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Abstract

:

Field positioning (FP) is a key technique in the digitalization of agriculture. By integrating sensors and mapping techniques, FP can convey critical information such as soil quality, plant distribution, and topography. Utilizing vehicles for field applications provides precise control and scientific management for agricultural production. Compared to conventional methods, which often struggle with the complexities of field conditions and suffer from insufficient accuracy, this study employs a novel approach using self-developed multi-sensor array hardware as a portable field topographic surveying device. This innovative setup effectively navigates challenging field conditions to collect raw data. Data fusion is carried out using the Unscented Kalman Filter (UKF) algorithm. Building on this, this study combines the good point set and Opposition-based Differential Evolution for a joint improvement of the Slime Mould Algorithm. This is linked with the UKF algorithm to establish loss value feedback, realizing the adaptive parameter adjustment of the UKF algorithm. This reduces the workload of parameter setting and enhances the precision of data fusion. The improved algorithm optimizes parameters with an efficiency increase of 40.43%. Combining professional, mapping-grade total stations for accuracy comparison, the final test results show an absolute error of less than 0.3857 m, achieving decimeter-level precision in field positioning. This provides a new application technology for better implementation of agricultural digitalization.
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1. Introduction


With the development of digitalization, the spatial positioning (SP) technique has become a research hotspot in the area of production applications. By utilizing the Internet of Things and sensor technology, precise control over objects is achieved. Particularly in the area of mapping, SP not only provides detailed spatial data for analyzing and solving various field problems but also includes accurate measurement of terrain and landforms. SP serves as a key tool and method for mapping tasks, offering reliable data support for urban planning, land management, and crop planting [1].



Amid the ongoing digitalization of agriculture, the application of SP in this area is increasingly highlighting its importance. Field positioning (FP) information has become a crucial part of precision agricultural management [2]. By integrating with the mapping technique to establish connections between environmental information and agricultural machinery, it meets the basic needs of agricultural mechanization. Moreover, it lays a solid data foundation for the application of emerging technologies. Precise SP allows for functional exploration with various equipment. For instance, detailed measurement and positioning of soil conditions in different plots can lead to precise fertilization and irrigation, thus enhancing the effectiveness of these processes [3]. Orchard farmers also mark the locations of their crops [4], monitoring individual plant growth and identifying specific locations of pest and disease outbreaks based on the condition of the plants [5], allowing for targeted prevention. It is evident that SP technology is a widely applicable technology in the digitalization and intellectualization of agriculture [6].



Currently, traditional positioning techniques, such as the Global Navigation Satellite System (GNSS) and the Real Time Kinematics (RTK) positioning technique, are indispensable in most scenarios. However, these technologies still have several issues that need optimization. In the civilian stage, the most commonly used Global Positioning System (GPS) and BeiDou Navigation Satellite System (BDS) maintain meter-level accuracy [7], which is insufficient for scenarios requiring higher precision. The RTK positioning technology is affected by the distance between the rover and base stations. Especially in agricultural applications, obstacles or remote areas with poor signal can lead to reduced accuracy or non-functionality. Therefore, relying solely on traditional positioning techniques in the field is insufficient for obtaining accurate spatial positioning information.



In response to the limitations of traditional positioning techniques, research has been conducted both domestically and abroad on non-contact measurement-based SP described by location. Qin et al. [8] extracted typical locations of each slope position as prototypes and calculated the similarity between a given location and the prototypes based on local terrain attributes and spatial environment. This approach resulted in capturing positional characteristics in both parameter space and geographic space. Gottfried et al. [9] introduced a kinematic model for positional correction by combining sensors with agricultural machinery positioning systems, which improved the positioning measurements of curved paths and significantly reduced systematic errors in the positioning process. Tadayon et al. [10] used a single transmitting coil and a sensor module with two magnetic sensors to determine three-dimensional spatial position information. Foong and Sun [11] measured the magnetic flux density in the magnetic field of a permanent magnet using sensors and utilized Artificial Neural Networks (ANNs) to map the relationship between magnetic flux density and position, achieving precise positioning. Y. Li et al. [12] proposed a Node Multiple Information Fusion (NMIF) terrain positioning method, treating sonar nodes as three-dimensional distributed sample points with height and position information, thereby increasing matched location information and extracting more terrain features from the same measurement data. Lee and Jeong [13] converted 3D spatial position data into 2D space data, learning node patterns of the Internet of Things from wavelength receivers to predict spatial positions, thereby enhancing the positioning accuracy of sensor networks. Both Liu et al. [14] and Wang et al. [15] built a terrain-assisted navigation system based on particle filtering, estimating the position state of underwater vehicles through particles, with the system achieving a positioning error within 500 m map resolution units. Liang et al. [16] utilized supervised deep learning methods combined with the GNSS for precise visual spatial positioning of targets, avoiding obstructions, with positioning errors ranging between 0 and 20 m.



As location data collection is typically achieved through sensor hardware, data processing often requires Kalman filtering for fusion. This has led some scholars to explore the application of Kalman filtering in the field of spatial positioning. Zhu et al. [17] developed an UKF algorithm, analyzing the relationship between linearization approximation errors of the GNSS pseudorange equations and positioning errors, with position estimation carried out through simulation experiments. Xu et al. [18] introduced three UKFs with different noise covariances into an Interacting Multiple Model (IMM) algorithm framework, executing different algorithm combinations in parallel to utilize distinct noise characteristics. Lu et al. [19] proposed an improved Earth-Centered, Earth-Fixed Kalman Filter (ECEF-KF) algorithm for estimating sensor measurement and attitude biases in the context of collaborative missile registration error and maneuvering target motion state issues. This approach enhanced spatial alignment accuracy and robustness. Additionally, they found that a Pseudo-Linear Kalman Filter (PLKF) outperformed the UKF algorithm in target tracking simulations. Jung Min Pak [20], in his research on indoor positioning based on Wireless Sensor Networks, suggested running several Extended Kalman Filters (EKFs) with a set of covariances in parallel and selecting the best Extended Kalman Filter (EKF) output using the Mahalanobis distance. This method proved more accurate than traditional EKF algorithms, even without prior information on optimal covariance values. Chiang et al. [21] improved navigation performance by optimizing smartphone sensor data through the EKF algorithm, achieving a positioning error of 3.11 m and enhancing position and velocity measurement accuracy by 43.0% and 51.3%, respectively, though still not reaching centimeter-level precision. Liao et al. [22] studied the use of sensor information as prior data to effectively adjust the noise covariance matrix of the Maximum Correntropy Kalman Filter (MCKF) in Wireless Sensor Network positioning systems. In indoor environment simulations, this approach reduced positioning error by 34.5% compared to MCKF. Zhang et al. [23] utilized an EKF algorithm to fuse multi-sensor data for predicting LiDAR and gyroscope attitude estimates, achieving real-time orchard positioning and constructing a three-dimensional orchard map.



