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Abstract: In this work, we introduce the first pipeline that combines a refraction-aware structure
from motion (SfM) method with a deep learning model specifically designed for airborne bathymetry.
We accurately estimate the 3D positions of the submerged points by integrating refraction geometry
within the SfM optimization problem. This way, no refraction correction as post-processing is re-
quired. Experiments with simulated data that approach real-world capturing conditions demonstrate
that SfM with refraction correction is extremely accurate, with submillimeter errors. We integrate our
refraction-aware SfM within a deep learning framework that also takes into account radiometrical
information, developing a combined spectral and geometry-based approach, with further improve-
ments in accuracy and robustness to different seafloor types, both textured and textureless. We
conducted experiments with real-world data at two locations in the southern Mediterranean Sea, with
varying seafloor types, which demonstrate the benefits of refraction correction for the deep learning
framework. We made our refraction-aware SfM open source, providing researchers in airborne
bathymetry with a practical tool to apply SfM in shallow water areas.

Keywords: refraction-aware structure from motion; deep learning; shallow-water bathymetry;
drone imagery

1. Introduction

Shallow-water bathymetry is an active field of research with modern drone imagery-
based methods performing in unprecedented detail. Spectral and geometry-based ap-
proaches are the most common methodologies that are adopted in the literature and
sometimes are used in combination. Spectral approaches rely on the fact that light attenua-
tion in the water column depends on the light’s wavelength; therefore, an estimation of the
depth can be derived from ratios of different spectral bands [1–4].

Geometry-based approaches take advantage of multiview image geometry to produce
a 3D surface from corresponding points between successive images. Recent works have
shown that they can provide promising results in airborne bathymetry [5,6]. Furthermore,
geometry-based approaches are also particularly useful as an important complement to
spectral-based approaches, offering additional information, especially in seafloor areas with
rich texture [7–9], and they provide training data for several spectral-based approaches [10].
They are based on the basic principle that when a point is viewed from multiple views that
correspond to different drone positions, its 3D position can be recovered. Computationally,
this is achieved through structure from motion (SfM) and bundle adjustment [11,12] in an
optimization framework. However, since in airborne bathymetry, the camera positions are
in the air and the observed points are within the sea, the refraction phenomenon affects this
process and introduces inaccuracies in the estimation of the standard SfM technique, which
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has been designed with the assumption that all observed points are in the air, or more
generally, in a single homogeneous medium. Despite this fact, all previous approaches
are indeed applying standard SfM and in order to compensate for the introduced errors,
are adopting some form of “refraction correction” [5,10,13–15]. These corrections decrease
the introduced errors but cannot eliminate them completely, since important information
related to the real optical phenomenon has been lost in the process of applying the standard
SfM, which previous works use as a black box.

In this work, we fill this important gap by introducing a novel refraction-aware
SfM method specially designed for airborne bathymetry. Our method models the air–
water refractive surface by integrating the refraction geometry within the SfM optimization
problem. In this way, it directly yields accurate estimates of the 3D positions of the observed
points at the seafloor without requiring any refraction correction as post-processing. This
methodology is combined with a convolutional neural network (CNN) for a complete
pipeline that effectively manages to address the shallow bathymetry estimation problem
regardless of the seafloor type. The deep learning framework also takes into account
radiometrical information, developing a combined spectral and geometry-based approach.
Our experiments include refraction-aware SfM evaluations with simulated data, which
reveal that it is extremely accurate, leading to depth estimation errors that are smaller than
0.001 m as compared to a range of 0.22 m to 1.5 m (depending on water depth) achieved by
the standard SfM. To test our complete pipeline, we also conduct real-world experiments
in two different areas with different seafloor types, both textured and textureless.

1.1. State of the Art Review
1.1.1. Structure from Motion

Structure from motion (SfM) is a photogrammetric technique which is widely used
for deriving shallow bathymetry using optical sensors typically from satellite or aerial
imagery [16]. This technique produces a cloud of 3D points corresponding to points on
the seafloor based on point correspondences between consecutive overlapping images.
Successful SfM results require optimal environmental conditions during data acquisition
such as high water clarity, very low wave height, minimal breaking waves, and minimal
sunglint [5,8]. Recent works try to relax some of these requirements by creating video
composite images [9]. Additionally, SfM requires significant seafloor texture.

