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Abstract: Deep learning has made remarkable strides in hyperspectral image (HSI) classification,
significantly improving classification performance. However, the challenge of obtaining accurately
labeled training samples persists, primarily due to the subjectivity of human annotators and their
limited domain knowledge. This often results in erroneous labels, commonly referred to as label
noise. Such noisy labels can critically impair the performance of deep learning models, making
it essential to address this issue. While previous studies focused on label noise filtering and label
correction, these approaches often require estimating noise rates and may inadvertently propagate
noisy labels to clean labels, especially in scenarios with high noise levels. In this study, we introduce
an ensemble network-based distillation (END) method specifically designed to address the challenges
posed by label noise in HSI classification. The core idea is to leverage multiple base neural networks
to generate an estimated label distribution from the training data. This estimated distribution is then
used alongside the ground-truth labels to train the target network effectively. Moreover, we propose
a parameter-adaptive loss function that balances the impact of both the estimated and ground-
truth label distributions during the training process. Our approach not only simplifies architectural
requirements but also integrates seamlessly into existing deep learning frameworks. Comparative
experiments on four hyperspectral datasets demonstrate the effectiveness of our method, highlighting
its competitive performance in the presence of label noise.

Keywords: ensemble network; distillation; hyperspectral image; classification

1. Introduction

Hyperspectral imaging provides rich spectral information, enabling fine-grained clas-
sification of ground objects with greater accuracy and detail. This capability is of immense
importance across diverse domains including agricultural monitoring [1], forest inventory
control [2], and urban planning and management [3]. For instance, Yuan et al. [4] used
GaoFen-5 hyperspectral satellite imagery to assess and analyze the classification of complex
urban functional zones located in the heart of Wuhan, China. Similarly, Rajamani et al. [5]
utilized a convolutional neural network to analyze building footprints and detect roads.
Fine-grained classification is essential for the effective use of hyperspectral remote sensing.
As computer technology has advanced, methods for processing hyperspectral data have
steadily improved.

In recent years, machine learning methods, particularly deep learning, have emerged
as promising approaches for HSI classification tasks [6]. As a supervised method, deep
learning heavily depends on accurate labels to train reliable models. Accurate labels are
crucial because incorrect or noisy labels can cause the model to learn incorrect patterns,
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leading to poor performance on unseen data. Labeling complex data like HSIs is often
time-consuming and challenging, typically requiring human annotators to manually assign
labels to each data point. This process can be subjective and prone to errors. Despite
best efforts, label noise is unavoidable due to the limitations of expert knowledge and the
inherent subjectivity of human annotation [7].

In the early stages, researchers proposed several traditional methods to address label
noise in HSI classification [8–11]. More recently, significant efforts have focused on tackling
label noise using deep learning methodologies. For example, Ghafari et al. [12] investigated
the robustness of convolutional neural networks by evaluating the performance of different
loss functions, including cross-entropy, pseudo-Huber, and correntropy, on noisy hyper-
spectral data. Xu et al. [13] developed a novel dual-channel residual network to mitigate the
effects of noisy labels. Roy et al. [14] integrated spectral and spatial domain convolutional
kernels within a heterogeneous kernel convolution framework designed specifically for
HSI classification with label noise. Wang et al. [15] investigated attention mechanisms
and introduced an end-to-end attentive-adaptive network architecture, combined with
a noise-resistant loss function to enhance overall efficiency. Zhang et al. [16] proposed a
triple contrastive learning framework that explored cluster-, instance-, and structure-level
representations of HSI data. To address the challenges posed by label noise, Ma et al. [17]
designed a noise-tolerant learning algorithm within a spatial pooling transformer network.
Xu et al. [18] introduced a superpixel-guided sample selection network for HSI classifica-
tion with noisy labels, aiming to prevent the spread of label noise and correct noisy labels
using a superpixel technique. Wei et al. [19] developed a unified deep learning network
that effectively leverages both labeled and unlabeled data, addressing the twin challenges
of limited samples and label noise. Similarly, Wang et al. [20] introduced a dual-level
deep spatial manifold representation network, specifically designed for HSI classification
scenarios where training samples are scarce or corrupted by noise.

Deep learning-based methods for handling label noise in HSI classification offer
promising solutions. These approaches generally avoid filtering out samples with label
noise, instead directly utilizing noisy labeled data to train models. However, previous
methods often rely on designing complex network architectures or employing multiple tech-
niques to effectively manage label noise. Moreover, some approaches may unintentionally
exacerbate the spread of label noise to correctly labeled samples, particularly when using
hard label corrections. This issue becomes even more pronounced in high-noise scenarios.

To address the aforementioned problem, we propose an innovative approach called
the ensemble network-based distillation (END) method, specifically designed for HSI
classification. The main idea behind END is to leverage an ensemble network to estimate the
label distribution of training data affected by label noise. This estimated label distribution is
then combined with the ground-truth label distribution to train a student network. Unlike
previous methods that rely on corrected samples with hard labels for training, our END
method generates soft labels by distilling label distribution information from the ensemble
network. During the training student network’s training phase, we introduce a robust loss
function that intelligently incorporates both the soft labels from the ensemble teacher and
the original ground-truth labels. To effectively balance the influence of these two label
sources, we include an adaptive parameter within the loss function.

The main contributions of our research are outlined as follows:

(1) We introduce an ensemble-based strategy that revolutionizes the way hyperspectral data’s
label distribution is evaluated, offering a more comprehensive and accurate perspective;

(2) The knowledge distillation technique is utilized to train the classification network, con-
sidering both the estimated label distribution and the ground-truth label distribution;

(3) A robust loss function with an adaptive parameter is designed for the classification
network, avoiding the need to estimate the noise rate;

(4) Extensive experiments on real hyperspectral datasets demonstrate that our END
method achieves competitive results.
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The rest of this paper is organized as follows: Section 2 reviews related work. The
proposed END method is introduced in Section 3. Section 4 reports the experimental results
and analysis. Section 5 provides a discussion, and finally, Section 6 presents the conclusions
of this work.

2. Related Work
2.1. Traditional Methods for HSI Classification

Over the past few decades, researchers have developed a variety of traditional methods
for HSI classification. These methods primarily focus on extracting and analyzing spectral
and spatial features and can be broadly categorized into three main groups:

(1) Spectral feature analysis methods: These methods focus on the spectral information
of each pixel by analyzing reflectance or absorption characteristics across different
bands for data classification. Common techniques include spectral representation
and band selection [21,22], minimum distance classifiers [23], maximum likelihood
classifiers [24], discriminant analysis [25], random forests [26,27], and support vector
machines [27,28]. These approaches utilize statistical and machine learning models to
leverage the spectral features of HSI data for identification and classification;

(2) Spatial feature analysis methods: These methods leverage spatial information to
improve classification accuracy. Typical approaches include texture analysis-based
classification techniques [29], Markov random fields [30], and morphological filtering
techniques [31]. These approaches utilize spatial structural features of the image,
such as edges, shapes, and textures, to assist in classification and enhance the spatial
consistency and accuracy of the results;

(3) Spectral–spatial joint analysis methods: To further enhance classification performance,
some methods integrate both spectral and spatial features for joint analysis. An illus-
trative example is object-based image analysis (OBIA) [32], which segments the image
into distinct objects and utilizes both their spectral and spatial attributes for classifi-
cation, providing a comprehensive and nuanced approach to image interpretation.
Additionally, sparse representation and multi-scale segmentation methods [33,34] are
commonly employed in spectral–spatial HSI classification;

Traditional HSI classification methods have strengths in handling high-dimensional
data and capturing subtle differences, but they also face challenges, such as high computa-
tional complexity. With the advancement of deep learning technologies, there is a growing
focus on applying deep learning methods to HSI classification to address the limitations of
traditional approaches.