Most of the technological research developments mentioned above have been conducted through theoretical studies and simulation experiments, leading to the main issue. The Kalman Filter (KF) data fusion algorithms require parameter adjustments and additional constraints under different research subjects. This makes the accuracy of the data fusion results highly dependent on prior data, thereby increasing the workload related to pre-experimental preparations in practical applications. Despite advancements in theoretical studies and simulation experiments, the application of these findings in real-world agricultural settings remains limited. Among them, current research on location studies in agricultural scenarios is relatively scarce, particularly as field positioning in the dynamic agricultural environment must balance portability with accuracy and efficiency.



Addressing these two issues, this paper focuses on a case study of a seasonal mango orchard in the mountainous regions of South China. It involves using portable terrain mapping equipment for field three-dimensional positioning analysis. The main research contents include (1) acquiring 3D positional information of the target orchard using multi-sensor data, kinematic models, and the UKF algorithm; (2) optimizing the parameters of the UKF algorithm using the Slime Mould Algorithm (SMA) improved by Good Point Set and Opposition-based Differential Evolution, thus developing an Adaptive Unscented Kalman Filter (AUKF) algorithm; and (3) analyzing the accuracy and efficiency of the algorithm by calculating errors against the true values obtained from a total station, leading to terrain interpolation modeling and high-precision positioning in the orchard.



Figure 1 follows is the technical route of this research, which primarily involves acquiring measurement data and true sample data through a multi-sensor array and a total station, respectively. The parameter optimization algorithm is used to fine-tune the process noise and hyperparameters of the UKF algorithm. The loss values and optimization time of each algorithm combination are statistically analyzed to determine the optimal parameter combination and feedback, that is, the application of the AUKF algorithm in the target orchard.




2. Materials and Methods


2.1. Research Area


The data collection experiment was conducted in May 2023. As shown in Figure 2a, the experimental site was located at the All Season Mango Orchard of the Guangdong Provincial Agricultural Technology Extension Center, situated at 28-30 Kemulang South Road, Guangzhou, China (23.182753, 113.399795). This orchard is a mountainous terrain orchard, necessitating the integration of mountainous conditions in planting. It involves analyzing the planting characteristics of mountainous regions and adapting planting strategies to the terrain and topography. The choice of this mountainous orchard as the research subject effectively demonstrates the complexity and challenges of field surveying and mapping. Covering an area of approximately 3000 square meters, the orchard is planted with Four-Seasonal mango, a typical economic crop suitable for most regions in China. The widespread planting area of this crop yields substantial economic benefits and adapts well to the hilly terrain of mountainous regions. As depicted in Figure 2b, the orchard is scientifically managed, with standard terraced cultivation to ensure water and fertilizer retention. The mango trees are densely planted in a manner that accommodates the significant gradient variations of the mountainous terrain, with open and varied topography, making it an ideal site for conducting field fixed-point sampling experiments and research.




2.2. Data Collection


2.2.1. Multi-Sensor Array Sampling Hardware


In this study, a self-integrated portable multi-sensor array was developed, weighing 600 g for ease of portability. It features local data storage and wireless storage capabilities, along with the option to be powered either by a plug-in electricity source or battery, catering to different environmental endurance needs. As illustrated in Figure 3, the sampling hardware utilizes the STM32H743IIT6 as its main control chip. The array comprises an Inertial Measurement Unit (IMU) module, a laser ranging module, an optical flow module, and an RTK module. The main data collected includes calibration of the zero-point coordinates, measurements of horizontal displacement, barometric altitude, velocity, acceleration, and satellite positioning information.



The IMU module, designated as the ATK-IMU901 angle sensor module, features main performance index, as shown in Table 1. Through the processing of sampled attitudes, it calculates pitch, roll, and yaw angles. Additionally, the hardware employs a barometric pressure sensor. By applying the least squares method to the barometric measurement results and correlating them with actual altitude, a relationship between atmospheric pressure and altitude is established.



In this study, the laser ranging module employed is the TFmini model from TELESKY company. Its main performance indicators are presented in Table 2, which are measured indoors at 25 °C under the condition of a diffuse reflection board (90% reflectivity). This module measures the ground altitude during the transport of the portable multi-sensor array. It utilizes the Time of Flight (ToF) technique for distance measurement. The module periodically emits modulated waves, which, upon encountering an object, are reflected back. The distance is calculated based on the phase difference between the emitted and reflected modulated waves. The flight time of the wave is determined and used in Equation (1) to calculate the distance between the emission source and the target object.


  D =    c   2    ×    1   2 π f    × Δ φ  



(1)







In this equation, ‘  D  ’ represents the distance between the target and the module, measured in meters (m); ‘  c  ’ denotes the speed of light in a vacuum; ‘  f  ’ is the frequency of the infrared modulated wave, expressed in Hertz (Hz); and ‘  Δ φ  ’ indicates the phase difference.



The optical flow module, developed by Anotc company, is the V4.0 version. This module integrates an optical flow sensor and an inertial sensor, along with a comprehensive fusion algorithm. It can output real-time fused optical flow data. The module calculates the pixel distance between two frames of an image based on the feature point comparison method between image frames. Utilizing an inertial navigation fusion algorithm, it achieves board-level fusion of optical flow and inertial navigation data, enabling the acquisition of movement speed during the sampling process.



The RTK module, developed by Beitian company, is the BT-F9PK4 satellite positioning module. Its main performance indicators are presented in Table 3. The module supports four global positioning systems, including GPS, BDS, GLONASS, and Galileo. It features floating differential positioning functionality and provides three-dimensional coordinates of test space sample points.




2.2.2. Multi-Sensor Data Collection


The data collection procedure primarily encompasses fixed-point measurement and extensive field data acquisition. It is necessary to set up control groups and experimental groups to adequately support the analysis of the algorithm’s effectiveness. The control group reflects the measurement errors and, by adjusting the loss values, makes the data results closer to the true values. The experimental group demonstrates the effects of real-world applications and represents the performance of prolonged field operations. This experiment was conducted in the afternoon under evenly distributed sunlight, avoiding the direct, intense sunlight at noon. This approach reduces the disturbance to the optical flow sensor caused by lighting conditions and also minimizes the impact of strong reflections on the laser rangefinder sensor. This ensures that the sensors can perceive environmental changes as stably as possible.



As illustrated in Figure 4, during the experimental site visit, after establishing a zero point, regions with open terrain and significant elevation differences were selected for sampling. At the beginning of the sampling process, the portable multi-sensor array hardware needs to be handheld. After connecting to satellite positioning, the hardware measures a set of sensor data every 200 milliseconds.