To perform multimedia photogrammetry, which means that the camera and the object
of interest are not in the same optical media, requires the extension of standard photogram-
metric imaging models. This is the case for the problems of underwater SfM and airborne
seafloor reconstruction. For the case of an airborne reconstruction of a shallow seafloor,
light refraction due to the air–water interface should be taken into account. The reconstruc-
tion error caused by refraction directly depends on the water depth and on the incidence
angles of the light rays and is significant for typical drone-based datasets. The main ap-
proaches in the literature for refraction correction are based on either machine learning or
geometric algorithms. Machine learning-based approaches are used to correct refraction
effects in the 3D reconstruction space [5] or in the image space [14,17]. On the other hand,
geometric approaches directly model the refraction effect to perform the reconstruction.
The main difficulty with these geometric approaches is that triangulation of submerged
points given stereo observations is theoretically not possible in the general case; exact
solutions can only be obtained for very few particular points [18]. Due to these limitations,
several approximation methods have been proposed. The method in [19] uses Snell’s law to
retriangulate the initially obtained 3D points given a flat and known water surface. In [20],
the camera intrinsic and extrinsic calibration parameters are computed using frames from
the onshore part of the dataset, while refraction is corrected according to the method in [19].
In [21], an improved triangulation algorithm is proposed for the case of non-intersecting
conjugate image rays. The method in [6] is also based on standard SfM to obtain an initial
point cloud and uses a simplifying approximation to calculate the refraction correction for
each point from each camera independently. More precisely, it assumes that the horizontal
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position of a point is not affected by refraction; thus, only the depth is corrected. The
average of these per-camera estimations is used, leading to inexact solutions. In the survey
in [22], the authors apply the refraction correction from [6] for reconstructing very shallow
areas (<2 m) without significantly improving the final bathymetry. Another work that
employs the method in [6] for refraction correction in riverine environments is presented
in [23]. The authors show a relative improvement in bathymetry estimation accuracy. In
the works of [24,25], geometric models to handle refraction in SfM by including it in the
bundle adjustment step are presented. By incorporating these models into standard SfM
pipelines, very accurate estimations can be achieved under certain basic assumptions of a
planar refractive interface and a constant refractive index. In the aforementioned works,
this is only demonstrated in laboratory conditions. In [26], the authors present a small case
study for applying these methods to airborne bathymetry without providing the details
of the implementation and the source code. They process images above land areas for
deriving camera intrinsic and extrinsic parameters, and then they use these parameters
as fixed when processing images from further offshore. In this work we provide an ac-
curate refraction-aware solution to the SfM problem, with integration in a deep learning
framework for airborne bathymetry and an open-source implementation.

1.1.2. Radiometry

The logarithmic band ratios approach introduced in [27] sets the standard for most
of the empirical satellite-derived bathymetry (SDB) methods. Recent methods typically
incorporate these features in a machine learning framework, showing promising results.
In [28–30], artificial neural networks on Landsat, IKONOS, and IKONOS-2 imagery are
applied with promising results for water depths reaching 20 m. In [31], the authors develop
a CNN tested on Sentinel-2 imagery, trained with sonar and LIDAR bathymetry.

A few recent studies apply the methods originally developed for satellite-derived
bathymetry on drone-based multispectral imagery. For instance, approaches in [7,8,32]
show good results with vertical errors that are less than half a meter. Accordingly, the
authors of [10] applied a deep learning methodology for extracting bathymetry by incor-
porating spectral and photogrammetric features of airborne imagery, while lately, in [15],
a refraction correction approach for spectrally derived bathymetry is proposed. In this
approach, Snell’s law is used to derive the depth correction given the SDB-derived depth. In
contrast, our method does not use any external depth estimations; it uses purely geometrical
techniques (SfM) to solve for the depth.

Typical constraints in most empirical SDB studies include the requirement for ground
truth depth measurements and the difficulty of handling heterogeneous seafloors. The
latter occurs particularly in shallow and relatively flat seafloor areas with mixed seafloor
types (e.g., sand, reefs, algae, seagrasses).

