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Abstract: Characterizing Management Units (MUs) with tree-level data is instrumental for a compre-
hensive understanding of forest structure and for providing information needed to support forest
management decision-making. Airborne Laser Scanning (ALS) data may enhance this characteriza-
tion. While some studies rely on Individual Tree Detection (ITD) methods using ALS data to estimate
tree diameters within stands, these methods often face challenges when the goal is to characterize
MUs in dense forests. This study proposes a methodology that simulates diameter distributions
from LiDAR data using an Area-Based Approach (ABA) to overcome these limitations. Focusing on
maritime pine (Pinus pinaster Ait.) MUs within a forest intervention zone in northern Portugal, the
research initially assesses the suitability of two highly flexible Probability Density Functions (PDFs),
Johnson’s SB and Weibull, for simulating diameter distribution in maritime pine stands in Portugal
using the PINASTER database. The selected PDF is then used in conjunction with ABA to derive the
variables needed for parameter recovery, enabling the simulation of diameter distributions within
each MU. Monte Carlo Simulation (MCS) is applied to generate a sample list of tree diameters from
the simulated distributions. The results indicate that this methodology is appropriate to estimate
diameter distributions within maritime pine MUs by using ABA combined with Johnson’s SB and
Weibull PDFs.

Keywords: LiDAR; characterization of management units; Johnson’s SB and Weibull probability
density function

1. Introduction

In forestry, a management area generally includes a group of forest stands (Manage-
ment Units, MUs) with varying ages and species compositions that are managed collec-
tively [1]. These forest stands can be classified as either pure (containing a single species)
or mixed-species and may consist of even-aged or uneven-aged structures. Given these
differences, accurate forest assessment and management depend on the precise quantifica-
tion of forest information at both the tree and stand levels [2], which is a critical task for
sustainable forest management.

Characterizing Management Units at the tree level improves our understanding of
forest structure and provides essential data for decision-making. However, detailed forest
inventory over large areas presents challenges due to the significant time and resources
required. To address this challenge, geotechnologies like Airborne Laser Scanning (ALS)
have proven effective for the cost-efficient characterization of large forest areas, captur-
ing the three-dimensional structure of vegetation and facilitating forest mapping, which
enhances our understanding of forest dynamics [3,4].
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One primary application of ALS data in forestry is the Area-Based Approach (ABA),
which combines field inventory data with statistical and spatial generalizations of normal-
ized ALS data [5]. This enables the efficient estimation and mapping of forest inventory
attributes like dominant height, diameter, volume, basal area, and tree density at the land-
scape level [6]. While the ABA approach does not directly measure tree diameters, several
stand-level variables can be estimated through predictive models. These variables can then
be used to recover Probability Density Functions (PDFs). This approach allows for detailed
vertical structure characterization and reproduction of different diameter distributions
shapes [7].

Several Probability Density Functions, such as Johnson’s SB, Weibull, Beta, Gamma,
Lognormal, and Truncated Weibull, have been explored for simulating diameter distribu-
tions in forest stands using field data [8–10]. While these functions have proven suitable
for diameter distribution simulation, Johnson’s SB and Weibull have demonstrated par-
ticular flexibility and adaptability, making them effective for different forest types and
conditions. For instance, Johnson’s SB accommodates a wide range of combinations of
skewness squared and kurtosis, making it particularly effective for modeling diameter
distributions in complex forest stands [8]. Conversely, the Weibull PDF is simpler, requiring
fewer parameters and proving suitable for diverse forest types, particularly in managed
forests [11].

In Mediterranean forests, Johnson’s SB and Weibull have consistently performed well
in simulating diameter distributions, adapting effectively to different forest types. Páscoa
(1987) [12] tested the parameter-recovery Weibull of the PDF to simulate the evolution
of structure, growth, and yield of maritime pine stands in Portugal. Fonseca et al. [13]
demonstrated the effectiveness of Johnson’s SB in simulating maritime pine diameter
distributions in Portugal using a parameter recovery approach, highlighting its ability to
closely match observed distributions. Similarly, Mateus and Tomé [14] successfully applied
Johnson’s SB PDF to simulate diameter distribution in eucalyptus plantations in Portugal,
confirming its suitability for these stands. In addition, Palahí et al. [15] compared the
Johnson’s SB, Weibull, and Beta PDFs to simulate diameter distributions in several stands
with different species compositions, including maritime pine.

