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Abstract: Expansions in the extent and infestation levels of exotic annual grass (EAG) within the
rangelands of the western United States are well documented. Land managers are tasked with
developing plans to limit EAG spread and prevent irreversible ecosystem deterioration. The most
common EAG species and the subject of extensive study is Bromus tectorum (cheatgrass). Cheatgrass
has spread rapidly in western rangelands since its initial invasion more than 100 years ago. Another
concerning aggressive EAG, Taeniatherum caput-medusae (medusahead), is also commonly found in
some of these areas. To control the spread of EAGs, researchers have investigated applying several
control methods during different developmental stages of cheatgrass and medusahead. These control
strategies require accurate maps of the timing and spatial patterns of the developmental stages
to apply mitigation strategies in the correct areas at the right time. In this study, we developed
annual phenological datasets for cheatgrass and medusahead with two objectives. The first objective
was to determine if cheatgrass and medusahead can be differentiated at 30 m resolution using their
phenological differences. The second objective was to establish an annual phenology metric regression
tree model used to map the growing seasons of cheatgrass and medusahead. Harmonized Landsat
and Sentinel-2 (HLS)-derived predicted weekly cloud-free 30 m normalized difference vegetation
index (NDVI) images were used to develop these metric maps. The result of this effort was maps that
identify the start and end of sustained growing season time for cheatgrass and medusahead at 30 m
for the Snake River Plain and Northern Basin and Range ecoregions. These phenological datasets also
identify the start and end-of-season NDVI values, along with maximum NDVI throughout the study
period. These metrics may be utilized to characterize annual growth patterns for cheatgrass and
medusahead. This approach can be utilized to plan time-sensitive control measures such as herbicide
applications or cattle grazing.

Keywords: cheatgrass; medusahead; BRTE; TACA8; phenology; growing season; start-of-season
time; maximum time; rangeland

1. Introduction

Expansions in the extent and infestation levels of exotic annual grass (EAG) within
the rangelands of the western United States are well documented. The most common
EAG species and the subject of extensive study is Bromus tectorum (cheatgrass) [1–10].
Cheatgrass has spread rapidly in western rangelands since its initial invasion more than
100 years ago [11]. Another aggressive EAG, Taeniatherum caput-medusae (medusahead), is
also commonly found in the western United States [12]. It has been known for decades
that medusahead can replace cheatgrass and other annual grasses and is an equal threat
in those areas with cheatgrass [13]. In addition, EAG species such as cheatgrass and
medusahead often have interspecific competitions in western U.S. rangelands. These EAG
species have been known to outcompete native shrubs (e.g., sagebrush (Artemisia spp.)) and
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grasses (e.g., bluebunch wheatgrass (Pseudoroegneria spicata) and Sandberg bluegrass (Poa se-
cunda)) and even displace wildlife (e.g., the greater sage-grouse (Centrocercus urophasianus))
in sagebrush ecosystems [7,14,15]. Land managers are tasked with developing strategy
plans to slow EAG spread and prevent irreversible ecosystem deterioration. Many studies
have focused their efforts on mapping cheatgrass [3,6,9,16–18] and medusahead distribu-
tions [12,17–20], providing important spatial information for management. In addition,
the phenological patterns associated with these EAG-occupied areas are important for
managing invaded ecosystems.

For EAG, phenology patterns can change year to year depending on seasonal tem-
peratures and precipitation [21]. Identifying when these changes occur for a location is
important for monitoring changes in biodiversity or degradation, and remote sensing
technology makes monitoring larger areas more feasible when considering costs and effort.
Areas dominated by native perennial species generally have longer growing seasons than
areas dominated by EAG species, and a change in phenological patterns after a disturbance
may signify the beginning of an invasion or change in the environment [22,23]. Applestein
and Germino [24] noted a positive correlation with cheatgrass and medusahead invasions
after fires in sagebrush ecosystems. The longer the period after a fire disturbance, the higher
the probability of cheatgrass invading followed by medusahead. Early identification of
these disturbed areas allows time for treatments to be planned and implemented to prevent
cheatgrass and medusahead from dominating the land cover. A better understanding of
EAG phenological patterns can help land managers plan effective treatments to limit the
spread of these invasive species.