2.2. Deep Learning-Based Methods for HSI Classification

In recent years, the rapid advancement of deep learning technology has led to its
increased application in HSI classification. Leveraging powerful feature extraction and
learning capabilities, deep learning methods have significantly improved HSI classification
performance. These deep learning-based methods for HSI classification can be broadly
categorized as follows:

(1) Convolutional neural networks (CNNs): Early 2D-CNN methods [35–37] primarily
used two-dimensional convolution operations to extract either spectral or spatial
features. While effective, these methods often addressed only one dimension at a
time, potentially missing the high-dimensional characteristics of hyperspectral data.
To overcome this limitation, 3D-CNN methods [38,39] employ three-dimensional
convolution operations, allowing for the simultaneous processing of both spectral
and spatial features. This approach significantly enhances classification accuracy by
leveraging the full potential of hyperspectral data;

(2) Recurrent neural networks (RNNs) and long short-term memory networks (LSTMs):
RNNs are well-suited for processing sequential data and capturing long-range depen-
dencies in the spectral dimension. For instance, Mou et al. [40] were among the first to
apply RNNs to HSI classification, effectively modeling spectral sequence information.
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LSTMs, a specialized type of RNN, handle long-range dependencies more effectively
and mitigate issues like gradient vanishing. As a result, they are widely used in HSI
classification to extract spectral dependencies [41,42];

(3) Deep belief networks (DBNs) and sparse auto-encoders (SAEs): DBNs exploit layer-
wise unsupervised training methods to carefully extract complex features from HSIs.
For example, Zhong et al. [43] introduced a novel diversified DBN framework specifi-
cally designed for HSI classification, demonstrating the versatility and efficacy of this
approach. Auto-encoders perform feature extraction and data reconstruction through
encoding and decoding processes. SAEs enhance these capabilities by improving
feature compression and dimensionality reduction [44];

(4) Generative adversarial networks (GANs): GANs utilize adversarial training between
a generator and a discriminator to create realistic HSI data for data augmentation and
sample expansion. They hold significant potential for addressing challenges related
to HSI data labeling [45,46];

(5) Advanced models: Attention mechanisms, Transformers, and Mamba models have
been widely applied in HSI classification. For instance, Sun et al. [47] introduced
a spectral–spatial attention network that enhances performance by integrating an
attention module to extract key features from hyperspectral images. Liu et al. [48]
analyzed the properties of HSI and developed a scaled dot-product central attention
mechanism for spectral–spatial feature extraction, leading to the creation of a central
attention network. Scheibenreif et al. [49] proposed a spatial-spectral factorization
for Transformers, which reduces computational load while improving performance
on hyperspectral data through self-supervised learning. More recently, Mamba mod-
els [50] have been investigated in HSI classification due to their strong long-distance
modeling capabilities and linear computational complexity. Xu et al. [51] combined
orientational learning with CNN to develop an orientational clustering method for
open-set HSI classification;

(6) Hybrid models: Hybrid models integrate deep learning techniques with other method-
ologies, such as active learning, semi-supervised learning, and transfer learning. For
example, Di et al. [52] incorporated active learning into a Siamese network to reduce
labeling costs. Wu et al. [53] merged semi-supervised learning with deep learning to
leverage both limited labeled data and abundant unlabeled data for training effective
deep neural networks. Zhong et al. [54] applied deep transfer learning for cross-scene
HSI classification.

In summary, deep learning technology offers powerful tools and methods for HSI
classification. Its continued development and optimization are anticipated to drive further
advancements and expand applications in this field.

2.3. Label Noise Learning in HSI Classification

Label noise refers to errors or inconsistencies in the labeling of training samples,
which can significantly degrade the performance of classification models. This issue has
been widely investigated in the fields of machine learning and computer vision. Recent
surveys on label noise learning can be found in [55–57]. Several studies related to our
research have emerged in recent years. For example, Li et al. [58] introduced a unified
distillation framework that leverages auxiliary information, such as a small clean dataset
and label relationships within a knowledge graph, to mitigate the risks associated with
learning from noisy labels. Lukov et al. [59] proposed soft label smoothing (SLS) to ad-
dress noisy labels by adjusting high-confidence class probabilities and assigning lower
probabilities to low-confidence classes. Algan and Ulusoy [60] developed MetaLabelNet
(MLN), a label-noise-robust algorithm that trains soft labels using meta-objectives, opti-
mizing gradients to minimize meta-data loss through a single-layer perceptron. Similarly,
Wu et al. [61] proposed a meta-learning model that automatically estimates soft labels using
meta-gradient descent, adapting label corrections iteratively based on a small amount of
noise-free meta-data.
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In HSI, label noise can arise from several sources [7]. Firstly, human annotators
may introduce labeling errors due to limited experience. Secondly, confusion between
similar spectral signatures of different classes can result in incorrect labeling. Finally,
variability in sensor performance and environmental conditions during data acquisition
can also contribute to label noise. To address the issue of label noise in HSI classification,
researchers have employed various strategies, which can be broadly categorized into two
main approaches.

(1) Label noise detection and cleaning methods: These methods focus on identifying
and correcting noisy labels before training. Common techniques include using cross-
validation to detect outliers and applying majority voting among multiple classifiers.
For example, Tu et al. [62–64] developed a series of outlier detection methods specif-
ically for label noise. Kang et al. [65] introduced an innovative method based on
constrained energy minimization to identify and correct mislabeled training samples,
thereby improving data quality. Leng et al. [66] proposed a spectral–spatial sparse
graph-based adaptive label propagation technique that facilitates the recognition and
iterative correction of “polluted” samples, refining the dataset for better classification
results. Bahraini et al. [67] suggested a modified mean-shift method to detect and
remove mislabeled samples from the training set;

(2) Label noise robust classification models: These methods aim to enhance classification
performance by developing models that are resilient to label noise. Key approaches in-
clude designing noise-tolerant loss functions, applying regularization techniques, and
developing novel learning architectures. For example, Kang et al. [68] explored deep
metric learning and introduced a robust normalized softmax loss function specifically
for remote sensing images. Damodaran et al. [69] developed a loss function based on
optimal transport theory to improve deep learning under label noise. Zhang et al. [70]
implemented a co-learning strategy using a dual network architecture to address the
challenges of HSI classification with noisy labels. Liao et al. [71] proposed a meta-
learning framework that employs joint positive and negative learning to adaptively
reweight samples, enhancing classification robustness. Fang et al. [72] introduced a
deep reinforcement learning method to address label noise in HSI classification.