Building on this, previous research has explored methods for simulating the diameter
distribution of boreal forests using ALS metrics and Probability Density Functions, [16–18].
Similar studies have applied this approach to different forest types in the Iberian Peninsula.
For instance, Arias-Rodil et al. [19] used the two-parameter recovery of the Weibull PDF
to simulate diameter distribution in Pinus radiata stands in Galicia, Spain. Additionally,
Cosenza et al. [20] tested the Johnson’s SB and Weibull PDFs for modeling diameter
distribution in Eucalyptus globulus and Pinus radiata stands using ALS data and utilized
ABA as a method to estimate the variables required for each parameter recovery.

According to the literature, many studies rely on Individual Tree Detection (ITD)
methods to simulate diameter distributions within a stand [21–24], as this approach enables
the identification of individual trees, with diameters estimated using tree height and
crown attributes [25]. However, despite their widespread use, these methods can face
significant limitations in dense forests, where overlapping canopies and high tree density
often constrain the accurate detection and differentiation of individual trees, potentially
leading to inaccuracies in diameter estimates. For instance, Vauhkonnen et al. found that
tree density strongly affects the success of single-tree detection algorithms across different
forest types [26]. ABA offers an alternative by enabling the wall-to-wall estimation of
stand forest attributes through grid cells [27], which combined with the simulation of
diameter distributions, facilitates the detailed characterization and mapping of within-
stand variability.

Given these considerations, this study proposes a methodology to characterize the
Management Units (MUs) at tree level in dense forests. First, we assess the suitability of
two flexible Probability Density Functions (PDFs), Johnson’s SB and Weibull, for simulating
diameter distributions in maritime pine stands. While Johnson’s SB and Weibull PDF have
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been tested for maritime pine in Portugal, they have not yet been compared, highlighting a
gap that this study aims to address.

Secondly, this study applies the ABA to estimate the forest attributes inputs needed
for the parameter recovery of the selected PDF, enabling diameter distribution simulation
and tree list generation in each MU. This detailed characterization is crucial for forest
management, as it supports the use of individual tree models, which are essential for
simulating thinnings or managing complex stands, such as converting even-aged stands to
uneven-aged or pure stands to mixed-species stands.

2. Materials and Methods

The flowchart in Figure 1 summarizes the entire process for generating a tree list
for each Management Unit. The methodology is divided into three main stages. The
first stage involves selecting a Probability Density Function (PDF) for parameter recovery,
using a database based on permanent plots and silvicultural trials of maritime pine in
Portugal (PINASTER), which is managed by the ForChange research group (https://www.
isa.ulisboa.pt/cef/forchange/fctools/ (accessed on 16 January 2024)). This database was
used to assess the ability of the highly flexible PDFs, such as Johnson SB and Weibull, in
simulating diameter distribution in maritime pine stands. This assessment is conducted
through the Kolmogorov–Smirnorv (KS) test and a comparison of the growing stock volume
produced with each PDF in relation with the observed data.
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2.1. Study Area

This study focuses on 214 maritime pine Management Units (MUs), which cover a
total area of 16.15 km2 within an aggregated management forest area in northern Portugal,
known as Paiva and Entre Douro e Sousa (Figure 2). The maritime pine Management Units
are surrounded by eucalyptus MUs, which are the dominant species in the landscape [28].
This region includes parts of the counties of Paredes, Penafiel, Gondomar, Paços de Ferreira,
Lousada, Amarante and Marco de Canavezes, situated north of the Douro River, and
extends to the border of Castelo de Paiva County and part of Arouca and Cinfães to the
south. The area features diverse topography, with altitudes ranging from 67 to 775 m and
slopes varying between 5 and 88 degrees.
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Figure 2. Maritime pine Management Units (MUs) within an aggregated management forest area in
northern Portugal.

2.2. Data Used

This study utilized two datasets. The first dataset, known as the PINASTER database,
includes permanent plots and silvicultural trials installed in maritime pine stands across
Portugal. It was used to assess the suitability of two highly flexible Probability Density
Functions (PDFs) for simulating diameter distributions. The second dataset consists of field
inventory plots data collected in 2022 within the study area. These data were combined
with ALS data to predict stand variables needed for the PDFs parameter recovery in each
Management Unit.

The PINASTER database compiles data from 12 silvicultural trials, each with multiple
measurements over time. Some measurements were taken when stands were very young,
with most trees shorter than 1.30 m. To ensure datasets where most of the trees had a size
allowing dbh measurement, we selected only plots where at least 90% of the trees had
measured diameters, resulting in 186 plots and a total of 981 plot measurements.

The second dataset was surveyed during a forest inventory conducted by AFVS—
Associação Florestal Vale do Sousa, a Forest Owners Association. The survey took place
between 5 July and 25 September 2022. A total of 30 maritime pine plots, each covering
500 m2, were randomly located and surveyed according to the Portuguese National Forest
Inventory Field Manual [29]. Table 1 summarizes both datasets.
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Table 1. Description of the field data with the values related to minimum, mean, maximum, and
standard deviation (sd) values.