The first experiment was developed by fixed-point measurements. 16 target sample points were selected within the Four-Seasonal-Mango Orchard, chosen for their varying elevations, distinct topographical features, and substantial horizontal distance from the calibrated origin point. These sample points conformed to the technical requirement for environmental geological survey (1:50,000) in the Geological Survey Technical Standards by the China Geological Survey Bureau. Continuous measurements were taken from the zero point to each target sample point. To ensure the rigor of the experiment, the origin point was recalibrated for each fixed-point sampling. After each recalibration, the experiment personnel would carry the portable multi-sensor array hardware on foot from the origin to the target sample points, recording the sensor’s raw data. Simultaneously, at the calibrated origin point, a Haixingda ATS-320R total station was set up. Before measuring with the total station, it was necessary to level it horizontally, calibrate its direction, and set the origin coordinates (0, 0, 0). Target reflector prisms were set up at the sampling points to measure the high-precision coordinate positions of the target sample points. The total station measurement data were recorded as true value data. Each target sample point’s sensor raw data corresponded to its respective true value data, completing one fixed-point measurement. In total, 16 sets of fixed-point measurement data were collected, with each set comprising an average of 259 groups of multi-sensor data.



The second experiment entailed extensive field data collection over an area of 3000 square meters. The terraced mango orchard had approximately 1 m drops between each level. First, the sampling personnel determined the origin point at a selected location in the Four-Seasonal-Mango Orchard. Then, carrying the portable multi-sensor array hardware, they walked through the designated sampling area on foot, covering the selected sampling area and conducting extensive sensor data collection. A total of 9141 groups of multi-sensor data were collected.





2.3. Data Processing


In this study, MATLAB r2020b was utilized to fuse sensor data by integrating the UKF algorithm with physical models. The SMA, improved through Good Point Set and Opposition-based Differential Evolution, was employed to optimize the process noise matrix and the three hyperparameters of the UKF algorithm. This optimization led to the development of the AUKF algorithm tailored for field positioning in orchards.



In the context of three-dimensional positioning, determining parameters and the loss function is crucial. The optimization problem in this study involved finding a set of parameters ‘  p  ’ for the UKF algorithm. Based on the dimensionality of the state definition, the parameters ‘  p  ’ that needed optimization were the elements on the diagonal of the process noise covariance matrix and the three hyperparameters ‘  α  ’, ‘  β  ’, and ‘  κ  ’ in the sigma sampling process [24]. The objective was to minimize the error between the three-dimensional coordinates obtained post-fusion and the true values measured by professional surveying, as measured by the Euclidean distance.



The adopted solution involved setting the loss function   L   p     as the square of the Euclidean distance between the true values and predicted values. Treating the parameter space as a search space, the executed ISAM searched for parameter combinations within given upper and lower boundaries to find the global optimum. The aim was to minimize the loss function, determine the optimal parameters, calculate the minimal loss value, and optimize runtime.



2.3.1. The Unscented Kalman Filter Algorithm


In classical optimal recursive data processing algorithms, traditional Kalman filtering performs admirably but is limited to linear systems. Subsequently, researchers have linearized nonlinear models using Taylor series expansions, essentially omitting higher-order terms while retaining the first-order terms. This adaptation led to the development and enduring use of the EKF algorithm. However, the essence of the EKF algorithm is to transform the problem into a linear Gaussian model [25], without specifically addressing the uniqueness and complexity of nonlinear systems.



The UKF algorithm, on the other hand, represents a significant improvement of the KF algorithm for nonlinear systems. The UKF algorithm employs the Unscented Transformation (UT) approach, using sigma point sampling and weight allocation to approximate the uncertainties introduced by nonlinearity [26]. Unlike the EKF algorithm, the UKF algorithm does not linearize by ignoring higher-order terms, nor does it require the computation of Jacobian matrices. This makes it more suitable for highly nonlinear systems. Due to the UT accurately capturing the first-order (i.e., predicted mean) and second-order (i.e., predicted covariance) statistical characteristics of the nonlinear function, theoretically, the prediction accuracy of the UKF algorithm is equivalent to a second-order Taylor series expansion [27].




2.3.2. The Adaptive Parameter Adjustment of the UKF Algorithm


In the process of implementing the UKF algorithm, parameter setting is critical, particularly the hyperparameters that influence the details of the sigma sampling—a key step in the UKF algorithm. These not only affect the accuracy of the results but also alter the performance of the algorithm [28]. However, the setting of process noise and hyperparameters requires extensive prior knowledge, increasing the workload of preliminary experiments needed to determine the parameter combination. Employing swarm intelligence algorithms to compute and identify optimal parameters is an effective approach [29]. Nevertheless, with the multitude of swarm intelligence algorithms available, traditional algorithms are prone to getting trapped in local optima, leading to inefficiencies and lower accuracy when dealing with multi-dimensional parallel processing optimization problems, as well as unstable outputs [30].



In this study, tailored to the field positioning scenario, we first propose the Improved Slime Mould Algorithm (ISMA), enhanced by the Good Point Set and Opposition-based Differential Evolution mechanism, for parameter tuning of the UKF algorithm. The ISMA interacts with the UKF algorithm during its execution process, forming the AUKF algorithm that adapts until the optimal set of parameters is output. This method is applied to the fusion of large volumes of sample data in nonlinear systems to achieve more precise positioning.



Given that the state inputs for this study are kinematic physical quantities and the dynamic transfer matrix ‘  f  ’ conforms to Newton’s laws of motion, the following definitions can be initially established:



At the   k  -th moment, the state variables are as follows:


      x   k   =     l o c   x       l o c   y       l o c   z       v   x       v   y       v   z         a  ^    x         a  ^    y         a  ^    z       T    



(2)







The measurements are as follows:


    z   k   =   [ r t   k   x     r t   k   y       h   p r e     o   f   v x     o   f   v y     y a w     a   x       a   y       a   z   ]   T    



(3)




where ‘  y a w  ’ represents the heading angle of the sampling instrument, measured in radians; ‘  d t  ’ is the time difference between two executions of the EKF algorithm, measured in seconds; ‘    h   p r e    ’ denotes barometric altitude, measured in meters; ‘  r t   k   x    ’ and ‘  r t   k   y    ’ represent the RTK position coordinates in the North-East-Up coordinate system, measured in meters; ‘  o   f   v x    ’ and ‘  o   f   v y    ’ represent the optical flow velocities along the x and y axes of the North-East-Up coordinate system, measured in meters/s.



The observation model is as follows:


      z  ^    k   = h     x   k     =   [   l o c   x         l o c   y       l o c   z       v   x       v   y     a t a n 2     v   y   ,   v   x         a   x       a   y       a   z   ]   T    



(4)




where   a t a n 2     v   y   ,   v   x       returns the angle between the point   ( x , y )   and the positive direction of the x-axis (ranging from −π to π).



As depicted in Figure 5, the implementation of the AUKF algorithm conducted in this study primarily consists of state prediction updates and ISMA parameter optimization.



	a.

	
The true values and measured values from fixed-point measurements are input into the AUKF algorithm, which then initializes and executes the state prediction updates.




	b.