1.1.3. Deep Learning

Recent advancements in bathymetry have leveraged deep learning to improve accu-
racy and efficiency in mapping underwater topographies. Al Najar et al. [33], Benshila
et al. [34], and Chen et al. [35] have utilized deep learning for bathymetry estimation from
satellite and aerial imagery, with a focus on satellite-derived bathymetry and the integration
of physics-informed models in nearshore wave field reconstruction and bathymetry map-
ping. Lumban-Gaol et al. [31] and Mandlburger et al. [10] have applied convolutional neural
networks (CNNs) to multispectral images for bathymetric data extraction. Lumban-Gaol
et al. [31] utilized Sentinel-2 images in their CNN-based approach for coastal management,
while Mandlburger et al. [10] developed BathyNet, which combines photogrammetric and
radiometric methods for depth estimation from RGBC aerial images.

Addressing large-scale riverine bathymetry, Forghanioozroody et al. [36] and Ghor-
banidehno et al. [37] demonstrate the efficiency of deep learning over traditional methods.
They showcase the adaptability of deep learning techniques in varying environmental
conditions. Jordt et al.’s work on refractive 3D reconstruction [38] and Sonogashira et al.’s
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study on deep learning-based image super-resolution [39] further exemplify the applica-
bility of deep learning in accurately representing complex underwater landscapes and
reducing the need for extensive depth measurements.

Alevizos et al.’s work [7] aligns closely with the current work’s focus. The method
in [7] integrates standard SfM (ignoring refraction) outputs with drone image band ratios
into a CNN, achieving effective bathymetry prediction with significant accuracy. The study
demonstrates its capability for handling different seabed types. However, since refraction
is ignored, the performance of the method is severely impacted, as we demonstrate in
our experiments.

The aforementioned works underscore the role of deep learning in modern bathymetric
applications, revealing a trend towards more precise, data-driven, and efficient methods
for underwater mapping, essential for a range of marine and environmental purposes.

1.2. Contributions

In summary, our main contributions are the following:

• We implement a refraction-aware SfM (R-SfM) pipeline within the OpenSfM frame-
work. Refraction is taken into account in the bundle adjustment problem, leading
to very accurate solutions. We experimentally validate the pipeline using real and
simulated data.

• We demonstrate that a CNN pipeline that combines the R-SfM-provided geometric
information with radiometric information achieves accurate depth estimations. We
experimentally validate it on real-world data. Our pipeline is especially designed to
balance between R-SfM and radiometric-based estimations.

• We make the R-SfM and CNN source code open source (https://github.com/amakris/
R-SfM (accessed on 5 June 2024)). In addition, we make the data available upon
request for the benefit of the research community.

2. Materials and Methods

We solved the bathymetry estimation problem using a CNN-based pipeline, see
Figure 1. The employed CNN relied on SfM and radiometric features. The features were
extracted from a set of drone-acquired images, which provided the main input for our
system. For training, unmanned surface vehicle (USV)-based bathymetric measurements
were used. The trained CNN performed dense bathymetry estimation on the examined
region. In the following, we describe our system’s main components, i.e., the refraction-
aware SfM (R-SfM), the radiometric data processing, and the CNN model.
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model. The ground truth for CNN training is obtained using sonar measurements performed by the
USV. The CNN output is dense bathymetry.

2.1. Refraction-Aware Structure from Motion

SfM algorithms typically solve a bundle adjustment problem which is based on a
geometric scene model. In this section, we describe the employed SfM algorithm [40] and
the geometric model [41] that allows the handling of refractive interfaces (see Figure 2).
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Figure 2. (a) Concept sketch of the proposed refraction-aware structure from motion (R-SfM) method.
Our method estimates the true point locations (solid points) during the bundle adjustment stage
of SfM. This is in contrast to most other approaches, which first perform standard SfM, obtaining
wrong position estimations (rings), then attempting to correct them in post-processing. (b) Refraction
geometry. Point S is observed by E through a planar refractive interface with normal N. Point R is the
apparent position of S on the interface. Snell’s law determines the relationship between the angles a1
and a2.

Our SfM implementation follows the incremental SfM pipeline [42,43]. The input is
a set of drone-acquired images and their approximate poses extracted using GPS/IMU
sensors, and 3D coordinates and image locations of the ground control points (GCPs).