Dataset Variable 1 Unit Minimum Mean Maximum sd

dmin cm 0.50 6.58 23.39 5.43
dmean cm 0.46 13.15 34.88 6.69

PINASTER dmax cm 1.50 21.28 53.00 9.13
dg cm 0.57 13.62 35.23 6.66
G m2 ha−1 0.03 22.07 64.07 16.34
N stems ha−1 244.00 1428.11 7755.00 904.39

dmin cm 5.00 10.21 25.00 5.10
dmean cm 9.70 21.85 43.66 8.15

Field inventory
data dmax cm 16.00 37.41 60.00 11.94

dg cm 10.03 23.15 45.19 8.39
G m2 ha−1 2.97 19.77 52.34 11.20
N stems ha−1 120.00 534.66 1860.00 370.53

1 dmin: minimum diameter at breast height (dbh); dmean: mean dbh; dmax: maximum dbh; dg: quadratic mean
dbh; G: stand basal area; N: tree density.

2.3. LiDAR Data Characteristics and Pre-Processing

LiDAR data acquisition for the study area took place on 10 June 2022, as part of the
FIRERES project [30]. Data collection was conducted using a PATERNAVIA P68C-TC
aircraft (RIEGL, Vienna, Austrian) flying at an average altitude of 1600 m above ground
level at a speed of 220 km h−1. A RIEGL VQ-1560i LiDAR sensor (TOPCAD Ingeniería,
Lugo, Spain) was used operating with a scan angle range of 60◦ and pulse repetition rate
up to 2.0 MHz, resulting in a point density of 5 pts m−2.

Following data acquisition, point cloud classification was conducted using the lidR
package [31] within the R environment [32]. Once the ground returns were identified,
they were filtered and triangulated to generate a Digital Terrain Model (DTM) with a
1 m resolution. This DTM was then used to normalize the point cloud, ensuring that all
non-ground measurements were adjusted relative to ground elevation.

With the normalized point cloud in place, descriptive statistics (metrics) were calcu-
lated, as outlined in Table 2. These metrics were computed for both the entire study area,
using a grid with a resolution of 20 × 20 m, and for the clipped normalized point cloud
that overlapped with the field inventory plots.

Table 2. Descriptions of the metrics extracted from the normalized ALS data.

Metrics Description

Zmean, Zmax Mean and maximum height
Zsd, Zcv Height standard deviation, height coefficient of variation

Ziq Height interquartile range
Zskew, Zkurt Skewness and kurtosis of height distribution

Zsqmean Quadratic mean height
Zentrpy Height entropy

Z5, Z10, Z15, Z20, Z25, Z30, Z35, Z40, Z45, Z50, Z55, Z60, Z65,
Z70, Z75, Z80, Z85, Z90, Z95, Z98, Z99 Height percentile from 5% to 99%

CRR Canopy relief ratio (Hmean − Hmin)/(Hmax − Hmin)
Para2 Percentage of all returns above 2 m
Param Percentage all returns above mean/Total all returns

CC Percentage of first returns above 2 m
Pfram Percentage of first returns above mean/Total all returns
ADD Mean absolute deviation

Pzbvzmn Percentage of returns above mean height (Zmean)
Zpcum1, Zpcum2, Zpcum3, Zpcum4, Zpcum5, Zpcum6,

Zpcum7, Zpcum8, Zpcum9
Cumulative percentage (from 10% to 90%) of returns located in

lower 10% maximum elevation
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2.4. Assessing the Suitability of Johnson’s SB and Weibull PDFs for Diameter Distributions
Simulation in Maritime Pine Stands

To evaluate which Probability Density Function better represents diameter distribution
for maritime pine, this section compares Johnson’s SB and Weibull distributions. The
process involved testing each PDF on the maritime pine plots in the PINASTER database
and comparing their adequacy.

For the Johnson’s SB PDF, as described by Johnson (1949) [33], four key parameters
characterize the distribution: the location parameter ε, the scale parameter λ, and shape
parameters γ and δ. These parameters collectively define the distribution’s characteristics,
including the lower bound, range, and shape, respectively (Equation (1)).

f (x) =
δλ√

2π(x − ε)(ε + λ+ x)
exp{−1

2
[γ+ δln(x − ε/ε+ λ− x)]2} (1)

ε < x < ε + λ, δ > 0,−∞ < γ < ∞, λ > 0, and ε ≥ 0; f (x) = 0, otherwise.