In summary, label noise robust classification models provide several advantages over
label noise detection and cleaning methods. Firstly, they utilize the entire training data
without discarding noisy samples. Secondly, robust classification models, especially those
incorporating deep learning techniques, can achieve superior performance by extracting
more complex features for improved modeling.

2.4. Knowledge Distillation in HSI Classification

Knowledge distillation is a model compression technique designed to transfer knowl-
edge from a large, complex model (often referred to as the teacher) to a smaller, more
efficient model (the student). This process involves two key stages. First, the teacher
model is trained on labeled data, generating soft labels—probability distributions over
classes—that capture class similarities. These soft labels provide richer information than
hard labels alone. In the second stage, the student model learns by mimicking the teacher’s
soft labels in conjunction with the original hard labels, enabling it to understand both the
ground truth and the nuanced relationships learned by the teacher. This dual-learning
approach enhances the student model’s performance and generalization ability.

In recent years, researchers have investigated various knowledge distillation methods
for HSI classification. Notable contributions include the following: Due to the limited
availability of labeled HSI samples, deep learning methods have remained underutilized.
To address this issue, Yue et al. [73] proposed a self-supervised learning method with
adaptive distillation that leverages abundant unlabeled samples for training. Zhao et al. [74]
introduced a lifelong learning strategy to develop universal HSI classification models,
continuously updating model weights through spectral–spatial feature distillation. To
tackle classification problems with a limited number of samples while maximizing the use
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of unlabeled data, Chi et al. [75] proposed a novel self-supervised learning method that
incorporates knowledge distillation for HSI classification. Additionally, Feng et al. [76]
developed a method to enhance cross-domain learning for HSI classification by treating
meta-knowledge extraction and source domain debiasing as a synergistic process through
decoupled knowledge distillation.

The aforementioned knowledge distillation methods for HSI classification primarily
focus on limited labeled samples, domain adaptation, and universal models. Our method
first employs knowledge distillation to address the issue of label noise in HSI classification.
While similar to these methods in utilizing knowledge distillation to generate soft labels,
our approach differs by integrating knowledge distillation within an ensemble learning
framework. In this framework, the resampling strategy and out-of-bag (OOB) error esti-
mation are used to produce more robust soft labels. Our goal is to enhance the model’s
robustness under label noise conditions, ensuring that the student model can still effectively
distinguish categories in its final output.

3. Proposed Method

In this paper, we propose an ensemble network-based distillation (END) method for
HSI classification under label noise conditions. The overall framework of the END method
is depicted in Figure 1. The approach begins by applying ensemble learning to construct
multiple base networks, each trained on distinct subsets of the data. These base networks
are then used to estimate the labels of the training samples while accounting for label
noise. By aggregating the predictions from these base networks, we generate an estimated
distribution (ED) that captures the collective consensus.
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Figure 1. The framework of the proposed END method. First, T-based neural networks are trained
on resampling datasets. Next, the estimated label distribution of the training data is computed by
predicting out-of-bag (OOB) samples. Finally, the estimated distribution (ED) is combined with the
ground-truth distribution (GD) to train a student network (S).

This ED is subsequently combined with the ground-truth distribution (GD) to train a
student network. The student network learns from both the ED and GD, harnessing the
benefits of ensemble learning while mitigating the effects of label noise. To balance the
influence of the ED and GD during training student networks, we introduce a robust loss
function with an adaptive parameter. This parameter dynamically adjusts the weighting
between the ED and GD, enabling the student network to learn accurate representations
despite the presence of noisy labels.
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By integrating ensemble learning with knowledge distillation, the proposed END
method not only strengthens the model’s robustness against label noise but also enhances
its overall classification accuracy, delivering more reliable and precise results even in
challenging scenarios. Additionally, the adaptive nature of the loss function ensures the
method’s effectiveness across different noise levels and data distributions, making it a
versatile and powerful tool for HSI classification tasks.

To ensure that the effectiveness of our method in handling label noise is not merely
a consequence of using advanced base network models, we initially implemented our
approach with a 2D-CNN as the base network. In subsequent experiments, we will also
validate our method using a 3D network, specifically the spectral–spatial residual network
(SSRN) [38].

In the subsequent subsections, we delve into a detailed exploration of the ensemble
network-based distillation process and the robust loss function, providing a comprehensive
understanding of their complexities and contributions to the proposed framework.

3.1. Ensemble Network-Based Distillation

Ensemble learning has demonstrated strong performance in HSI classification [27,77],
with research indicating its robustness in the presence of label noise, making it particularly
effective for handling noisy data [78,79]. To estimate the label distribution of the training
data, we construct an ensemble network by integrating multiple deep networks, thereby
leveraging their diverse strengths to improve classification accuracy and stability.

To facilitate this, we employ the bootstrap sampling method, which is well-suited for
ensemble learning. Bootstrap sampling generates multiple subsets of the training data
by randomly sampling with replacement. This approach fosters the creation of diverse
training sets and naturally produces a set of out-of-bag (OOB) samples—data points
excluded from their respective bootstrap samples. These OOB samples provide additional
valuable information, as the OOB error, derived from predictions made on these samples,
closely approximates the model’s generalization error [80,81]. This makes OOB samples
particularly useful for evaluating the ensemble network’s performance and reliability.

In our method, bootstrap sampling is used to generate multiple training subsets, each
assigned to a different base network within the ensemble. Once trained, the predictions on
the OOB samples are used to estimate the label distribution of the training data. This OOB-
based estimation offers a more reliable and accurate assessment of the label distribution,
which is critical for effectively managing noisy labels in subsequent stages of our method.
By combining these predictions, we construct an estimated label distribution that serves as a
robust foundation for refining the classification model through the ensemble network-based
distillation approach.

The following part of this subsection details the steps involved in obtaining the
estimated distribution based on the ensemble network.

(1) Given the hyperspectral dataset D = {(xi, yi)}N
i=1, where xi is a sample described

by spectral bands, and the label corresponding to xi is yi ∈ {1, · · · , C};
(2) Set 0 matrices EDN×C, PN×C, and QN×C, where ED, P, and Q represents the

estimated distribution, prediction matrix, and sample count matrix, respectively;
(3) Obtain T subsets D1, D2, · · · , DT of dataset D by employing a bootstrap sam-

pling strategy;
(4) Train T base neural networks b1, b2, · · · bT on subsets D1, D2, · · · , DT ;
(5) For each set D − Dt, every OOB sample xj in D − Dt is classified by its correspond-

ing neural network bi. Update p and Q through the following equations:

P
(
xj
)
= P

(
xj
)
+ b

(
xj
)
, (1)

Q
(
xj
)
= Q

(
xj
)
+ 1. (2)
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(6) Compute estimated distribution through the following formula:

ED = P./Q, (3)

where the symbol “./” denotes element-wise division operation.
Rather than categorizing samples as simply correct or incorrect and discarding those

deemed incorrect, we adopt a more nuanced strategy. Using the estimated distribution
(ED), we assign probability scores to all possible classes for each sample, offering a deeper
insight into the ensemble’s decision-making process. By labeling each sample with a
probability distribution across all classes, rather than using a binary correct/incorrect label,
we capture the uncertainty and variability inherent in the ensemble’s predictions. This
approach ensures that no potentially valuable data are discarded, allowing the model to
learn from the full spectrum of available information and enhancing its overall robustness
during training.