The first part of the method generates a set of point tracks in the images using feature
detection and matching. Keypoint detection is performed using the Hessian affine region
detector [44]. For feature descriptions, a histogram of oriented gradient-type descriptors
similar to SIFT is used [45].

The second part uses the tracks to estimate the 3D positions of the corresponding
points along with the camera’s intrinsic and extrinsic parameters. The reconstruction
starts with two images with a large intersection. Their respective poses and 3D points are
recovered through triangulation and are refined by bundle adjustment. Subsequently, new
images are added to the reconstructed scene sequentially by finding the camera pose that
minimizes the reprojection error of the already reconstructed 3D points to the new image
(resectioning). A local bundle adjustment is performed after each iteration to decrease
accumulated errors. A global bundle adjustment is conducted after a predefined number
of images have been added and also at the end of the reconstruction to refine all camera
poses and scene points.

The bundle adjustment consists of refining a set of initial camera parameters and 3D
point locations by minimizing the so-called reprojection error, i.e., the distance between the
image projections of the estimated 3D points and the detected image points. Let n be the
number of 3D points and m the number of images. Each camera j is parameterized by a
vector aj and each 3D point i by a vector bi. The minimization of the reprojection error can
thus be written as follows:
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mina,b

n

∑
i=1
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j=1

d
(
Q
(
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)
, xij

)2, (1)

where Q
(
aj, bi

)
is the projection of point i on image j and d denotes the Euclidean distance

between the image points.
To account for the effects of refraction, we consider it in the bundle adjustment algo-

rithm by locating the apparent position of the submerged points on the surface. Let a 3D
point be S observed by E through a planar refractive interface Pi with normal N. Let R be
the apparent position of S on the interface Pi. The refraction occurs on the plane Pr, which
is the plane perpendicular to the interface Pi that includes points E(ex, 0), S

(
sx, sy

)
, and

R
(
0, ry

)
. According to Snell’s law, the incident and refracted ray angles on Pr are given by

sina1 = rsina2, where r is the refraction ratio between the two media (see Figure 1). The
location of R is calculated by solving the following equation:

f
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y +
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r2 − e2

x

)
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y + 2e2
xsyry − e2

xs2
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where N = 1
r2 − 1.

Equation (2) has 4 solutions but only one lies on
[
0, sy

]
, which is the location of R.

The bundle adjustment problem can be solved in the presence of a refractive interface by
using (2) to calculate the apparent point on the interface R which corresponds to point S. R
is then projected in the image as in classical bundle adjustment [40].

2.2. Radiometric Data Processing

Structure from motion provides bathymetry only in areas with rich seafloor texture,
leaving areas with homogeneous seafloor unreconstructed. To complement it, we rely
on the empirical SDB method in [27], which employs the logarithmic band ratios from
multispectral data. The main concept of this approach is that light attenuation in the water
column is exponential for wavelengths in the visible spectrum. We follow an approach
similar to [7] in order to prepare the imagery for use with the CNN model.

2.3. Deep Learning Model

The deep learning model used in this work follows the design and architecture choices
described in Alevizos et al.’s work [7]. Specifically, the model is a convolutional neural
network (CNN) based on a stacked-hourglass [46] backbone. As shown in this work [7],
this model is robust in depth estimation from multi-channel images for shallow bathymetry,
since this type of model was specially designed to find dominant features in multi-channel
inputs. This architecture’s success has also been proven in other domains of depth acquisi-
tion, such as depth estimation for hands [47] and faces [48]. Moreover, the specific model
can be characterized as lightweight, with a relatively low number of parameters. Since the
use case of this work is similar to the one studied in [7], we chose the number of stacked
hourglass networks to be 6.

3. Results
3.1. Data Collection Platforms
3.1.1. Onshore Survey

Prior to the drone surveys, a set of ground control points (GCPs) were uniformly
distributed and measured along the coastline of each study area. The GCPs were measured
with a Global Navigation Satellite System Real-Time Kinematics (GNSS RTK) GPS [49] for
achieving high accuracy (±2 cm). This level of accuracy is crucial in drone surveys that
produce imagery with centimeter-scale spatial resolution, while the onboard GPS sensor
has a horizontal accuracy of approximately two meters. Thus, the GCPs are used for an
accurate orthorectification of the point clouds and 2D reflectance mosaics.
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3.1.2. Drone Platform