These parameters were estimated using a three-parameter recovery algorithm adapted
from Parresol et al. [34], implemented in the R environment (version 4.3.0) [32] with the
minpack.lm package [35]. The recovery process applies the Levenberg–Marquardt algorithm
to solve complex nonlinear equations, ensuring an optimal fit for each plot in the dataset.
The notation D ∼ SB (λ, ε, γ, δ) indicates that the variable D follows the SB distribution,
characterized by these defining parameters.

A transformation can be applied to normalize the distribution; starting from a simple
linear transformation in Equation (2), a normally distributed variable in Equation (3) is
derived, which connects the transformed variable y to a standard normal distribution.
This relationship is then used in Equation (4) to compute the non-centered moments of the
distribution of y through an integral involving a logistic function and the normal probability
density function. These transformations provided a detailed representation of the diameter
distribution shape across the plots.

y = f (d) =
d − ε

λ
(2)

z = γ+ δln
(

y
1 − y

)
∼ N(0, 1) (3)

µ′
r(y) =

1√
2π

∫ ∞

−∞

[
1 + e

γ−z
δ

]−r
e−z2/2dz (4)

The following equations provide the key parameters of the Johnson’s SB PDF, using
stand-level average attributes to estimate the diameter distributions. Equation (5) defines
the shape parameter γ, which adjusts the skewness of the distribution and can be expressed
as a function of the other three parameters. Equation (6) describes the mean value d of the
distribution as a function of the location parameter ε and the first non-centered moment
µ′

1(y), scaled by λ, which defines the distribution’s range.
To initiate the estimation process, the initial value for the location parameter ε was set

to zero, as sampling data was used [36]. The initial values for λ and δ were set to dmax and
1.2, respectively. These parameters are iteratively solved using Equations (6) and (7), after
which the shape parameter γ is determined through Equation (5).

γ = δln
(

λ

d50%
− 1

)
(5)

d = ε+ λµ′
1(y) (6)

In Equation (7), where G represents the basal area (m2 ha−1), calculated by combining
ε, λ and the first and second non-centered moments of the distribution of Y, µ′

1(y) and µ′
2(y).
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This calculation is weighted by K, which is determined by π/40, 000, and incorporates tree
density (in trees ha−1).

G = KN
[
ε2 + 2ελµ′

1(y) + λ2µ′
2(y)

]
(7)

The two-parameter Weibull, represented by Equation (8), was applied following the
method by Bailey and Dell [37], where b is the scale parameter and c is the shape parameter.
This method employed a moment-based two-parameter recovery approach according
to Siipilehto and Mehtätalo [38], implemented in the R environment [32] with the lmfor
package [39]. The standard input variables used for the recovery process include tree
density N (in trees per hectare, ha−1) and basal area G

(
m2 ha−1 ) along with either the

mean diameter dmean or the median diameter d50%.

f (x) =
( c

b

)( x
b

)c−1
exp

(
−
( x

b

)c)
(8)

The equations below ensured that the applied stand mean or stand median diameter
matched the corresponding characteristic derived from the recovered Weibull distribu-
tion [38]. The expected value of the Weibull distribution is given by Equations (9) and (10),
where the scale parameter b and the shape parameter c define the distribution:

dmean = bΓ
(

1 +
1
c

)
(9)

d50% = b(ln 2)
1
c (10)

The recovery is based on solving Equation (11), which is crucial to ensure that the
distribution is consistent with the quadratic mean diameter of the stand.

dgW(c, b (D, c))− dg = 0 (11)

where dg is the quadratic mean diameter (cm), and dgW represents the quadratic mean
diameter of the Weibull distribution for a given parameter set, using the scale parameter
that corresponds to the combination of the shape parameter and the mean or median
diameter provided in D.

To compare the Johnson’s SB and Weibull Probability Density Functions adjusted
using the PINASTER dataset, we applied the two-sample Kolmogorov–Smirnov (KS) test
with the dgof R package [40]. This test assesses the D statistic by measuring the largest
discrepancy between the observed and simulated distributions, providing a p-value to
assess whether the null hypothesis (H0: observed distribution = simulated distributions)
should be rejected. A lower KS statistic indicates a better fit, while a higher value suggests
greater deviation. A p-value below 0.05 suggests rejection of (H0), indicating significant
differences between the distributions, whereas a higher p-value suggests no reasons to
reject H0.

Additionally, we compared the estimated growing stock volume from each PDF
to the observed values in the PINASTER dataset plots. For this purpose, the diameter
distribution estimated for each plot was combined with a height-diameter equation from
Tomé et al. [41] and a volume equation from Tomé et al. [42] to estimate the volume for
each plot measurement in the original dataset and the volume for the central value of each
class of the simulated PDF. The total volume of each plot measurement was used to assess
the accuracy by comparing the estimated and observed volumes.