3.2. Noise Robust Loss Function with an Adaptive Parameter

After deriving the ED distilled from the ensemble network, we combine it with the GD
to train the student network. To effectively guide this training, we require a loss function
that accommodates both estimated and ground-truth labels. While cross-entropy (CE)
loss is widely recognized for its efficacy in model convergence, previous studies [82,83]
have shown that it lacks robustness in the presence of label noise. In contrast, reverse
cross-entropy (RCE) has been proven to be more resistant to noisy labels [83]. This suggests
that combining CE and RCE could result in a noise-robust loss function.

Building on these findings, we design a hybrid loss function that merges CE and RCE to
improve noise robustness. To ensure a balanced influence between the soft labels (derived
from the ED) and the ground-truth labels, we incorporate an adaptive parameter that
dynamically adjusts this balance throughout the training process. Furthermore, we apply a
normalized version of CE (NCE) loss to the estimated label distribution, as normalization
has been shown to further enhance robustness against label noise.

The following content will provide a detailed procedure for the design and implemen-
tation of this loss function.

For a sample xi, its predicted label distribution from a classifier is denoted as p(c|xi),
and the ground-truth label distribution over observed labels is denoted as q(c|xi). The CE
loss for sample xi is as follows:

lCE(xi) = −∑C
c=1 q(c|xi)log p(c|xi). (4)

The NCE is written as follows.

lNCE(xi) =
−∑C

c=1 q(c|xi)log p(c|xi)

−∑C
j=1 ∑C

c=1 q(y = j|xi)log p(c|xi)
. (5)

RCE is the reverse version of CE, the RCE loss is as follows:

lRCE (xi) = −∑C
c=1 p(c|xi)log q(c|xi). (6)

Thus, we define the sample-wise mixed loss for the student network (S) as follows:

ENDMIX(xi) =
1
2 lNCE[S(xi), (1 − λ)ED(xi) + λyi]

+ 1
2 lRCE[S(xi), (1 − λ)ED(xi) + λyi]

(7)

In Equation (7), S(xi) represents the prediction made by the student network for the
sample xi. The parameter λ is defined as follows:

λ =
∑N

i=1 1(yi == arg max
c

ED(c|xi))

N
, (8)
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where N is the total number of samples, yi is the ground-truth label, arg max
c

ED(c|xi) is

the class label with the highest probability in the estimated distribution for the sample
xi, and the indicator function 1(·) is a binary operator that evaluates a given condition.
It returns a value of 1 if the condition is true and 0 if the condition is false. Essentially,
λ represents the proportion of samples for which the predicted label from the ensemble
network matches the ground-truth label.

The parameter λ plays a crucial role in determining how the student network is trained
in relation to the ensemble model’s confidence in a given sample. Specifically, when the
ensemble model exhibits low confidence, indicated by a lower value of λ, the student
network is guided predominantly by the ground-truth labels during training. This reduces
the reliance on the estimated distribution, ensuring that the model aligns more closely with
the true class labels. On the other hand, when the ensemble model shows high confidence
in a sample, as indicated by a higher value of λ, the estimated distribution takes precedence
in the training process, even if it contradicts the ground-truth label. This strategy allows
the student model to focus more on the information provided by the ensemble model’s
probability estimates, which is believed to reflect a more reliable and confident prediction.
In this way, the system dynamically adjusts its reliance on either the ground-truth labels or
the estimated distribution, depending on the confidence level of the ensemble model.

The above analysis provides key insights into the END method, and Algorithm 1
presents the pseudocodes of the END method.

Algorithm 1 Ensemble Network-Based Distillation with Robust Loss Function

Input: Ensemble size : T; Training dataset D = {(xi, yi)}N
i=1.

Initialization:EDN×C = 0, PN×C = 0, QN×C = 0.
1 : GD = groundtruth(D). //obtain the ground-truth distribution
2: For t = 1 to T do
3 : Dt = Resampling(D). //bootstrap resampling
4 : bt = Train(Dt). //train base network
5 : For xj ∈ D − Dt do

6 : P
(

xj

)
= P

(
xj

)
+ b

(
xj

)
. // the cumulative prediction results for xj

7 : Q
(

xj

)
= Q

(
xj

)
+ 1. //frequency count for xj

8: End
9: End
10 : ED = P./Q. //compute the estimated distribution
11 : S = Train(D, GD + ED, ENDMIX). //train the student network S through (7)
Output: The student network S.

4. Experimental Results and Analysis
4.1. Hyperspectral Datasets and Experimental Settings

We evaluated the proposed END method against several state-of-the-art approaches
using the Salinas Valley, Houston, and Pavia University datasets to demonstrate its effec-
tiveness. A detailed description of these datasets is provided below.

(1) Salinas Valley (SV) dataset: Collected in 1998 over Salinas Valley, CA, USA, this
dataset consists of 512 × 217 pixels and contains 224 spectral bands, covering a
wavelength range from 400 to 2500 nm. After removing 20 water absorption bands,
204 spectral bands remain. With a spatial resolution of 3.7 m, the dataset covers
16 land cover classes;

(2) Houston (HOU) dataset: Acquired by the ITRES CASI-1500 sensor, this dataset was
part of the 2013 IEEE GRSS Data Fusion Competition. It consists of 349 × 1905 pixels
and includes 144 spectral bands, spanning wavelengths from 364 to 1046 nm. The
HOU dataset has a spatial resolution of 2.5 m and covers 15 land cover classes,
providing a comprehensive representation of urban and suburban landscapes;
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(3) Pavia University (PU) dataset: Acquired by the Reflective Optics System Imaging
Spectrometer (ROSIS) sensor over the University of Pavia in northern Italy, this dataset
contains an image matrix of 610 pixels in width and 340 pixels in height. It includes
103 spectral bands, covering a wavelength range from 430 to 860 nm.

Table 1 provides a comprehensive overview of the class names along with the corre-
sponding number of labeled samples for each of the three datasets. Figures 2–4 illustrate
the false-color images of these HSI datasets along with their respective reference maps.

Table 1. Class names along with the number of labeled samples for three hyperspectral datasets.