The drone platform comprises a commercial DJI Phantom 4 Pro drone equipped
with a 20 Megapixel RGB camera. The Phantom 4 Pro has a maximum flight time of
28 min and carries an on-board camera that shoots 4 k 60 frames/second videos. Drone
imagery was processed with SfM techniques for producing an initial bathymetric surface
(see the following section). The raw imagery values were converted to reflectance by
using a reference reflectance panel. The blue (B) and green (G) bands correspond to
shorter wavelengths (460 ± 40 nm and 525 ± 50 nm, respectively) and thus show deeper
penetration through the water column. The red (R) band corresponds to 590 ± 25 nm,
which is highly absorbed in the first 1–2 m of water depth but assists in emphasizing
extremely shallow areas.

3.1.3. USV Platform

The USV used is a remote-controlled platform mounted with an Ohmex BTX single-
beam sonar with an operating frequency of 235 kHz. The sonar is integrated with a mounted
RTK-GPS sensor, and it collects altitude-corrected bathymetry points at a 2 Hz sampling
rate. All USV data were collected on the same date as drone imagery to avoid temporal
changes in bathymetry. The RTK-GPS measurements provide high spatial accuracy, which
is essential in processing drone-based imagery with a pixel resolution of a few centimeters.

3.2. Dataset
3.2.1. Simulated DataSet

We generated a simulated dataset to thoroughly test our R-SfM method with complete
ground truth. The data consist of a point cloud representing the points of the seabed and
a set of camera poses. The 3D points are projected into each camera, taking into account
the refraction effect for those which are underwater. The point correspondences between
camera poses which are used during the reconstruction are considered known.

We generated three different simulated areas (see Table 1 and Figure 3). For the first
area (named GS), we used a simple ridge-shaped geometry to represent the seabed and
generated the drone trajectory over the area. Five different versions of this area were
produced with different maximum depths (0–20 m). For the other two areas (named RSA
and RSB), we used real data from actual surveys to extract the seabed and the drone
trajectory. Depth values provided by the USV were interpolated to generate these more
realistic setups. The drone trajectories were extracted from the GPS data.
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Table 1. Simulated dataset specification.

GS RSA RSB

Flight Altitude 50 m 50 m 120 m

Area 100 m × 100 m 200 m × 150 m 400 m × 200 m

Max Depth 0–20 m 3.5 m 5 m

3.2.2. Field Dataset

Real-world data were captured from two sites, Kalamaki and Plakias, both located on
the island of Crete, Greece (see Figure 4). The data consist of a set of UAV-acquired images
and USV-acquired depth measurements. Characteristic examples of the acquired UAV
images are shown in Figures 5 and 6. We opted for optimal shooting conditions in both
sites, i.e., high water clarity, minimal waves, and no sun glitter. The weather conditions
during the study period were typical for the area, with temperatures ranging between 30
and 35 degrees Celsius and humidity levels between 40% and 50%. The sea conditions for
conducting the field campaigns were ideal, with a Beaufort Wind Scale rating of 1 to 2. The
USV measurements are shown in Figure 7. In the Kalamaki area, 810 drone images (flight
altitude ~70 m) and 2145 depth measurements were acquired, while in the Plakias area,
440 UAV (flight altitude ~84 m) images and 1838 USV points were acquired. The maximum
depths of the Kalamaki and Plakias sites are 6 m and 4.5 m, respectively.
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Figure 4. Overview of the study areas, Kalamaki and Plakias. (a) The study areas are located in the
western and central parts of the island of Crete, Greece (red region). (b) Kalamaki beach is located
on the north shore (35◦30′50N, 23◦57′50E), while Plakias is on the south (35◦11′25N 24◦23′30E).
(c) Satellite imagery of Kalamaki. (d) Satellite imagery of Plakias. Source: Google Earth. The areas
highlighted with green in (c,d) correspond to the regions of interest that are used for training and
testing purposes by combining UAV and USV measurements.
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our method to obtain depth estimations, but only regions that contain USV measurements were used
for training and quantitative evaluation of the CNN.
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Considering that the tidal range on the island of Crete is a maximum ±0.2 m [50] and
drone data acquisition has a one-hour difference with USV data, we infer that the tidal
effect is completely negligible in the USV and drone data.