	
The next state of the system is predicted using the following forecast formula:


    x   k + 1 | k   = f ·   x   k   + B ·   u   k    



(5)






    P   k + 1 | k   = f ·   P   k   ·   f   T   +   Q   k    



(6)











Within the above Formulas (5) and (6), ‘    x   k + 1 | k    ’ represents the state prediction at time step   k   for the next time step   k + 1  , with ‘  f  ’ denoting the state transition function; ‘    x   k    ’ is the system state at time step   k  ; ‘  B  ’ is the control input matrix, which directly affects acceleration; thus the matrix ‘  B  ’ will have non-zero elements in rows associated with acceleration; ‘    u   k    ’ is the system control input at time step   k  , directly influencing the acceleration component; ‘    P   k + 1 | k    ’ is the predicted state covariance matrix at time step   k   for   k + 1  ; ‘    P   k    ’ is the state covariance matrix at time step   k  ; ‘    f   T    ’ represents the transpose of the matrix ‘  f  ’; ‘    Q   k    ’ is the process noise covariance matrix at time step   k  , which is tuned by the ISMA.



	c.

	
The predicted state     X   k + 1 | k     undergoes sigma point sampling to produce 2n + 1 sigma points as follows:


    x   k + 1 | k     0     =   x   k + 1 | k    



(7)






    x   k + 1 | k     i     =   x   k + 1 | k   + (      n + λ     P   k + 1 | k    )   i   , i = 1 , 2 , … , n  



(8)






    x   k + 1 | k     i     =   x   k + 1 | k   − (      n + λ     P   k + 1 | k    )   i   , i = 1 , 2 , … , n  



(9)











In the above Formulas (7)–(9), ‘  λ  ’ serves as a turning parameter to control the distribution of sigma points, typically set as 3 −    n   in the UKF algorithm, where ‘  n  ’ is the dimension of the state vector. The term ‘     ·    i    ’ represents the square root of the   i  -th eigenvalue of the predicted covariance matrix, ‘    P   k + 1 | k    ’, which is the covariance matrix of the state     x   k + 1 | k     under prediction.



	d.

	
The sigma points     x   k     i       are mapped to the next state     x   k + 1 | k     i       through the state transition function   f  :


    x   k + 1 | k     i     = f ·   x   k     i     + B ·   u   k   , i = 0 , 1 , 2 , … . , 2 n  



(10)








	e.

	
Computation of the predicted state means       x  ^    k + 1 | k     and the covariance     P   k + 1 | k    :


      x  ^    k + 1 | k   =   ∑  i = 0   2 n      w   i     m         x   k + 1 | k     i      



(11)






    P   k + 1 | k   =   ∑  i = 0   2 n      w   i     c           x   k + 1 | k     i     −     x  ^    k + 1 | k           x   k + 1 | k     i     −     x  ^    k + 1 | k       T   +   Q   k    



(12)











In the computations (11) and (12), the weights ‘    w   i   [ m ]    ’ is the coefficients of each sigma point to calculate the mean; ‘    w   i   [ c ]    ’ is the coefficients used for calculating the covariance. Both     w   i   [ m ]     and     w   i   [ c ]     require hyperparameter settings, which are computed as follows:


          w   0     m     =    λ   n + λ            w   0     c     =    λ   n + λ    +   1 −   α   2   + β           w   i     m     =   w   i     c     =    λ   2   n + λ      , i = 1 , 2 , … , 2 n        



(13)







The parameter ‘  λ  ’ satisfies   λ =   α   2     n + κ   − n  , which is used to reduce prediction error. Specifically, the three parameters ‘  α  ’, ‘  β  ’, and ‘  κ  ’ need to be optimized through the execution of the ISMA algorithm, significantly affecting the precision of the state mean and covariance at each iteration [24]. ‘  α  ’ and ‘  κ  ’ adjust the distribution of sigma points and can be considered scaling factors that affect the scale of the generated sigma points. A smaller value brings the generated sigma points closer to the mean, while a larger value results in a wider distribution of the sigma points. Typically, the scaling factor is set to a relatively small value to provide good filtering performance. ‘  β  ’ is a non-negative real number that introduces prior knowledge to adjust the non-Gaussian distribution during the prediction update phase of the AUKF algorithm.



	f.

	
Mapping sigma points to the observation space, the current sigma points at time   k  ,     x   k + 1 | k     i       is obtained at time   k +  1 through the nonlinear observation function   h  , resulting in the predicted state sigma points     z   k + 1 | k     i      :


    z   k + 1 | k     i     = h     x   k + 1 | k     i         , i = 0 , 1 , … , 2 n  



(14)








	g.

	
Calculate the mean of the predicted observations       z  ^    k + 1 | k    :


      z  ^    k + 1 | k   =   ∑  i = 0   2 n      w   i     m         z   k + 1 | k     i      



(15)








	h.

	
Calculate the covariance     S   k + 1     and the cross covariance     C   k + 1    , between the mean forecast state       x  ^    k + 1 | k     and the mean forecast observation       z  ^    k + 1 | k    :


    S   k + 1   =   ∑  i = 0   2 n      w   i     c           z   k + 1 | k     i     −     z  ^    k + 1 | k           z   k + 1 | k     i     −     z  ^    k + 1 | k       T    



(16)






    C   k + 1   =   ∑  i = 0   2 n      w   i     c           x   k + 1 | k     i     −     x  ^    k + 1 | k           z   k + 1 | k     i     −     z  ^    k + 1 | k       T    



(17)








	i.

	
Calculate the Kalman gain     K   k + 1    :


    K   k + 1   =      C   k + 1       S   k + 1       



(18)








	j.

	
Update the state mean       x  ^    k + 1 | k     to get       x  ^    k + 1 | k + 1    :


      x  ^    k + 1 | k + 1   =     x  ^    k + 1 | k   +   K   k + 1   (   z   k + 1   −     z  ^    k + 1 | k   )  



(19)








	k.

	
Update the state covariance     P   k + 1 | k     to get     P   k + 1 | k + 1    :


    P   k + 1 | k + 1   =   P   k + 1 | k   −   K   k + 1     S   k + 1     K   k + 1   T    



(20)








	l.

	
Through the above formulas, the new system state     x   k + 1 | k + 1     and the updated state covariance     P   k + 1 | k + 1     is identified. After obtaining the final predicted position, the true value position is used to calculate feedback to the ISMA. The ISMA then undertakes an optimization cycle until the optimal parameter combination is found for all fixed-point test data, concluding the data set training. The ISMA outputs the optimally found parameter set.




	m.

	
The initiation of new data measurement and input.







By introducing variables within the Newtonian physical model and with the integration of the ISMA, this study seeks quality parameter combinations. This reduces the preparatory steps of preset parameter values, achieving higher precision data fusion for multi-sensor measurements.