To assess the accuracy of the volumes produced by each tested PDF, we used several
statistics metrics: Mean Absolute Error (MAE), mean squared error (MSE), coefficient of
determination (R-squared), root mean squared (RMSE%), and bias (%). These metrics were
employed to select the most suitable PDF in predicting growing stock volume. Together,
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these statistics metrics provide a comprehensive assessment of precision, bias, and overall
suitability of the tested PDFs in estimating observed volumes (Equations (12)–(16)).

MAE =
1
n

n

∑
i=1

|yi − ŷi| (12)

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (13)

R2 = 1 − ∑n
i=1

(
Ŷi − Yii

)2

∑n
i=1

(
Yi − Y

)2 , (14)

RMSE % =
100
y

√
∑n

i=1(yi − ŷi)
2

n
(15)

Bias % = 100
n

∑
i=1

(yi − ŷi)

ny
(16)

where yi is observed value, ŷi is the estimated value for the plot i = 1, ..., n, y is the observed
mean value, and n is the number of observations.

2.5. Estimating ABA-Derived Inputs to Fit PDF for Each Management Unit

This section outlines the process of obtaining stand variables through the Area-Based
Approach (ABA), which is necessary for the parameter recovery of the selected Probability
Density Function (PDFs). This PDF will then be used to simulate the diameter distribution
across each Management Unit.

Following the analysis, which demonstrated that the Weibull PDF outperformed
the Johnson’s SB PDF (see results section), we estimated the stand variables required for
Weibull parameter recovery. These include the median diameter (d median, cm), quadratic
mean diameter (dg, cm), stand density (N, treesha−1), and basal area (G)

(
m2 ha−1 ). In

order to guarantee compatibility among estimated G, dg, and N, the basal area (G) was
obtained using the relation G = dg ∗ N. Except for (G), all inputs were estimated using
the Area-Based Approach (ABA).

To estimate these variables, stand-level attributes from field inventory plots were
linked to ALS metrics through linear regression models, hereafter referred to as “ABA
models”. These models were subsequently applied to the grid cells corresponding to the
independent variables selected for each model, allowing for a wall-to-wall estimation of
each predicted stand variables across the entire MU area. Additionally, the dominant
height—variable not needed as an input for PDF parameter recovery—was estimated
through ABA to associate it with dominant trees. Finally, the pixel-level estimates within
each MU were averaged to be used as the PDF parameter recovery inputs.

The ABA models consisted of a system of linear regression equations with four predic-
tor variables each (Equation (17)).

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε (17)

where Y represents the dependent variable, β0 is the intercept, β1, β2, β3, β4 are the coeffi-
cients of each independent variable X1, X2, X3, X4, and ε is the model error.

Several models were initially fitted for each stand variable, and the best models—using
one, two, three, and four predictor variables—were selected via an exhaustive search algorithm
from the leaps package [43]. This algorithm uses the Ordinary Least Squares approach to fit all
possible models with a given number of predictors. Models were ranked based on: (i) lowest
Akaike Information Criteria (AIC, Equation (18)), (ii) lowest Bayesian Information Criterion
(BIC, Equation (19)), (iii) highest adjusted coefficient of determination (Equation (20)), and
(iv) Variance Inflation Factor (VIF) under five. The VIF, calculated with the R car package [44],
was used to prevent multicollinearity among the selected ALS metrics.
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For model validation, we applied cross-validation using the Prediction Residuals
Error Sum of Squares (PRESS, Equation (21)) [45]. Once the best metrics for each model
were selected, we used Seemingly Unrelated Regression (SUR, [46]), with the systemfit R
package [47] to account for cross-equation errors, ensuring consistent predictions for stand
variables across each MU.

AIC = 2k − 2ln(L) (18)

BIC = k ln(n)− 2ln(L) (19)

R2
adjusted = 1 −

(
1 − R2) · (n − 1)

n − p − 1
(20)

PRESS =
n

∑
i=1

(
yi − ˆy(i)

)2
(21)

where k is the number of estimated parameters in the model, L is the value of the Likelihood
function of the model, evaluated at the maximum likelihood, yi represents the observed
value, and ˆy(i) is the predicted value for i-th observation when the model is fitted without
using the i-th individual observation.