No
SV HOU PU

Class Name Samples Class Name Samples Class Name Samples

1 Brocoli_green_weeds_1 2009 Healthy grass 1251 Asphalt 6631
2 Brocoli_green_weeds_2 3726 Stressed grass 1254 Meadows 18,649
3 Fallow 1976 Synthetic grass 697 Gravel 2099
4 Fallow_rough_plow 1394 Trees 1244 Trees 3064

5 Fallow_smooth 2678 Soil 1242 Painted metal
sheets 1345

6 Stubble 3959 Water 325 Bare Soil 5029
7 Celery 3579 Residential 1268 Bitumen 1330

8 Grapes_untrained 11,271 Commercial 1244 Self-Blocking
Bricks 3682

9 Soil_vinyard_develop 6203 Road 1252 Shadows 947
10 Corn_senesced_green_weeds 3278 Highway 1227
11 Lettuce_romaine_4wk 1068 Railway 1235
12 Lettuce_romaine_5wk 1927 Parking Lot 1 1233
13 Lettuce_romaine_6wk 916 Parking Lot 2 469
14 Lettuce_romaine_7wk 1070 Tennis Court 428
15 Vinyard_untrained 7268 Running Track 660
16 Vinyard_vertical_trellis 1807
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To ensure a rigorous quantitative evaluation of our experimental results, we employed
three key metrics: overall accuracy (OA), average accuracy (AA), and the Kappa coefficient
(κ). Each metric serves as a crucial indicator to assess the performance and accuracy
of our classification outcomes. Label noise was simulated using a uniform distribution,
where randomly selected samples were reassigned to different class labels with a random
probability. To assess the effect of varying noise levels on classification performance, we
conducted experiments using training data with multiple levels of label noise.
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Our proposed END method was built on a 2D CNN as the base network. The training
process was optimized using the Adam optimizer with a learning rate of 0.001. The base
networks in the ensemble were trained for 30 epochs, while the student network was
trained for 100 epochs. The implementation was performed using PyTorch, leveraging
an NVIDIA RTX 3070 GPU equipped with CUDA 11, which significantly accelerated the
training process. Following preliminary experiments, the ensemble size was set to 30 for
optimal performance.

4.2. Comparison with the State-of-the-Art Methods

We conducted a comparative evaluation of our proposed END method against sev-
eral state-of-the-art approaches, including MSSG [10], DCRN [13], AAN [15], TCRL [16],
SLS [59], and MLN [60]. Additionally, we compared the proposed method with the base
network 2D-CNN and a traditional ensemble method, random forests (RF) [80]. For consis-
tency, we adhered to the parameter settings specified in their respective publications. In
the case of MSSG, the segmentation scale parameter was optimized to 0, replicating the
best-performing configuration from the original experiments. To ensure standardization
of the training data, we randomly sampled 50 instances from each class and ran each
method ten times to obtain average performance metrics. With a fixed noise rate (r) of 0.3,
each algorithm was executed 10 times, and the average results were used for comparison.
Tables 2–4 provide a detailed analysis of the classification performance on the SV, HOU,
and PU datasets. Figures 5–7 display the classification maps for the three HSI datasets after
a single run of each method.
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Table 2. Classification accuracy (%) achieved by comparison methods on the SV dataset at a noise
level of 0.3.

Class 2D-CNN MSSG [10] DCRN [13] AAN [15] TCRL [16] SLS [59] MLN [60] RF [80] END

1 97.86 98.59 99.48 99.67 99.45 99.48 99.25 96.87 99.75
2 99.73 99.59 99.81 99.69 99.77 99.73 99.80 99.68 99.80
3 98.29 92.35 99.47 98.93 96.28 98.32 99.42 97.31 97.52
4 99.63 96.43 96.90 99.19 98.90 99.62 99.52 93.60 98.92
5 97.77 98.67 94.92 99.17 99.07 97.39 97.94 95.54 99.14
6 97.08 99.77 99.00 99.65 99.59 99.66 99.78 97.33 99.72
7 99.09 99.21 99.46 99.58 99.58 98.72 99.21 98.84 99.66
8 61.02 89.16 89.06 84.86 86.87 77.29 80.72 65.52 93.27
9 98.34 99.72 99.61 99.46 99.39 98.52 98.87 97.18 99.72

10 87.87 90.15 96.01 93.25 94.10 89.06 90.52 85.15 94.87
11 93.81 93.73 95.97 98.10 95.81 94.43 97.19 88.81 98.13
12 98.98 99.58 99.89 99.94 99.94 97.31 99.46 98.05 99.94
13 99.54 97.95 98.76 98.09 98.57 98.11 98.80 97.83 99.30
14 93.50 97.25 92.41 93.65 93.91 94.40 97.53 91.54 97.28
15 80.16 69.39 72.34 76.87 77.05 70.58 81.75 75.69 95.56
16 95.56 95.11 97.00 97.25 98.30 96.83 98.07 91.33 98.62

OA 87.29 92.54 94.33 95.14 95.77 89.71 92.98 86.66 97.28
AA 93.64 94.79 95.63 96.10 96.04 94.34 96.11 91.89 98.20

κ × 100 85.92 91.73 93.77 94.66 95.36 88.55 92.22 85.19 96.97

Table 3. Classification accuracy (%) achieved by comparison methods on the HOU dataset at a noise
level of 0.3.

Class 2D-CNN MSSG [10] DCRN [13] AAN [15] TCRL [16] SLS [59] MLN [60] RF [80] END

1 82.79 94.08 94.48 85.93 92.33 90.30 96.88 84.37 95.36
2 95.44 97.85 98.09 96.57 98.56 97.70 95.08 98.06 98.33
3 95.13 99.99 100 100 100 95.35 96.08 97.78 100
4 94.34 97.43 98.07 99.20 96.30 93.64 93.78 88.24 97.75
5 97.37 99.44 99.19 99.28 97.58 96.03 95.54 95.17 98.07
6 84.11 98.15 97.23 95.38 94.77 93.84 95.74 95.08 99.69
7 79.29 89.91 88.80 88.01 78.94 79.12 84.30 75.72 81.70
8 57.79 62.06 68.65 74.20 76.21 73.95 75.52 54.82 78.38
9 65.36 71.73 77.96 81.07 83.71 79.44 68.05 61.93 87.14

10 74.54 60.88 65.12 82.07 82.31 72.80 72.49 73.27 87.45
11 72.44 67.45 71.34 72.63 82.75 74.14 73.07 65.98 84.37
12 59.42 59.69 66.10 78.51 74.86 63.14 73.48 61.76 82.40
13 48.38 59.28 62.05 91.47 97.23 50.49 65.79 42.82 95.10
14 97.53 97.43 99.30 99.30 99.77 95.44 98.48 95.59 99.77
15 97.16 98.94 98.94 98.94 99.24 95.51 93.11 90.63 99.55

OA 79.36 82.11 84.48 87.78 88.47 83.02 84.24 77.61 90.78
AA 80.07 83.62 85.69 89.50 90.30 83.39 85.16 78.77 92.34

κ × 100 77.69 80.65 83.22 86.80 87.54 81.64 82.96 75.80 90.04

Table 4. Classification accuracy (%) achieved by comparison methods on the PU dataset at a noise
level of 0.3.