3.2.3. Error Metrics

In the following, we define the metrics that we use to evaluate the methods on the
datasets presented above. Given N ground truth-estimated point pairs (xi, yi), the root
mean square error (RMSE) and R2 metrics are defined as

RMSE =

√
SSR

N
(3)

R2 = 1 − SSR
SST

(4)

where
SSR = ∑i

(
xi − yi)

2

SST = ∑i

(
xi − x)2

with x as the mean of the ground truth points.

3.3. Deep Learning Model Training

The training procedure of the CNN consists of a data preprocessing step and the
training routine. The data preprocessing required constitutes the formulation of multi-
channel input tiles and their respective labeled output, which the network utilizes together.
The tiling procedure with the acquired data was followed for several reasons. Firstly, the
acquired depth measurements are not dense over the whole imaged area and therefore,
the training can only be performed in specific parts of the imaged area. The tiling allows
one to select only the annotated regions and exclude the rest. For the data preprocessing,
the training input was created from tiles of the acquired RGB data of size 128 × 128 pixels
that include four channels, three channels for the logarithmic band ratios (blue/green,
blue/red, and green/red) and one for the R-SfM surface. The labeled output tiles of the
training set consist of single-channeled 128 × 128 pixel tiles of interpolated USV depth
that depict the depth values of the respective input. In the case of R-SfM and USV data, a
thin-plate spline interpolation is applied within the region of each patch in order to fill each
pixel with usable data, since the original data are composed of sparse point measurements.
The training/testing sets were created by splitting randomly in a ratio of 60/40, while the
USV testing points neighboring less than 3 m from the training patches were discarded to
minimize the effect of spatial auto-correlation during testing.

The whole CNN framework was implemented in PyTorch v1.10.0 and the training
routine was formulated in 100 epochs. For optimizing the network, in each epoch, we
use the Adam optimizer [51] with a learning rate of 10−5 and batch size of eight patches.
In each epoch, the multi-channeled input traverses through the network. Each stacked
hourglass of the model provides a refined estimated version of the output depth. The
validity of the output of each stack is quantified with an error metric of the loss function
between the computed output and the defined ground truth USV-labeled depth. After
computing the loss, the network’s weights are updated using backpropagation.

3.4. Experimental Results

In this section, we present the experimental results for the methods proposed in the
paper. The results include validation of the R-SfM method using simulated and field data.
The CNN method is trained only on real data to prove the beneficial use of R-SfM data
acquired from our method over other acquisitions in real-world cases.
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3.4.1. Simulated Data

We thoroughly test our proposed R-SfM approach on the simulated datasets described
in the previous section. We compute the RMSE metric between the reconstructed and GT
point locations for all points (since their locations are known). Additionally, the RMSE
metric is computed for the estimated and GT camera locations.

The results demonstrate that in the case of simulated data with full observability, the
proposed R-SfM approach successfully reconstructs the scene in all simulated scenes with
very small errors (<1 × 10−5 m) (see Table 2). For the classical SfM, where refraction effects
are not considered, the errors range from 0.18 m to 0.35 m. The refraction influence on the
camera pose estimation for SfM negatively affects the overall quality of the reconstruction,
since this type of pose error is accumulated from frame to frame.

Table 2. RMSE of the reconstructed points for the 3 simulated scenes. GS05 contains depths of up to
5 m.

GS05 RSA RSB

SfM 0.22 m 0.35 m 0.18 m

R-SfM 7 × 10−9 m 5 × 10−5 m 7 × 10−5 m

To highlight the influence of water depth in the estimation, we generated five different
versions of the GS scene by placing the same slope in different depths. The maximum water
depths range from 0 m to 20 m, and the results are shown in Table 3. As is expected, the
encountered depths negatively influence the classical SfM method, and its reconstruction
error grows with increasing depth. The proposed R-SfM method is not influenced by the
water depths; the reconstruction errors are negligible for all tested depths. We should note
however that in reality, water depth influences the visibility of the seafloor; therefore, the
method can only be used in shallow water (depths 0–20 m).

Table 3. RMSE of the reconstructed points for the different maximum depths. GS00 contains depths
of (−5 m, 0 m), so no points are submerged in water; GS05 contains points with depths of (0 m,
5 m), etc.