2.6. PDF Parameter Recovery and Tree List Generation for Each Management Unit

This section outlines the Weibull PDF parameter recovery using stand variables ob-
tained through the Area-Based Approach (ABA) in each Management Unit, followed by the
generation of a tree list for each Management Unit. After confirming that the Weibull PDF out-
performed the Johnson’s SB PDF (see results section), we proceeded with the two-parameter
recovery for the Weibull PDF according to Siipilehto and Mehtätalo [38], using the lmfor R
package [39] to obtain the shape and scale parameters for each Management Unit.

As mentioned in Section 2.5, all inputs for the two-parameter recovery of the Weibull
PDF, except for basal area (G), were estimated using the ABA. These include the median
diameter (d median), quadratic mean diameter (dg, cm), and the tree density (N, trees ha−1).
These variables were used as input for the parameter recovery of the Weibull PDF.

Following the parameter recovery in each MU, a Monte Carlo Simulation (MCS) [48]
was applied to generate a representative sample list of tree diameters, distributed accord-
ing to the diameter classes in each MU. From this generated the tree list, dominant trees
were identified based on the Burkhart and Tomé [2] definition of dominant height, which
averages the height of the 100 thickest trees per hectare. The dominant height, predicted
through ABA, was then assigned to these dominant trees, with a random variation added
according to the regression standard error of prediction [49]. This methodological ap-
proach provides a detailed perspective on forest structure within each Management Unit,
enhancing potential applications in forest management and decision-making.

3. Results
3.1. Probability Density Function Assessment

The KS test indicated that Weibull PDF was slightly more efficient in simulating
diameter distribution for the PINASTER dataset compared to Johnson’s SB. Although the
difference between the two approaches for parameter recovery of the Weibull PDF was
relatively small, with similar results, Weibull (d mean) was not rejected in 14 more plot
measurements than Weibull (d 50%). In contrast, Johnson’s SB was not rejected in 868 plots
measurements (88.48%), which is 22 fewer plot measurements than the Weibull (d mean)
(Table 3).
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Table 3. Kolmogorov–Smirnov test (KS) applied to the PDF.

PDF * KS (%)

Johnson’s SB 88.48 (868)
Weibull (d mean) 90.72 (890)
Weibull (d 50%) 89.29 (876)

* Kolmogorov–Smirnov test acceptance (%) and the number of plots not rejected by the test in parenthesis.

The KS test rejected 11.52% of the plot measurements for Johnson’s SB, 9.28% for
Weibull (d mean), and 10.71% for Weibull (d 50%). A total of 72 plots, mostly associated
with very young stands where the maximum diameter was 5 cm, were rejected by the
PDFs due to significant divergences. Most of these plots displayed bimodal patterns in the
graphical analysis of the Johnson’s SB PDF. However, the other rejected plots showed no
major divergences, but their p-values were still below the 0.05 significance level, leading to
their rejection.

Regarding the second criteria, the growing stock prediction for Weibull (d50%) demon-
strated higher accuracy, with a RMSE% of 13.88%, a lower bias of 7.82%, and high R-squared
(0.974), indicating a better explanation of the variability in the estimated volumes. Addi-
tionally, the accuracy of Weibull (d mean) was comparable to that of Weibull ( d50%), with a
RMSE% of 14.09% and a slightly higher bias of 7.90% (Table 4).

Table 4. Accuracy assessment of the volume predicted with each PDF.

Statistics Johnson’s SB Weibull (dmean) Weibull (d50%)

MAE 17.88 14.30 14.06
MSE 661.56 388.08 376.62

RMSE (%) 18.40 14.09 13.88
R² 0.95 0.97 0.97

Bias (%) 12.45 7.90 7.82
MAE: mean absolute error; MSE: mean squared error; RMSE: root mean squared error; R²: R-squared.

However, both Weibull approaches outperformed the Johnson’s SB PDF, which had
the highest RMSE% (18.41%), the largest bias (12.45%), and lower R-squared values (0.954).
These results underscore the superior predictive capability of the Weibull PDF when
compared to Johnson’s SB in estimating growing stock volume for the PINASTER dataset.

3.2. Modeling Forest Attributes Inputs for the PDF Parameters Recovery in Each Management Unit

Weibull (d50%) was selected for parameter recovery in each Management Unit. This
choice is justified by the importance of stock volume in the decision-making process for
forest management practices, as it directly influences planning and management strategies.
Additionally, Weibull (d50%) was also preferred for its robustness in representing the central
tendency of diameter distribution, reducing the influence of extreme values that could
skew the results.

After modeling and evaluating several models, we noticed that adding one, three,
or four predictor variables did not significantly enhance performance. Therefore, we
focused on models with two variables and applied the Seemingly Unrelated Regression
to ensure consistent predictions for stand variables across each Management Unit. The
best-performing system of equations and output statistics from the systemfit package are
presented in Table 5.
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Table 5. Fitted equations with their respective accuracy assessment.