Class 2D-CNN MSSG [10] DCRN [13] AAN [15] TCRL [16] SLS [59] MLN [60] RF [80] END

1 80.17 90.91 92.20 92.84 93.17 86.83 87.10 80.56 93.45
2 82.78 87.55 98.17 98.76 99.00 88.13 90.94 75.52 99.23
3 83.54 90.71 95.00 95.05 96.14 89.92 89.48 80.12 97.05
4 93.28 97.68 96.08 95.92 96.15 96.54 97.76 95.03 97.39
5 99.59 99.48 99.41 99.55 99.70 98.08 98.66 99.01 99.48
6 83.12 89.24 82.00 82.60 87.79 86.52 87.10 79.09 92.07
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Table 4. Cont.

Class 2D-CNN MSSG [10] DCRN [13] AAN [15] TCRL [16] SLS [59] MLN [60] RF [80] END

7 91.24 95.71 94.36 95.71 96.24 91.23 96.15 83.59 97.89
8 84.40 80.61 89.79 93.64 93.89 78.20 86.21 81.00 95.65
9 99.95 100 100 100 99.79 99.77 99.19 99.78 100

OA 84.22 89.64 94.28 95.07 95.95 88.16 90.36 80.25 96.93
AA 88.68 92.43 94.11 94.90 95.76 90.57 92.51 85.97 96.91

κ × 100 79.13 86.30 92.38 93.43 94.61 83.99 86.35 74.67 95.92
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Figure 5. Classification maps generated for the SV image utilizing various comparison methods.
(a) RF: OA = 86.66. (b) 2D-CNN: OA = 87.29%. (c) SLS: OA = 89.71%. (d) MSSG: OA = 92.53%.
(e) MLN: OA = 92.98%. (f) DCRN: OA = 94.36%. (g) AAN: OA = 95.14%. (h) TCRL: OA = 95.78%.
(i) END: OA = 97.30%.
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Several key insights can be drawn from Tables 2–4 and Figures 5–7. First, the OA and 
Kappa coefficients of these methods on the SV and PU datasets demonstrate a clear rank-
ing: END, TCRL, AAN, DCRN, MLN, MSSG, SLS, 2D-CNN, and RF. In contrast, for the 
HOU dataset, the only difference is that the OA and Kappa coefficients of MSSG are lower 
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Figure 6. Classification maps generated for the HOU image utilizing various comparison methods.
(a) RF: OA = 77.61%. (b) 2D-CNN: OA = 79.36%. (c) MSSG: OA = 82.12%. (d) SLS: OA = 83.02%.
(e) MLN: OA = 84.24%. (f) DCRN: OA = 84.47%. (g) AAN: OA = 87.79%. (h) TCRL: OA = 88.47%.
(i) END: OA = 90.77%.
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(a) RF: OA = 80.26%. (b) 2D-CNN: OA = 84.21%. (c) SLS: OA = 88.16%. (d) MSSG: OA = 89.65%.
(e) MLN: OA = 90.36%. (f) DCRN: OA = 94.26%. (g) AAN: OA = 95.07%. (h) TCRL: OA = 95.98%.
(i) END: OA = 96.94%.

Several key insights can be drawn from Tables 2–4 and Figures 5–7. First, the OA
and Kappa coefficients of these methods on the SV and PU datasets demonstrate a clear
ranking: END, TCRL, AAN, DCRN, MLN, MSSG, SLS, 2D-CNN, and RF. In contrast, for
the HOU dataset, the only difference is that the OA and Kappa coefficients of MSSG are
lower than those of SLS. The AA ordering of DCRN, TCRL, and MLN is inconsistent across
the three datasets in the comparison methods. However, the AA ordering for the other
methods is consistent and follows this sequence: END, AAN, MSSG, SLS, 2D-CNN, and
RF. The above ranking underscores the END method’s superior ability to manage label
noise effectively while achieving high classification accuracy. Second, the END method
consistently delivers the highest class-specific accuracy across a broader range of classes
compared to the other methods, further affirming its robustness. Notably, it performs
exceptionally well in challenging scenarios. For example, on the SV dataset, the END
method significantly improves accuracy for class 8 by approximately 4% and for class
15 by about 14% compared to the second-best performing method. Finally, the visual
results presented in Figures 5–7 further validate the effectiveness of the END method.
The classification maps generated by the END approach offer more precise and detailed
representations of the underlying land cover classes compared to those produced by other
methods, highlighting its superior performance.

4.3. Classification Performance Across Varying Noise Levels

In this section, we delve into experiments that varied the level of label noise, with the
noise rate (r) systematically increasing from 0.1 to 0.5 in steps of 0.1, while maintaining
consistency in all other parameters as established in the previous section. Tables 5–7
comprehensively present the impact of these varying noise levels on the performance of
the comparison methods, reporting the OA, AA, and Kappa coefficients for the SV, HOU,
and PU datasets, respectively.

Table 5. Classification accuracy (in %) obtained by comparison methods with different noise rates (r)
when applied to the SV dataset.

r Metric 2D-CNN MSSG [10] DCRN [13] AAN [15] TCRL [16] SLS [59] MLN [60] RF [80] END

0.1
OA 88.56 92.97 94.68 95.94 96.32 90.54 93.75 87.93 97.94
AA 94.68 95.84 95.92 96.88 96.97 95.23 96.64 92.86 98.41

κ × 100 86.89 92.46 93.96 94.83 95.82 89.15 92.78 86.63 97.76

0.2
OA 87.82 92.83 94.55 95.71 96.11 90.12 93.23 87.12 97.66
AA 94.11 95.55 95.77 96.73 96.88 94.84 96.35 92.35 98.32

κ × 100 86.33 92.21 93.88 94.75 95.47 88.89 92.45 85.75 97.39

0.3
OA 87.29 92.54 94.33 95.14 95.77 89.71 92.98 86.66 97.28
AA 93.64 94.79 95.63 96.10 96.04 94.34 96.11 91.89 98.20

κ × 100 85.92 91.73 93.77 94.66 95.36 88.55 92.22 85.19 96.97
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Table 5. Cont.

r Metric 2D-CNN MSSG [10] DCRN [13] AAN [15] TCRL [16] SLS [59] MLN [60] RF [80] END

0.4
OA 86.54 91.83 93.84 94.58 94.91 89.05 92.22 85.87 96.83
AA 93.15 93.95 95.06 95.75 95.82 93.85 95.77 91.24 97.25

κ × 100 85.06 90.96 92.56 92.51 93.64 88.06 91.55 84.66 96.07

0.5
OA 85.62 91.63 93.12 93.64 93.85 88.12 91.18 85.08 96.38
AA 92.86 93.76 94.22 94.66 94.87 93.20 95.13 90.46 96.88

κ × 100 83.82 90.84 91.89 91.84 92.97 87.54 91.04 83.33 95.72

Table 6. Classification accuracy (in %) obtained by comparison methods with different noise rates (r)
when applied to the HOU dataset.