2.3.3. The ISMA Based on Good Point Set and Opposition-Based Differential Evolution Mechanism


The SMA is a heuristic swarm intelligence optimization algorithm that primarily simulates the foraging behavior and state changes of the Physarum polycephalum, a multi-headed slime mould, in response to different food concentrations in nature [31]. The mathematical model of the algorithm can be represented as follows:


  P   k + 1   =         r a n d   [ 0 , 1 ]   ·   u b − l b   + l b ,     r a n d   [ 0 , 1 ]   < u             P   b e s t     k   + v b ·   W ·   P   a     k   −   P   b     k     ,     r a n d   [ 0 , 1 ]   < h       v c · P   k   ,     r a n d   [ 0 , 1 ]   > h            



(21)







According to Formula (21), in the current iteration   k  , ‘    P   b e s t     k    ’ is the best position of the slime mould individual, ‘    P   a     k    ’ and ‘    P   b     k    ’ are the positions of two randomly selected slime mould individuals. The variables ‘  h  ’ and ‘  v b  ’ serve as control variables, with   v b   being set within a specific range. The parameter   v c   linearly decreases from 1 to 0. ‘  u  ’ is a constant typically valued at 0.03. ‘    r a n d   [ 0 , 1 ]    ’ denotes a random number uniformly distributed over the interval   [ 0 ,   1 ]  , and ‘  W  ’ is the fitness weight. The algorithm adjusts parameters to simulate the behavior of the slime mould colony in approaching, selecting, grasping, and encapsulating food.



Compared to traditional swarm intelligence optimization algorithms such as the Particle Swarm Optimization (PSO) algorithm, the standard SMA possesses superior global search capabilities. However, due to the use of random methods for initializing the population, the initial quality of the population is low. This results in an inability to stably achieve target precision and convergence speed during the search process. Additionally, the influence of iterative oscillations in the later stages is relatively weak, which could lead to the possibility of local optima. To circumvent issues such as local convergence and premature convergence affecting the optimization precision and speed of the SMA, this study introduces strategies such as the Good Point Set population mechanism and the Opposition-based Differential Evolution mechanism. These strategies jointly improve the standard SMA by reducing randomness while further enhancing population diversity and adaptive adjustment of population quality [32]. This more balanced approach facilitates the slime mould individuals to carry out global exploration and local exploitation processes in a coordinated manner, resulting in the ISMA, as illustrated in Figure 6.



Figure 7 presents a pre-experiment using classical test functions to assess the performance of the ISMA. Panel (a) displays the results for the Griewank Function test, which is characterized by numerous local optima but only one global optimum. Panel (b) shows the results for the Levi N. 13 Function test, which forms a series of ridges and valleys in the solution space, making the identification of the global optimum particularly challenging in high-dimensional spaces. These functions, known for their high nonlinearity and multimodality, are utilized to test complex optimization problems. The results indicate that the ISMA demonstrates an outstanding global search capability in handling complex nonlinear, multimodal challenges, outperforming the SMA and the PSO algorithm in terms of local search time on certain ridges and valleys within the solution space, converging to smaller values more rapidly.



Good Point Set Population Initialization


Population initialization is a critical step in swarm intelligence algorithms, as the quality of the initial position of the population directly affects the convergence speed and the quality of solutions explored within the solution space. Good Point Set theory is a data construction method that generates initial population distributions with higher uniformity and enriched population diversity compared to random initialization methods. Therefore, employing Good Point Set techniques for population initialization within swarm intelligence algorithms can effectively enhance the global search capabilities and rapid convergence of the algorithm. This, in turn, improves the efficiency and accuracy with which the algorithm addresses complex optimization problems [33].


    R   n   ( k ) = { ( {   r   1   ( n )   · k } , {   r   2   ( n )   · k } , … , {   r   i   ( n )   · k } ) ,   1 ≤ k ≤ n }  



(22)







The deviation ‘  φ ( n )  ’ satisfied   φ ( n ) = C ( r , ε )   n   − 1 + ε    , in which ‘  C ( r , ε )   n   − 1 + ε    ’ is only with   r   and   ε     (arbitrary positive numbers) as relevant constants, and it is called ‘    R   n   ( k )  ’, which is a good point set, and   r   is the good point as well. Take   r = { 2 c o s   (    2 π k   e    ) ,   1 ≤ k ≤ i }  , where ‘  e  ’ is the smallest prime to meet   i <    ( e − 3 )   2      and ‘  r  ’ is the good point as well.



As illustrated in Figure 8, the Good Point Set method generates a distribution of points for two-dimensional population initialization that is more uniform than random methods and covers the solution space more comprehensively than the Lévy flight method, enhancing travers ability. Meanwhile, this implies that the Good Point Set aids swarm optimization algorithms in reducing the chances of missing excellent solutions, thereby improving the algorithm’s ability to explore the solution space. Furthermore, the initial populations produced by the Good Point Set method exhibit a high degree of stability. Under the premise of an equal number of populations set, results from 50 two-dimensional initialization tests demonstrate that random methods and Lévy flight results are relatively unreliable, sometimes scattered, sometimes concentrated, with some outcomes even showing large sparse blank areas. These inconsistencies can affect the optimization results of subsequent swarm intelligence algorithms. However, the Good Point Set consistently produces a stable arrangement of points, which benefits the repeatability and predictability of algorithms executed multiple times.




Opposition-Based Differential Evolution


Reverse learning employs a bidirectional evaluation principle to assess both the current solution and its inverse, thereby guiding individuals to the optimum solution. Utilizing reverse learning can significantly increase the probability of the algorithm finding the global optimum [34]. In the context of this research, the principle for obtaining the inverse solution is as follows:



Within a set parameter space bounded by the upper and lower limits, for an interval   [ l b ,   u b ]  , if a set of parameters   p   exists, the inverse of   p   is defined as   p ′ = u b + l b − p  . Consequently, assume there is a point   q   in the   i  -dimensional real domain   q = [   p   1   ,     p   2   , … ,   p   i   ]  , and for   j  -th parameter solution     p   j   ∈ [   l b   j   ,     u b   j   ]  , then the inverse point   q ′ = (   p   1   ′ ,     p   2   ′ , … ,   p   i   ′ )   is defined for   p ′  . Here,     p   i   ′ =   r a n d   [ 0 , 1 ]   (   l b   j   +   u b   j   ) −   p   i    , where     r a n d   [ 0 , 1 ]     denotes a uniformly distributed random number within the interval   [ 0 ,   1 ]  . The optimization problem tackled in this study seeks to minimize the loss function   L   p    . If a feasible solution   p   exists with an inverse solution   p ′  , and if   L   p   > L   p ′    , then   p   is replaced with   p ′  .



By establishing the initial solution and its inverse based on reverse learning, the fitness of both the initial and inverse solutions is calculated, adding feedback to each iteration result. The   N   individuals with superior fitness (where   N   is the number of the initial population) are selected as the final initial solutions to enhance search precision.



Hence, this study introduces an Opposition-based Differential Evolution mechanism as shown in the figure, which employs the differential evolution mechanism in conjunction with Opposition-based learning. This approach generates an initial population with richer diversity, searching for quality individuals through mutation, crossover, and selection strategies [35], and enhances the exchange of information among individuals to avoid the pitfalls of using a single individual for guidance.



As shown in Figure 9, the primary principle of the differential evolution mechanism is as follows:



	a.