Variable 1 Independent
Variable Coefficients R-Squared Adjusted

R-Squared RMSE

d50% Intercept 15.45 0.45 0.41 6.72
Zmean 1.64

Pzbvzmn −0.12
dg Intercept 10.99 0.55 0.52 5.78

Zq25 1.59
ADD 1.94

N Intercept 1940.91 0.63 0.60 232.10
Zq85 −30.84

Zpcum4 −18.99
1 d50%: median diameter; dg: quadratic mean diameter; N: tree density (stems per hectare).

The predicted median diameter (d50%) achieved an Adjusted R-squared of 0.41 and
an RMSE of 6.72 cm, while the quadratic mean diameter (dg) model showed an Adjusted
R-square of 0.52 with an RMSE of 5.78 cm. The tree density model demonstrated the highest
performance, with an Adjusted R-square of 0.60 and an RMSE of 232.10 trees per hectare.

Based on these predictions, the second step of the Area-Based Approach methodology
was employed to obtain the necessary inputs for estimating the parameters of the Weibull
Probability Density Function for each Management Unit. The predictive equations, devel-
oped using stand variables and ALS metrics, were subsequently applied to the raster files
corresponding to the selected metrics from the modelling process. These raster files, which
cover the entire study area, enabled the generation of wall-to-wall estimates and maps of
the predicted forest inventory attributes.

Finally, the mean pixel values within each Management Unit were calculated for each
predicted variable, serving as inputs for the parameter recovery of the Weibull Probability
Density Function. The results, which include the median diameter (d50%), quadratic mean
diameter (dg), and tree density (N), are presented in Figure 3.

3.3. Probability Density Function Parameter Recovery and Tree List Generation for Each
Management Unit

The two-parameter recovery of the Weibull (d 50%) PDF was applied using the esti-
mated stand variables for each Management Unit. Once the parameters were recovered,
it was possible to graphically identify the shape and scale parameters of each simulated
diameter distribution for the Management Units, thereby assessing the vertical structure of
the forest in each of the 214 polygons (Figure 4).

Subsequently, a Monte Carlo Simulation (MCS) was conducted to generate a sample
list of tree diameters from the simulated distribution within each Management Unit, based
on the predicted tree density predicted by ABA.

Following this, we identified the dominant trees according to the definition of dom-
inant height. The predicted dominant height, estimated using ALS metrics and field
inventory data, was assigned to the dominant trees, with random variation applied based
on the regression standard error [49]. This approach is particularly useful as it enables the
calculation of tree height using specific hypsometric equation, although this falls outside
the scope of the present study.
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4. Discussion

This research conducted an innovative study by assessing the ability to simulate
diameter distribution in 214 maritime pine Management Units in Portugal, using ALS and
Probability Density Functions (PDFs). Among the highly flexible PDFs tested using the
PINASTER dataset, the Weibull function demonstrated the best performance in terms of
statistical accuracy (bias and precision) and fit to the observed data when compared to
Johnson’s SB. Notably, both Weibull approaches performed similarly; as evidenced by the
Kolmogorov test (KS), Weibull (dmean ) was not rejected in 90.72% of the plot measurements,
and Weibull (d 50%) in 89.29%, both significantly exceeding the Johnson’s SB function, which
was not rejected just in 88.48% of the plot measurements. This suggests that the Weibull
PDF effectively captures the structural variation of diameters within the PINASTER dataset,
particularly in homogeneous forests, aligning with the findings of Cosenza et al. [20], who
also reported superior performance for the Weibull function over Johnson’s SB.

The high acceptance rate of the KS test across both Weibull PDFs evidence their suit-
ability for simulating diameter distribution in Mediterranean forests in Portugal. However,
the KS test rejected the same 72 plots in both PDFs, primarily associated with very young
stands, with diameter no greater than 5 cm. Based on these results, we recommend against
using this methodology for very young stands, as these plots did not show a simulated
distribution that closely matched the observed distribution. This limitation suggests that
adaptations or alternative approaches might be more suitable for young stands.

The analysis of prediction errors in growing stock volume estimated with each PDF
revealed similar results for the two Weibull approaches. Weibull (d 50%) achieved an
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RMSE% of 13.88 and bias of 7.82%, while Weibull (dmean ) showed an RMSE% of 14.09 and
bias of 7.90%. These values were considerably lower than those of Johnson’s SB, which
had an RMSE of 18.40% and bias of 12.45%. These results confirm the effectiveness of the
Weibull PDF not only in simulating diameter distributions but also in accurately predicting
growing stock volume, which is crucial for forest management as it directly influences
decision-making. Consequently, we selected the Weibull (d 50%) in conjunction with ABA
to simulate diameter distribution within the Management Units.