r Metric 2D-CNN MSSG [10] DCRN [13] AAN [15] TCRL [16] SLS [59] MLN [60] RF [80] END

0.1
OA 81.03 83.67 86.14 88.46 89.57 84.12 85.26 78.93 91.38
AA 80.96 84.78 87.04 90.31 90.94 84.26 86.15 79.67 93.45

κ × 100 78.65 84.15 85.62 87.96 88.91 83.64 84.46 76.86 91.02

0.2
OA 80.15 82.98 85.36 88.13 89.06 83.68 84.87 78.34 91.06
AA 80.45 84.11 86.29 90.08 90.76 83.87 85.64 79.25 93.04

κ × 100 78.14 83.97 84.67 87.84 88.46 82.78 83.76 76.42 90.85

0.3
OA 79.36 82.11 84.48 87.78 88.47 83.02 84.24 77.61 90.78
AA 80.07 83.62 85.69 89.50 90.30 83.39 85.16 78.77 92.34

κ × 100 77.69 80.65 83.22 86.80 87.54 81.64 82.96 75.80 90.04

0.4
OA 78.12 81.26 83.68 87.12 87.75 81.96 83.42 76.45 90.23
AA 79.33 82.62 84.57 88.93 89.34 82.45 84.46 78.02 91.35

κ × 100 76.87 79.95 82.76 86.18 86.89 80.35 82.03 74.96 89.58

0.5
OA 76.84 80.53 82.47 86.28 86.82 80.84 82.26 74.82 89.48
AA 78.12 81.74 83.38 87.84 87.41 81.65 83.10 76.98 90.81

κ × 100 75.72 79.14 81.97 85.49 85.67 79.26 80.87 73.71 88.64

Table 7. Classification accuracy (in %) obtained by comparison methods with different noise rates (r)
when applied to the PU dataset.

r Metric 2D-CNN MSSG [10] DCRN [13] AAN [15] TCRL [16] SLS [59] MLN [60] RF [80] END

0.1
OA 85.26 90.82 94.93 95.58 96.47 90.04 91.45 81.15 97.26
AA 89.21 93.66 94.71 95.29 96.13 91.58 93.70 86.62 97.18

κ × 100 80.04 88.06 92.89 93.97 95.28 85.11 87.72 75.28 96.21

0.2
OA 84.81 90.35 94.74 95.42 96.32 88.65 90.97 80.76 97.11
AA 88.95 93.12 94.58 95.18 95.98 91.15 93.24 86.33 97.06

κ × 100 79.65 87.22 92.76 93.83 94.97 84.66 86.94 75.05 96.08

0.3
OA 84.22 89.64 94.28 95.07 95.95 88.16 90.36 80.25 96.93
AA 88.68 92.43 94.11 94.90 95.76 90.57 92.51 85.97 96.91

κ × 100 79.13 86.30 92.38 93.43 94.61 83.99 86.05 74.67 95.92

0.4
OA 83.41 88.67 93.41 94.36 95.14 87.25 89.52 79.65 96.52
AA 88.12 91.53 93.34 94.21 94.82 89.62 91.62 85.42 96.57

κ × 100 78.61 85.54 91.66 92.74 94.02 83.14 85.23 73.95 95.57

0.5
OA 82.25 87.26 92.33 93.17 94.06 85.93 88.25 78.76 96.02
AA 87.26 87.55 92.44 93.28 93.95 88.45 90.48 84.69 95.97

κ × 100 77.57 84.48 90.63 91.25 93.07 81.79 83.96 73.14 95.03

Several key observations can be drawn from Tables 5–7. First, across all three HSI
datasets, there is a noticeable decline in OA, AA, and Kappa coefficients as the noise rate
increases, underscoring the significant challenge that label noise presents in HSI classifi-
cation. Second, the proposed END method consistently outperforms other approaches
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in terms of classification accuracy, regardless of the noise level. This demonstrates the
robustness of the END method in effectively managing label noise compared to alternative
techniques. Lastly, the END method exhibits low sensitivity to increasing noise levels,
with only minimal reductions in performance observed. This adaptability highlights its
effectiveness in handling various noise conditions, making it particularly well-suited for
real-world HSI classification tasks, where label noise is often unavoidable. Overall, the
robustness and flexibility of the END method position it as a highly reliable solution for
classification tasks under noisy conditions.

4.4. Evaluation of the Loss Function

To assess the effectiveness of the proposed loss function, we conducted comparisons
with CE loss, NCE loss, and RCE loss. The loss functions for the proposed method can be
written as follows:

ENDCE(xi) = lCE[S(xi), (1 − λ)ED(xi) + λyi], (9)

ENDNCE(xi) = lNCE[S(xi), (1 − λ)ED(xi) + λyi], (10)

ENDRCE(xi) = lRCE[S(xi), (1 − λ)ED(xi) + λyi], (11)

where the parameter λ is set the same as in (8), acting as an adaptive parameter, and S(xi)
represents the prediction of the student network.

In this experiment, we formed training sets of various sizes by randomly selecting 10
to 80 samples for each class, while maintaining a fixed noise rate r = 0.3. Figure 8 illustrates
the OA curves of the END method with different versions of loss functions plotted against
the number of training samples.
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The results in Figure 8 indicate, first, that the number of training samples has a notable
influence on classification accuracy regardless of the chosen loss function. Specifically,
under a fixed noise rate (r = 0.3), the OA tends to increase as the number of training samples
grows. Second, the ENDMIX loss significantly improves the model’s classification accuracy
in the presence of label noise. This effectiveness can be attributed to two factors. On
the one hand, the designed loss function simultaneously leverages the complementary
advantages of cross-entropy and reverse cross-entropy, allowing it to fit both noisy and clean
data more effectively. On the other hand, the adaptive parameter λ effectively balances
the roles of ED and GD in the target network during training. This adaptability addresses
varying levels of noise, enabling the model to achieve strong classification performance
across different noise scenarios.
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4.5. Ablation Study

To fully investigate the significance of each component in the proposed method, we
removed various elements of the END method for our experiments. Detailed information
is provided in Table 8. In this section, we conducted experiments using a 2D-CNN as the
base network as well as a 3D network, specifically the spectral–spatial residual network
(SSRN) [38]. The parameter settings for the SSRN adhere to those outlined in the original
paper, while the parameters for the other methods remain consistent with our previous
experiments. Table 9 presents the OA of three methods applied to the SV, HOU, and
PU datasets.

Table 8. Description of the END method and its streamlined versions.

Method Ensemble Distillation Description

Single ✗ ✗
Train a single network model and use it for

classification

Bagging ✓ ✗
Train an ensemble network model and use it for

classification

END ✓ ✓
The trained ensemble network is used to guide the

training of the target network

Table 9. Classification accuracy (OA, %) of the three methods on the SV, HOU, and PU datasets.

Method Base Network SV HOU PU

Single 2D-CNN 87.29 79.36 84.22
SSRN 89.75 84.47 87.61

Bagging 2D-CNN 90.35 85.74 89.74
SSRN 92.42 88.59 92.58

END
2D-CNN 97.28 90.78 96.93

SSRN 98.16 92.33 97.85

Table 9 presents several important findings. First, SSRN consistently outperforms
2D-CNN in classification accuracy across all three datasets, due to the enhanced feature
extraction capabilities of the 3D network. Second, while Bagging does improve classification
accuracy in the presence of label noise, the degree of improvement remains relatively
modest. Finally, the END method demonstrates the most substantial enhancement in
accuracy, primarily because it utilizes knowledge distillation from the ensemble network.
In other words, END employs ensemble learning not directly for classification, but to
estimate a label distribution, which is then combined with the ground-truth distribution to
effectively train the classification network.