	
Mutation Operation. During the   g  -th iteration for   N   population individuals, each individual is composed of an   i  -dimensional vector. Thus, the   k  -th individual in this iteration is denoted as     P   k   ( g ) = [   p   k , 1   ( g ) ,   p   k , 2   ( g ) ,   p   k , 3   ( g ) , …   p   k , i   ( g ) ]  , where   k = 1 , 2 , 3 , … N  . Three distinct individual vectors     P   a   ( g )  ,     P   b   ( g )  , and     P   c   ( g )   are randomly selected and combined. The mutation operation produces the   k  -th mutated individual vector     H   k   ( g )  , which can be expressed as follows:


    H   k     g   =   P   a     g   + F · (   P   b     g   −   P   c   ( g ) )  



(23)











In Formula (23), ‘  F  ’ is the scaling factor in the interval   [ 0 , 2 ]  , which is generally defined as 0.5. The selection strategy can be adjusted according to the advantages and disadvantages of the three random individuals     P   a   ( g )  ,     P   b   ( g )  , and     P   c   ( g )  , in which ‘    P   b     g   −   P   c   ( g )  ’ is the difference vector.     H   k     g     of each individual is expressed as,     H   k   ( g ) = [   h   k , 1   ( g ) ,   h   k , 2   ( g ) ,   h   k , 3   ( g ) , …   h   k , i   ( g ) ] , k = 1 , 2 , 3 , … N  .



	b.

	
Cross Operation. During the   g  -th iteration, the crossover probability     c r   k     for the   k  -th individual is determined by random sampling to construct the trial individual     V   k     g    , as shown in Formula (25):


    V   k     g   =         h   k , i     g   ,   r a n d   [ 0 , 1 ]   ≤   c r   k           p   k , i     g   ,   o t h e r w i s e        



(24)











Here, ‘    r a n d   [ 0 , 1 ]    ’ represents a random number uniformly distributed over the interval   [ 0 ,   1 ]  . Each individual in ‘    V   k     g    ’ is represented as     V   k   ( g ) = [   v   k , 1   ( g ) ,   v   k , 2   ( g ) ,   v   k , 3   ( g ) , …   v   k , i   ( g ) ]  , where   k = 1 , 2 , 3 , … N  .



To mitigate the uncertainty introduced by random crossover probabilities, the crossover probability     c r   k     for the   k  -th individual is adaptively adjusted as follows:


    c r   k   =         c r   l   +     c r   u   −   c r   l          f   k   −   f   m i n       f   m a x   −   f   m i n      , i f     f   k   >   f  ¯          c r   l   ,   i f     f   k   <   f  ¯         



(25)







In Formula (25), ‘    f   k    ’ denotes the fitness value of the individual     P   k   ( g )  , with ‘    f   m i n    ’ and ‘    f   m a x    ’ representing the fitness values of the worst and best individuals in the current population, respectively, and ‘    f  ¯   ’ as the average fitness of the current population. ‘    c r   l    ’ and ‘    c r   u    ’ are the lower and upper limits of     c r   k    , generally set as     c r   l   = 0.1   and     c r   u   = 0.6  .



	c.

	
Selection Operation. After each crossover operation, the fitness value of the new trial individual     V   k     g     is calculated. If the new     V   k     g     exhibits higher fitness, it replaces the corresponding original individual     P   k   ( g )   for the next iteration, resulting in     P   k   ( g + 1 )   demonstrated as follows:


    P   k     g + 1   =         V   k     g   ,   i f   f (   V   k     g   ) > f (   P   k   ( g ) )         P   k     g   ,   o t h e r w i s e        



(26)











For each individual, the selected solution is the one with the optimal fitness value from the mutation and crossover operations. This reduces the occurrence of low-quality individuals during population initialization and iteration, effectively enhancing the optimization results.







3. Results


This study focuses on optimizing field positioning accuracy, primarily involving sensor data from portable hardware devices. The collected primary data, which is discrete and time-sequenced, is well-suited for fusion using the UKF algorithm, with parameter adaptability being the crux of the research. The parameters set for the AUKF algorithm are categorized into process noise parameters and hyperparameters, initially set as zero matrices. Sixteen groups of fixed-point measurement data were inputted, optimizing with the ISMA over various iteration cycles and different initial population sizes to calculate loss values against actual position coordinates.



Data analysis was conducted in an environment running MATLAB 2023b on an Intel Core i7 12th generation 12,700 K configuration. This study revealed that applying the AUKF algorithm significantly enhanced the precision and efficiency of the portable multi-sensor array hardware in spatial positioning within the target mountainous orchard. The ISMA iterations were set to 1000, with an initial population size of 100. Under the same initial conditions, parallel executions of the PSO algorithm, the Genetic Algorithm (GA), the Simulated Annealing (SA) algorithm, the Pareto Optimization (PATO) algorithm, and the SMA were performed for parameter optimization. The optimization effects of the traditional algorithms on the UKF algorithm were analyzed and compared with those of the AUKF algorithm, repeating the process 50 times to compute loss values and cumulative single computation durations.



3.1. Precision Analysis


To analyze the impact of parameter optimization on positioning accuracy, the AUKF algorithm hyperparameters were initially set to default values of   α = 1  ,   β = 2  , and   κ = 0  , eliminating the influence of hyperparameter settings on accuracy fluctuations. Hence, the input–output matrix for the optimization algorithm was the process noise matrix with nine diagonal elements.



Figure 10 presents the loss value results of the process noise optimization. The AUKF algorithm proposed in this study demonstrated a marked improvement in precision optimization, with an average loss value of 245.24, achieving high precision while maintaining stable results. The box plot illustrates that the loss values for the AUKF algorithm optimized for process noise are significantly lower than the best results of other optimization algorithms, with no outliers observed. Compared to the SMA, the improved ISMA’s enhancement of population quality and increased feedback during computation effectively reduce instability. The ISMA embedded within the AUKF algorithm significantly outperforms the six optimization algorithms tested.



When the three hyperparameters   α  ,   β  , and   κ   of the AUKF algorithm were included in the algorithm input for optimization, the input–output matrix became a 12-dimensional diagonal matrix, with constraints set for   α  ,   β  , and   κ   as follows:


        α ∈ [ 0.001 ,   1 ]       β ∈ [ 0.001 ,   10 ]       κ ∈ [ 0.001 ,   3 ]        











Figure 11 shows that after the ISMA further optimized the hyperparameters, the precision of the AUKF algorithm improved further, and it still maintained a very stable output. Except for the SIM algorithm, the loss values of the other four traditional optimization algorithms not only increased but also exhibited more outliers. Compared to optimizing only the process noise, the inclusion of hyperparameters resulted in some traditional optimization algorithms not improving in precision, widening the result intervals, and increasing the instability of the optimization algorithms. Under the influence of the ISMA, the mean loss value of the AUKF algorithm could be reduced to approximately 244.25, a larger reduction compared to the SMA optimizing the UKF algorithm. The AUKF algorithm consistently performs well, demonstrating good reliability when applied to field spatial positioning as investigated in this study.