The precision of forest inventory based on ALS data depends on tree density, which
influences the choice between the Area-Based Approach (ABA) and Individual Tree De-
tection (ITC) [50]. We chose the ABA method because the maritime pine Management
Units are dense and surrounded by eucalyptus MUs, adding complexity to capturing forest
structure. This methodology, in conjunction with the ABA, proved effective for charac-
terizing diameter distribution in the Management Units. The integration of ALS-derived
metrics with predictive models enabled the estimation of forest stand variables required
for parameter recovery of the Weibull to simulate diameter distributions, highlighting the
practical applicability of this approach for characterizing Management Units.

Since Weibull (d 50%) was the PDF selected, we used stand variables predicted by
the ABA to recover its shape and scale parameters in each Management Unit. Models
developed to the predict median diameter (d 50%), quadratic mean diameter (dg), and tree
density (N) of the Management Units (MUs) demonstrated Adjusted R-squared values
of 0.41, 0.52, and 0.60, respectively. Although Seemingly Unrelated Regression (SUR)
allowed consistent predictions across the different stand variables, a significant portion of
the variability remains unexplained. The stand density model performed best, explaining
60% of the variation, though the RMSE of 232.10 trees per hectare highlights the potential
for refinement.

These results suggest that models with two predictor variables based on ALS metrics
capture part of the variability in the independent variables; however, adding further
predictor variables did not increase the explanatory power, as we tested several models by
adding one to four predictors. Further testing of additional predictor variables within the
PDF parameter prediction method, where parameters are estimated through regressions
using stand variables [38], may enhance the model’s ability to capture forest structure in
complex stands, rather than using parameter recovery method. Furthermore, the study
area, severely impacted by intense wildfires in recent years [51], may have impacted the
field data collection carried out in 2022 by reducing the number of trees measured and
limiting data collection.

The application of two-parameter recovery on the Weibull DF, using the modeled
variables for each MU, enabled the identification of different shapes and scales of the
simulated diameter distributions in each Management Unit. For individual tree models,
which are required when the objective is to simulate complex forests, namely close-to-
nature management, the Monte Carlo Simulation is crucial to obtain a sample list of
tree diameter in each MU. Furthermore, the identification of dominant trees, and the
correspondent attribution of dominant height to the trees classified as dominant, adding
random variation [49], enabled the assignment of predicted heights from ALS metrics and
stand variables to each tree via a height-diameter curve.

Beyond the Johnson’s SB and Weibull distributions, other Probability Density Func-
tions such as Beta, Gamma, Lognormal, and Truncated Weibull could be tested for various
species to simulate diameter distribution. These alternatives in different contexts may
complement Weibull strengths, particularly in MUs with greater structural complexity or
heterogeneity. Nevertheless, the focus was placed on Johnson’s SB and the Weibull PDF due
to their flexibility in simulating diameter distributions in each MU. Future research could
explore the potential of these additional PDFs for applications in varying forest conditions.

Our methodology was essential in providing detailed insights into forest structure and
stand-level characterization, both of which are fundamental for simulating stand dynamics
based on growth and yield simulators. Consequently, the output from this work enables
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the use of individual tree models to simulate thinning, conversion from even-aged into
uneven-aged stands, or conversion from pure to mixed stands. Characterizing Management
Units (MUs) with tree-level data is instrumental for a comprehensive understanding of
forest structure and supports informed forest management decision-making.

5. Conclusions

This work assessed the ability of the highly flexible Weibull and Johnson’s SB Probabil-
ity Density Functions to simulate diameter distribution using the maritime pine PINASTER
database from Portugal, which covers 12 trials each with several plots and treatments. The
results demonstrated that the Weibull PDF was more effective than Johnson’s SB in simu-
lating diameter distributions for this species. Additionally, this research provided novel
insights into the effectiveness of the Weibull PDF in simulating diameter distribution in
maritime pine Management Units using ALS data and the Area-Based Approach method.

This study makes a significant contribution to the existing literature by offering an
innovative approach to the characterization of forest Management Units at individual tree
levels. The developed methodology can be applied across different forest Management
Units, providing a practical and efficient solution for estimating tree-level data, which is
crucial for the application of individual tree models.

In conclusion, this study highlights the importance of exploring and developing
methodologies based on remote sensing technologies, such as ALS, to enhance forest
management and conservation. Continued research in this area could open new possibilities
for forest management in different ecosystems, contributing to the sustainability and
resilience of forested environments.
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