

For Test2022, when the prediction step is 2, the RMSE, MAE, and RRMSE indicators
of the EDH-STNet model are improved by 39.602%, 46.944%, and 39.759%, respectively,
compared to the Unet. Compared with the SwinUnet-5 model, the three indicators of
the EDH-STNet model are improved by 12.707%, 18.492%, and 12.791%, respectively.
Meanwhile, when the prediction step is 16, the EDH-STNet model’s RMSE, MAE, and
RRMSE indicators are improved by 31.839%, 33.874% and 31.868%, respectively, compared
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to the Unet model, and by 12.948%, 14.711%, and 12.921%, respectively, compared to the
SwinUnet-5 model. For Test2023, when the prediction step is set to 2, the EDH-STNet
model exhibits improvements of 50.444%, 65.081%, and 50.282% in the three indicators,
respectively, compared to the Unet model. In comparison to the SwinUnet-5 model, the
EDH-STNet model demonstrates enhancements of 16.617%, 32.623%, and 16.190% in these
three indicators, respectively. Additionally, at a prediction step of 16, the three indicators
of the EDH-STNet model improve by 33.502%, 43.016%, and 33.457%, respectively, when
compared to the Unet model, and by 10.955%, 18.347%, and 10.945%, respectively, compared
to the SwinUnet-5 model. Comprehensively, these evaluation indicators highlight the
superior prediction performance of the EDH-STNet model, which is significantly better
than other models.

Table 4. Evaluation indicators for Test2022.

Multiple-Step Indicator
Model

Unet Swin-Transformer Swin-Unet SwinUnet-5 EDH-STNet

2
RMSE 1.308 1.084 0.980 0.905 0.790
MAE 1.080 0.876 0.778 0.703 0.573

RRMSE 0.249 0.207 0.187 0.172 0.150

4
RMSE 1.569 1.439 1.382 1.254 0.956

MAE 1.314 1.167 1.121 1.033 0.755
RRMSE 0.299 0.274 0.263 0.239 0.182

8
RMSE 1.979 1.832 1.781 1.620 1.347
MAE 1.654 1.523 1.480 1.359 1.088

RRMSE 0.377 0.349 0.339 0.309 0.257

16
RMSE 2.387 2.170 1.954 1.869 1.627
MAE 2.034 1.843 1.652 1.577 1.345

RRMSE 0.455 0.413 0.372 0.356 0.310

Table 5. Evaluation indicators for Test2023.

Multiple-Step Indicator
Model

Unet Swin-Transformer Swin-Unet SwinUnet-5 EDH-STNet

2
RMSE 1.691 1.441 1.193 1.005 0.838
MAE 1.177 0.948 0.756 0.610 0.411

RRMSE 0.177 0.151 0.125 0.105 0.088

4
RMSE 1.852 1.737 1.535 1.339 1.030
MAE 1.375 1.133 1.038 0.780 0.575

RRMSE 0.194 0.182 0.161 0.140 0.108

8
RMSE 2.133 2.070 1.753 1.571 1.328
MAE 1.665 1.503 1.206 1.015 0.786

RRMSE 0.223 0.217 0.183 0.164 0.139

16
RMSE 2.567 2.415 2.211 1.917 1.707
MAE 1.976 1.732 1.526 1.379 1.126

RRMSE 0.269 0.253 0.231 0.201 0.178

4.2.3. Performance Testing Based on Measured EDH

To validate the predictive performance of the developed EDH-STNet model, we
compared the model’s predictions with the measured EDH. The measured EDH data were
obtained from a radio environment measurement experiment (REME) conducted by the
China Research Institute of Radiowave Propagation (CRIRP) in a coastal area of Maoming
City, Guangdong Province. The REME primarily relies on an evaporation duct monitoring
system (EDMS) installed along the shore. During the REME, the meteorological sensors
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within the EDMS automatically measure AT, RH, WS, and AP. Additionally, the infrared
SST-measuring instruments automatically record SST parameters. Subsequently, the EDMS
performs preprocessing on the measured HMPs data. After preprocessing, these data are
input into the NPS model. The model utilizes these five HMP parameters for computation,
ultimately yielding the M-profile. The height corresponding to the minimum value of the
modified refractivity is determined as the EDH.

Following detailed measurements conducted on a specific day in November 2023,
we successfully obtained multiple sets of EDH data. By matching the collection locations
with the nearest grid points of the prediction results, we can effectively extract the
corresponding predictions for the measurement times, including outputs from both
the EDH-STNet model and the baseline models. As shown in Figure 9, a comparison
has been made between the predicted results of all models and the measured EDH.
Furthermore, we have computed the corresponding evaluation indicators, with the
detailed results presented in Table 6. By analyzing the prediction results, we have found
that there are significant errors between the model’s predictions and the measured EDH
compared to the EDH obtained using the reanalysis data. These errors may primarily
arise from significant differences between meteorological reanalysis data and the actual
measured HMPs. Specifically, meteorological reanalysis data are often based on a
fusion of numerical weather prediction models and observational data, which may not
fully capture the complexities of the actual environment. In contrast, the measured
HMPs provide more direct and accurate information. Therefore, all models may be
biased by the quality of the data source when learning the temporal properties of EDH.
However, compared to other models, the developed model still demonstrates superior
performance. Specifically, this model exhibits a strong fitting trend in its prediction
results. Furthermore, it maintains optimal performance across multiple evaluation
indicators, further validating its effectiveness and reliability in practical applications.
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Table 6. Evaluation indicators for the measured EDH.

Model
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RMSE MAE RRMSE

Unet 2.365 1.993 0.200
Swin-Transformer 2.012 1.711 0.171

Swin-Unet 1.846 1.453 0.156
SwinUnet-5 1.491 1.237 0.126
EDH-STNet 1.206 1.023 0.102
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5. Conclusions

Although machine-learning-based models for predicting EDH have seen significant
advancements, challenges remain in accurately predicting EDH distributions across
large-scale regions. To address these limitations, we introduce the EDH-STNet model,
a novel approach that integrates various environmental information sources and em-
ploys the Swin-Unet framework to enhance spatial predictions of EDH. The EDH-STNet
utilizes an advanced Encoder–Decoder architecture, with both components consisting
of consecutive Swin-Transformer blocks. This design effectively captures complex spa-
tial correlations and temporal dynamics. By incorporating multiple HMPs, the model
improves prediction accuracy by capturing the nonlinear relationships between HMPs
and EDH. The integration of these additional HMPs allows the EDH-STNet to refine its
understanding of the environmental variables influencing EDH, significantly enhancing
both the model’s accuracy and reliability. This integration occurs through a data-driven
methodology, incorporating HMPs as prior information into the EDH-STNet model,
which is crucial for refining spatiotemporal predictions. It enables the model to leverage
historical and real-time environmental data more effectively. Comprehensive testing and
evaluation reveal that the EDH-STNet model, with its sophisticated deep learning algo-
rithms and enriched environmental input, not only delivers precise predictions of EDH
for immediate future moments but also offers reliable forecasts for multiple future time
frames. The implications of this development are substantial for atmospheric science and
radio communications. By providing a robust tool for predicting EDH, the EDH-STNet
enhances the stable operation of radio systems, improving their performance under
varying atmospheric conditions. This advancement marks a significant step forward in
addressing the challenges of large-scale EDH prediction and ensuring the reliability of
communication systems reliant on accurate atmospheric modeling.
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