Owing to the impact of population size and the number of iterations on the effectiveness of the AUKF algorithm, this study conducted controlled experiments focusing solely on these two variables. It repeated 30 rounds of process noise and hyperparameter tuning tests to ascertain the average loss value for the AUKF algorithm. As indicated in Figure 12, when the number of iterations for the ISMA was less than 1000, increasing both the population size and the number of iterations significantly improved the result accuracy of the AUKF algorithm’s predicted positions. Even with lower population sizes and iteration numbers, the algorithm’s loss values remained below 246.5, consistently surpassing the outcomes of traditional optimization algorithms executed in parallel. The most effective convergence of the ISMA was achieved with a setup of 1000 iterations and 100 initial populations, where the average loss assessment value of the AUKF algorithm could be reduced to approximately 244.1655. However, when the number of iterations exceeded 1000, subsequent changes in loss values became markedly gradual, indicating that continuing to increase iteration numbers and population sizes would lead to significant and unnecessary performance costs.




3.2. Efficiency Analysis


In this study, while precision was a primary concern, the time expended was also a critical factor. This section elaborates on the cumulative time spent on parameter iteration and tuning using the true value data set. Figure 13 displays the time consumed for 30 parallel processes of adaptive parameter optimization. Each data processing instance was conducted under the condition of 100 initial populations and 1000 iterations. The AUKF algorithm required an average cumulative processing time of approximately 22,264.5 s. This duration was 40.43% faster than the processing time of the SMA algorithm and 5.47% quicker than the fastest traditional optimization algorithm, the PSO algorithm. Moreover, the AUKF algorithm demonstrated the most stable performance in terms of cumulative processing time over multiple iterations, ensuring stable computations throughout its application.




3.3. Field Testing


To assess the performance under practical application, the optimal parameters derived from the AUKF algorithm were applied to a dataset of 9141 extensive range sampling data points for data fusion, characterizing the topographical features of the experimental site. The true value data for the (x, y) coordinates were input, and the closest z-value (i.e., vertical height) was sought among the optimized output sample points. In cases where the true data did not overlap with the extensive range sampling points, the coordinates found were considered as predicted z-values. This procedure was repeated 30 times to obtain average results.



As depicted in Figure 14, the optimization effect of the AUKF algorithm is demonstrated. Panel (a) shows the interpolation modeling results based solely on sensor precision, which are incomplete in information expression and deviate from reality, with an average absolute error of 0.9121 m. Panel (b) presents the interpolation modeling results with the process noise matrix set as Gaussian white noise, introducing Gaussian white noise as the process noise with hyperparameters set to conventional default values. The accuracy of the prediction results is significantly improved, with the orchard positioning corrected and some outliers separated, preliminary revealing the terrain’s outline and achieving an average absolute error of 0.7264 m. Panel (c) illustrates the interpolation modeling results after filtering with the AUKF algorithm, where the average absolute error is reduced to 0.3857 m, a 46.90% increase in accuracy over the UKF algorithm results before parameter optimization. This significant improvement in accuracy is also evident in the extensive application of the AUKF algorithm for field positioning.



The AUKF algorithm was embedded into the hardware circuit for fixed-point accuracy testing. The same weather conditions were selected as those used in the field experiments. A zero point was selected, and within a range of 10 to 50 m from the zero point, five different test points in different directions in three dimensions were randomly chosen. Carrying the portable multi-sensor array hardware, the operator walked from the zero point to the target test points. Each test point was measured 10 times, and the average value was selected. The horizontal distance readings on the x-y plane and the height difference readings on the z-axis from the initial to the final positions were recorded as measurement values. The Haixingda ATS-320R total station was placed at the zero point for calibration and true value measurement, with the target prism located at the target sample point to measure the true value of each test sample point.



As shown in Figure 15, after applying the AUKF algorithm, the relative error in the precision of single-point measurements on the x-y horizontal plane is less than 1%. The average absolute error in horizontal displacement for selected test points is 0.177 m, while the maximum relative error in z-axis altitude measurement is approximately 1.75%, with the average absolute error in vertical height displacement for selected test points being 0.1792 m. The errors tend to increase slightly with greater displacement distances, but the relative errors displayed in the test results are all less than 2%. When combined with the interpolation modeling results from the extensive range sampling mentioned above, the average absolute error is below 0.4 m, achieving decimeter-level positioning. This indicates that the AUKF algorithm is capable of achieving high precision in both single-point and continuous variable-point location information collection.





4. Discussion


The selection and optimization of parameters have always been critical in the field of data fusion. For different systems, the setting of process noise and the selection of sampling parameters often require a large amount of experimental data and experience as prior knowledge [36]. Cross-validation can be used to choose the best parameters, and regularization can further enhance the algorithm’s generalizability, reducing dependence on specific parameters. However, these conventional methods yield static parameters that can be limited in their application to the nonlinear systems studied in this paper. For instance, overly complex and variable system models may lead to overfitting [37], or there might be a need for manual intervention to adjust parameters, thereby increasing model complexity and maintenance costs. This is why there is a need for adaptive filtering methods for dynamic parameter adjustment in dynamic or nonlinear environments, which is the primary focus of this research. More specifically, this paper proposes the AUKF algorithm for field scenarios. It utilizes the ISMA to achieve adaptive optimization of the UKF algorithm parameters. The establishment of an interactive feedback loop between the ISMA and the UKF algorithm forms an integrated system. This approach significantly enhances field positioning accuracy and the computational efficiency of the optimization algorithm, greatly reducing the workload associated with parameter tuning.



First, the experimental data results indicate that applying parameter optimization algorithms to the UKF algorithm as a tuning method is effective. During the research process, different swarm intelligence algorithms were introduced for comparative analysis. The large range of whiskers and outliers in the boxplot of the loss values suggests that traditional swarm intelligence algorithms might fall into local optima, leading to unstable outputs. These are not suitable for the multi-dimensional, discontinuous, and nonlinear search spaces in this study.



In addition, the AUKF algorithm demonstrated a near 46.90% improvement in precision for multi-sensor data fusion, with better convergence. This is attributed to the ISMA in the AUKF’s parameter optimization process, which not only retains the adaptive weight characteristics of the SMA but also improves the initialization of the population and updates the population based on each iteration’s results. This ensures population quality while quickly converging towards the optimal direction. Furthermore, each computation result of the ISMA is input into the AUKF algorithm, and the multi-sensor data fusion results are fed back to the ISMA as loss values. This mutual influence allows for effective cooperation, significantly enhancing the AUKF algorithm’s performance. Since the initial settings of swarm intelligence algorithms can affect computational behavior [38], although improvements and optimizations have been made for the UKF algorithm parameters, further exploration is needed into whether the ISMA itself depends on other parameters.