GS00 GS05 GS10 GS15 GS20

Min/Max
Depth −5 m/0 m 0 m/5 m 5 m/10 m 10 m/15 m 15 m/20 m

SfM 7 × 10−9 m 0.22 m 0.36 m 1.37 m 1.54 m

R-SfM 7 × 10−9 m 5 × 10−5 m 1 × 10−5 m 3 × 10−5 m 5 × 10−5 m

3.4.2. Field Data

We evaluated the sparse SfM reconstructions using field data from the Kalamaki
dataset. The RMSE and R2 metrics are measured between the reconstructed points and
the GT data provided by the USV. The comparison is performed by locating the nearest
reconstruction point for each USV data point. If the distance between these two points on
the horizontal plane is below a threshold, it is set to 1 m, then the pair is considered for the
metrics calculations; otherwise, it is discarded. The results clearly demonstrate the benefits
of R-SfM over plain SfM. As shown in the graphs of Figure 8, SfM fails to reconstruct the
scene (RMSE = 2.71 m). Accumulated camera pose estimation errors lead to very high
reconstruction errors. Most of the reconstructed seabed points have depths outside the
ground truth point range. On the other hand, R-SfM successfully reconstructs the scene.
The RMSE in this real-world dataset is significant (RMSE = 0.75 m) compared to the error
of the simulated datasets. However, this is expected due to the inaccuracies in camera pose
initialization from the GPS and the noisy underwater measurements (point tracks).
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We compared R-SfM with the state-of-the-art method BathySFM of Dietrich et al. [6]
using the implementation provided by the authors. The method attempts to correct the
depths of the SfM-reconstructed 3D points. As discussed in the previous paragraph, in
our case, plain SfM fails to reconstruct the scene mainly due to accumulated camera pose
estimation errors. BathySfM relies on accurate camera pose estimations to perform the
depth correction. Therefore, using the same data we used to test our method, BathySfM
fails to correct the depth. On the contrary, when applied, the error slightly increases
(RMSE = 2.83 m). It is worth mentioning that apart from the aforementioned implementa-
tion of the method of Dietrich et al. [6], no other relevant work in the literature provides
the source code or the method’s software or is reproducible in some other way. This is
the reason why the comparison with the rest of the relevant methods in the literature is
performed in a qualitative conceptual manner.
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Figure 8. Sparse SfM (top)/R-SfM (bottom) estimations and corresponding scatter plots of test points
on the Kalamaki dataset (area highlighted in green in Figure 4c). The red points on the estimation
maps represent points with depth outside of the colormap range [−6 m, 0 m].

Many works show that deep learning/CNN methods achieve the best results in depth
estimation bathymetry through learning [7,33–35]. Since CNN-based approaches are very
sensitive to the data used for training [52,53], any significant change in the data will also
significantly change the desired accuracy of the results. Therefore, we can evaluate the
quality of our R-SfM method by employing the computed data in a CNN model.

The same can also be said when using traditional machine learning methods. Models
acquired from training support vector machines (SVMs) or random forests (RFs) trained on
different types of data can also show which data are more dominant for training. All of the
above scenarios are examined in the following subsections.

To fully assess the fidelity of the computed R-SfM, we performed a number of exper-
iments to show its beneficial use in CNN-based depth estimation scenarios. We trained
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the previously described stacked-hourglass CNN architecture on our multi-channeled
input using a combination of different cases. Specifically, we trained different models with
different RGB, SfM, and R-SfM input combinations.

In Table 4, we report the RMSE and R2 for each model when evaluated on the respective
test set. In Figures 9 and 10, we show the CED curves and scatter plots, while Figure 11a
shows the depth residuals. The first row containing the proposed R-SfM channel together
with RGB as input yields the best results, as expected. We can observe that RGB data play a
paramount role in estimation, yielding good results when utilized independently (row 3).
But when combined with SfM, we notice a deterioration in the results (row 2). This can be
justified as the SfM channel having many erroneous samples, as can be seen in Figure 8.
Therefore, when using SfM alone for training, we obtain the worst results (row 4), while
using R-SfM alone gives moderately good results (row 5), close to the ones obtained by
utilizing the RGB data only.