4.6. Analysis of the Ensemble Size

In the previous experiment, we used an ensemble size of 30. To explore the influence of
ensemble size on classification performance and determine the optimal size, we conducted
experiments with ensemble sizes ranging from 5 to 50 in increments of 5. Figure 9 illustrates
the relationship between classification accuracy and ensemble size.

The results in Figure 9 indicate that classification accuracy increases rapidly with the
rise in ensemble size before stabilizing. As shown in Figure 9, setting the ensemble size to
around 20 or more yields satisfactory classification results. This suggests that the proposed
method does not require constructing a large number of base networks, which effectively
reduces computational costs.
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4.7. Analysis of the Training Epoch for Base Network

To obtain a relatively accurate estimated distribution distilled from the ensemble,
it is crucial to determine an appropriate epoch for terminating the training of the base
networks early, in order to prevent overfitting to noisy samples. In our experiment, we set
the maximum epoch to 100. Starting from the 10th epoch, at the end of each subsequent
epoch, we use the resulting ED and ground-truth distribution to train the student network.
The classification accuracy is shown in Figure 10.
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As shown in Figure 10, the OA exhibits oscillations over time. Generally, the OA
initially increases, stabilizes, and then decreases as the number of epochs progresses. This
trend can be attributed to the model’s ability to learn more effectively from “clean” samples
in the early stages, leading to more accurate estimated distributions. However, as the model
begins to incorporate noisy data, convergence becomes more difficult, resulting in less
accurate estimated distributions. Therefore, it is recommended to terminate the training
early, ideally between 20 and 50 epochs, to prevent overfitting to noisy samples.

4.8. Experimental Results on Toulouse Dataset

To evaluate the robustness to label noise on a large dataset, we conducted experiments
using the Toulouse HSI dataset [84]. This dataset was captured by an AisaFENIX 1K camera
over the city of Toulouse, France. It contains approximately 380,000 labeled pixels and
includes 310 spectral bands, spanning wavelengths from 0.4 to 2.5 µm. The Toulouse
dataset has a spatial resolution of 1 m and covers 32 land cover classes. The ground truth
of the Toulouse data consists of eight spatially disjoint splits.
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We adopted the original data division in [84] for our experiments, and the experi-
mental settings were consistent with previous studies. Table 10 reports the classification
accuracy of the comparison methods on the Toulouse dataset. The results presented in
Table 10 demonstrate that our proposed method achieves the highest classification ac-
curacy among all comparison methods. Furthermore, it outperforms the second-place
method by approximately 2 percent, indicating that our approach is effective for disjoint
HSI classification with noisy labels.

Table 10. Classification accuracy (%) achieved by comparison methods on the Toulouse dataset at a
noise level of 0.3.

Method 2D-CNN MSSG [10] DCRN [13] AAN [15] TCRL [16] SLS [59] MLN [60] RF [80] END

OA 73.48 76.68 79.25 81.45 82.95 77.85 78.64 71.35 85.64
AA 74.11 77.32 80.06 82.63 83.47 77.96 79.22 71.98 86.23

κ × 100 71.32 75.43 78.24 80.55 81.68 75.98 77.13 70.06 83.82

5. Discussion

Some important findings from previous experimental results warrant further discussion.
The experimental results in Section 4.2 indicate that the END method outperforms

other approaches, particularly when classifying challenging classes. When the labels of
these challenging classes are contaminated by noise, it becomes increasingly difficult to
accurately classify such samples. The superior performance of the END method in handling
noisy labels suggests that its ensemble-based approach effectively mitigates the impact of
label noise. In future research, it would be valuable to focus on improving classification
accuracy specifically for these challenging classes. Designing methods that better address
noisy labels in difficult classes could significantly enhance overall performance in HSI
classification tasks.

The experimental results in Section 4.3 demonstrate that other approaches, compared
to the END method, are more sensitive to high levels of label noise. The proposed END
method addresses this issue by using ensemble learning and knowledge distillation to
estimate the label distribution and an adaptive loss function to balance the estimated
distribution with the ground-truth distribution. This allows the END method to handle
high levels of noise more robustly. Future research should focus on further exploring
techniques and methods to enhance performance in high-noise environments.

As shown in Section 4.4, classification accuracy drops significantly across all loss
functions when fewer than 40 labeled samples per class are available. This indicates that,
under conditions of limited labeled samples, label noise has a more pronounced negative
impact on HSI classification. The primary challenge lies in the difficulty of extracting the
true label distribution when there are already too few labeled samples. Future research
should address both the scarcity of labeled samples and the presence of label noise. For
instance, exploring unsupervised methods to infer the underlying label distribution could
prove beneficial. This approach could leverage unlabeled data to enhance the model’s
robustness in noisy environments, improving overall classification performance.

The ablation study in Section 4.5 demonstrates that while the direct performance
improvement from ensemble learning alone is limited, the knowledge distilled from the
ensemble model can provide valuable guidance for training the target network. This
knowledge distillation approach enhances the model’s robustness, especially in noisy
label scenarios, by effectively transferring ensemble-derived insights. Future research can
further explore techniques to maximize the effectiveness of ensemble learning in distillation,
aiming to distill richer and more targeted knowledge that can boost classification accuracy
and generalization in various contexts.
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6. Conclusions

In this paper, we introduce an ensemble network-based distillation method for HSI
classification. The proposed END method leverages ensemble learning to effectively
estimate the distribution of training data. Additionally, a novel loss function, more robust
to label noise, is designed for training the target network. Experimental results demonstrate
that the proposed method can effectively alleviate the influence of label noise, even at
high noise rates. Several key conclusions can be drawn from the experimental results
and analysis:

• While ensemble learning offers limited performance gains for HSI classification with
noisy labels, the knowledge distilled from the ensemble model can serve as valuable
guidance for training the target network;

• The predictions for OOB samples generated through resampling effectively estimate
the label distribution of the training data. By building multiple base networks and
aggregating their outputs for OOB samples, this method improves noise robustness
and provides a refined label distribution for subsequent learning;

• The tailored loss function enhances the model’s resilience against label noise, further
bolstering its robustness. By dynamically balancing the importance of the estimated
label distribution and the ground-truth label distribution, the loss function enables the
student network to learn accurate representations.

In future research, several avenues can be explored to further refine the END method.
First, incorporating resampling strategies, such as boosting, could help mitigate the impact
of noisy labels by focusing on difficult-to-classify samples. Moreover, future studies
could explore applying advanced deep learning architectures, such as transformers or
graph neural networks, in conjunction with the proposed method. This would open
new possibilities for improving the model’s adaptability and scalability in various HSI
classification tasks.
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