What is more, in this study of nonlinear systems, there are many Kalman filtering schemes, such as the EKF and the Cubature Kalman Filter (CKF) algorithms. However, previous studies show that under complex and variable conditions like field surveying in mountainous terrain, the EKF algorithm, which solves nonlinear problems through Taylor series expansion and retains only the first-order term, tends to overlook many details [39]. After numerous optimization attempts, the accuracy of the EKF algorithm did not significantly improve. The CKF algorithm can reduce the impact of high dimensions on the computation process [40], but in the preliminary experiments of this study, its performance and precision were not as good as the UKF algorithm. The optimization precision of traditional swarm intelligence algorithms was even worse than that achieved with Gaussian noise in the process noise. The CKF algorithm fundamentally differs from the UKF algorithm in sigma sampling decisions, resulting in divergent effects. Therefore, the UKF algorithm was chosen for data fusion in this research after extensive preliminary experimentation, as its high sensitivity to parameters helps in finding the best parameter combination.



Furthermore, data collection in this study was conducted using self-integrated portable multi-sensor array hardware. During data collection and processing, two points need attention. One is that data sampling is affected by sensor accuracy. Although thorough accuracy calibration is performed before each experiment, the large volume of collected data increases reliance on sensor precision. For example, the error of the IMU module increases over time, especially during large-scale field sampling over 3000 square meters for about an hour. Field test results show that continuous large-scale measurements have a higher average absolute error than fixed-point measurements, likely affected by this characteristic of the IMU module. Further hardware upgrades are needed for improved precision. Second, although the collected data are discrete sensor data, they contain continuous temporal information, which is essential for the effective execution of the AUKF algorithm. Therefore, it is crucial not to preprocess raw sensor data to ensure the accuracy and stability of data fusion results.



Finally, the AUKF algorithm proposed in this study for field mapping applications achieves high-precision positioning effectively. The relative error can be reduced to within 1.7%, and in cases with numerous data samples, the absolute error can be lowered to within 0.4 m. This precision surpasses the meter-level accuracy of civilian GPS technology and BeiDou satellite positioning. Compared to using professional mapping software and hardware, it significantly reduces costs. The complete process eliminates the need for preliminary work on process noise and hyperparameter tuning, enhancing application efficiency. The field positioning information and terrain features obtained in this study have practical significance in the digitalization of agriculture and the construction of digital twins. The content and methods of this paper can also be further explored in other application scenarios, making the implementation of theoretical methods highly necessary.




5. Conclusions


This AUKF algorithm enhances the positioning accuracy of portable terrain mapping equipment in field scenarios. Through analysis of experimental data distributions obtained from multiple computational rounds, we have arrived at the following conclusions:




	(1)

	
This research develops portable multi-sensor array sampling hardware and designed fixed-point sampling and extensive field sampling experiments. By collecting multi-sensor data and utilizing kinematic models and data fusion algorithms, we achieved three-dimensional coordinate positioning in the target mountainous orchard. This method can accurately display the main terrain features of the mountains and reliably acquire field positioning information.




	(2)

	
In addressing parameter optimization issues, this study introduces the ISMA, which is an enhancement of the SMA based on Good Point Set and Opposition-based Differential Evolution. It effectively improves the quality of the initial population and enhances global search capabilities. The optimization algorithm shows significant improvement in convergence speed and accuracy in finding optimal parameters. In the target mountainous orchard studied, setting 100 initial populations and 1000 iterations in the ISMA achieved optimal accuracy.




	(3)

	
This research proposes the AUKF algorithm, an adaptive parameter UKF algorithm, which establishes mutual feedback between the UKF algorithm and ISMA. In extensive continuous field positioning measurements, the AUKF algorithm achieved an average absolute error of 0.3857 m, reaching decimeter-level accuracy. The efficiency of the optimized parameters improved by 40.43% compared to before the improvement, maintaining excellent accuracy and higher efficiency than the traditional KF algorithms. This makes it well-suited for field spatial positioning applications.









This study, aimed at optimizing the positioning accuracy of the UKF algorithms, presents the AUKF algorithm as a new adaptive parameter scheme. It is applicable to different field scenarios and reduces the complex selection process of process noise and hyperparameters during the initialization of the UKF algorithm, making it both fast and precise. However, the AUKF algorithm can still be further researched and optimized. Finally, we suggest that future studies could explore a greater variety of parameter optimizations for the UKF algorithm, implementing more advanced algorithms in practical applications to achieve higher precision, greater efficiency, and more comprehensive spatial information acquisition.
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Figure 1. Technical route. 






Figure 1. Technical route.
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Figure 2. Aerial view of an experimental orchard. 
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Figure 3. The portable multi-sensor array sampling hardware. 
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Figure 4. Data collection procedure. 






Figure 4. Data collection procedure.
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Figure 5. Calculate the procedure of the AUKF algorithm. 






Figure 5. Calculate the procedure of the AUKF algorithm.



[image: Remotesensing 16 04248 g005]







[image: Remotesensing 16 04248 g006] 





Figure 6. The ISMA process flowchart. 
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Figure 7. Classical functions test results. 
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Figure 8. The simulation of initial population generation. 
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Figure 9. Opposition-based differential evolution reverse process flowchart. 
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Figure 10. Loss value assessment comparison after process noise adaptive optimization. 
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Figure 11. Loss value assessment comparison after global parameter adaptive optimization. 
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Figure 12. The AUKF algorithm initial performance test. 
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Figure 13. Time consumption of global parameters adaptive optimization. 
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Figure 14. Large-scale sampling interpolation modeling results. 
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Figure 15. Fixed-point precision test. 
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Table 1. The main performance index of the IMU module.






Table 1. The main performance index of the IMU module.





	Index Type
	Measurement





	Measurement dimension
	Acceleration (3D), angular velocity (3D),

magnetic field (3D), and air pressure (1D)



	Gyroscope Range
	±250/±500/±1000/±2000 dps



	Acceleration Range
	±2/±4/±8/±16 g



	Attitude Angle Accuracy
	X Axis: 0.05° in static, 0.1° in dynamic

Y Axis: 0.05° in static, 0.1° in dynamic

Z Axis: 0.5°



	Attitude Angle Range
	X Axis: ±180°

Y Axis: ±90°

Z Axis: ±180°



	Output Data
	Attitude angle, angular velocity, acceleration, magnetic field, atmospheric pressure, and altitude










 





Table 2. The main performance index of the laser-ranging module.






Table 2. The main performance index of the laser-ranging module.





	Index Type
	Measurement





	Distance Range
	0.3–12 m



	Measurement Accuracy
	±6 cm @ (0.3–6 m),

±1% @ (6–12 m)



	Range Resolution
	1 cm



	Half-Angle Reception
	1.15°










 





Table 3. The main performance index of the RTK module.






Table 3. The main performance index of the RTK module.





	Index Type
	Measurement





	Tracking Sensitivity
	−167 dBm



	Recapture Sensitivity
	−160 dBm



	Horizontal Precision

of Single-point Positioning
	1.5 m CEP



	Vertical Precision

of Single-point Positioning
	1.5 m CEP
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