Table 4. Comparison with alternative CNN pipelines and sparse reconstructions: RMSE and R2 of
reconstructed points on the Kalamaki dataset for different channels. See also Figure 9 (CED curves)
and Figure 10 (scatter plots).

Method RMSE R2

CNN R-SfM and RGB 0.36 m 0.84

CNN SfM and RGB 0.70 m 0.23

CNN RGB only 0.59 m 0.56

SfM (intermediate sparse reconstruction) 2.71 m −6.44

R-SfM (intermediate sparse reconstruction) 0.75 m 0.48
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Figure 9. Cumulative error between the CNN model trained on RGB plus R-SfM, simple SfM, and
without any SfM (RGB only) on the Kalamaki dataset. The y-axis depicts the number of test points (in
percentage) that fall under the corresponding error in the x-axis.

To further prove the proposed R-SfM’s beneficial quality, we also trained an SVM
and an RF model with different channel combinations. The results are reported in Table 5.
Again, we can observe the performance gain achieved when using the proposed R-SfM
channel (rows 2, 3) instead of the SfM channel (rows 5, 6).
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Figure 10. CNN R-SfM and RGB, CNN simple SfM and RGB, and CNN RGB only estimations
and corresponding scatter plots of test points on the Kalamaki dataset (area highlighted in green in
Figure 4c).

Table 5. Comparison with traditional ML methods: RMSE and R2 of reconstructed points on the
Kalamaki dataset for various ML models and training channels.

Method RMSE R2

CNN RGB + R-SfM 0.36 m 0.84

SVM RGB + R-SfM 0.65 m 0.47

RF RGB + R-SfM 1.69 m −6.18

CNN RGB + SfM 0.70 m 0.23

SVM RGB + SfM 2.60 m −5.51

RF RGB + SfM 2.86 m −6.80

In addition to the single coast results, we performed an initial cross-coast evaluation
of our proposed method. We trained the CNN on the Kalamaki dataset and tested on the
Plakias dataset. These results are shown in Figures 11b and 12. We achieved an RMSE of
0.82 m and an R2 of 0.02. This level of accuracy, despite being far from perfect, indicates
that the method can operate in a novel site without the need for retraining on that site.
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Note however that the full exploitation of this capability would require data from multiple
sites for training.
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4. Discussion

We developed and experimentally validated R-SfM, a shallow-water sparse reconstruc-
tion approach that models refraction effects. Experiments with simulated data demonstrate
that R-SfM can be extremely accurate. A real-world validation of the method demonstrated
its clear superiority over plain SfM. However, the nature of the real-world data presented a
challenge for R-SfM as well, which can be seen from the much larger reconstruction errors
compared to the simulated data. Camera pose estimation errors, which accumulate in large
reconstruction areas, is the main cause for this discrepancy and we plan to address it in
future work.

In this work, we focus on the in-depth presentation of the proposed R-SfM method.
R-SfM tackles the refraction problem directly by design. Refraction equations are integrated
in the SfM pipeline, and the simulation results show that this approach can essentially
eliminate the refraction-related errors. This integrated approach is superior compared to
alternatives that first perform normal SfM and then geometrically correct the refraction-
induced errors such as the ones presented in [6,23]. This a posteriori correction is shown to
decrease the error but cannot eliminate it. Machine learning-based approaches [13,14] that
again perform a posteriori refraction correction also fail to eliminate the refraction-induced
errors. As future work, we plan to compare our method with these approaches using
appropriate field data.

To further evaluate the quality of the proposed R-SfM, we employed the resulting
R-SfM as a guiding role in a multi-channeled CNN framework to demonstrate its beneficial
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usage over other types of data, such as regular SfM and RGB information. Our experiments
revealed the superiority of the proposed R-SfM and showed that the best results are
achieved when R-SfM is combined with RGB data. The same pattern was observed when
these data were also used in other ML models, further verifying their benefit.

In future work, we will consider the acquisition of a much larger dataset including
multiple sites to account for the variability of the coastal areas. This will allow us to train a
CNN that will be able to perform in new sites without the need for retraining. Furthermore,
based on the statistics of this larger dataset, we plan to develop a methodology for realistic
synthetic dataset generation. The latter will provide ample data for CNN training, or even
for larger architectures such as vision transformers (ViTs) [54], resulting in more robust and
accurate predictions.
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