Phenological timing is important for the management of these short-growing-season
grass species and can make a difference between unsuccessful and successful efforts [25,26].
Some management practices require time-sensitive application for successful eradication or
control. Rinella et al. [26] studied the effectiveness of herbicides for managing cheatgrass
and medusahead during distinct plant growth stages in California. Herbicide applications
were effective when the herbicide was applied during medusahead’s preheading stage,
which was also noted as the easiest time to differentiate medusahead from cheatgrass [26].
Other management actions included mowing or grazing to control spreading. Brownsey
et al. [25] studied the effects that mowing and grazing at different phenology stages had
on medusahead control. The results showed that grazing was only effective during the
livestock palatability stage defined as the “spike emergence, crude protein, and acid deter-
gent fiber” in the plant [25]. Furthermore, they identified the boot stage, which normally
lasts for 10 to 15 days, as the time in which EAG contains nutrients suitable for grazing and
impacts seed development [25]. Phenology products could inform management decisions
to use livestock for medusahead control during the boot stage.

As is common with winter annual grass species, the timing of the phenological stages
of cheatgrass and medusahead tends to vary from year to year. The difficulty in mapping
these species separately is due to their co-occurrence in moderate spatial resolution imagery,
similar spectral profiles, and distribution. Weisberg et al. [18] used an unoccupied aerial
vehicle (UAV) to map 2.78 ha intermixed with cheatgrass and medusahead. One of their
goals was to determine the spectral difference in cheatgrass and medusahead utilizing
visible reflectance and near-infrared. They found the visible reflectance was valuable in
discriminating the two species throughout their growing season, which provided accurate
classifications at a fine-scale resolution (2 cm). Weisberg et al. [18] were able to distinguish
cheatgrass and medusahead spectrally at fine resolution, but coarser resolution may be
difficult. Clinton et al. [27] were able to use MODIS 250 m normalized difference vegeta-
tion index (NDVI) 16-day composites to map cheatgrass abundance. Although Clinton
et al. [27] did not differentiate cheatgrass and medusahead, they showed it was possible
to map cheatgrass at a coarser resolution. Because medusahead generally matures later
than cheatgrass, it may be possible to identify each species using their phenological charac-
teristics [18,24]. Hironaka [13] noted medusahead matured 2 to 3 weeks after cheatgrass
matured in Gem County, Idaho. Capturing the different growing seasons of cheatgrass
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and medusahead may require moderate- to high-temporal-resolution remotely sensed
products. One product that fulfills the temporal resolution is weekly (7-day) NDVI com-
posites derived from Harmonized Landsat Sentinel-2 (HLS) instruments [28]. NDVI is
one of the most widely used vegetation indices for phenology based on its availability
and ability to monitor greenness and vegetation health [29]. Qin et al. [29] compared leaf
area index (LAI) to multiple indices used for extracting phenology; a few of these indices
are NDVI, enhanced vegetation index (EVI), and normalized difference phenology index
(NDPI). LAI has been closely related to photosynthetic activity, which can be comparable
to phenology [29]. NDPI and NDVI were in the top three indices correlated to LAI in both
Landsat 8 and Sentinel comparisons, suggesting them to be good indices for extracting
phenology. Additionally, HLS weekly NDVI has been proven effective for monitoring
the distribution of cheatgrass and medusahead [6,10,17,30]. Therefore, the temporal and
spatial resolution of HLS NDVI may differentiate cheatgrass’s and medusahead’s growing
season differences.

This work has two research objectives to improve understanding and develop spatially
and temporally extensive geospatial products for managing EAG species. The first objective
was to determine if extracted phenological signals of cheatgrass and medusahead can
be differentiated at 30 m resolution. The second objective was to establish an annual
phenology metric regression tree model and map the growing season of cheatgrass and
medusahead. This research promotes the innovations of new datasets to help increase the
scientific knowledge of the spatial distribution of cheatgrass and medusahead phenological
characteristics. Land managers and researchers may use these metrics to identify annual
growth patterns of cheatgrass and medusahead. These products can be utilized to plan time-
sensitive control measures such as herbicide applications or cattle grazing for maximum
nutrition content and EAG control.

2. Materials and Methods
2.1. Study Area

The Snake River Plain (SRP) and the Northern Basin and Range (NBR) ecoregions [31]
were selected as the study area due to the prevalence of cheatgrass and medusahead
according to their respective historical fractional cover from U.S. Geological Survey (USGS)
estimates [30]. The SRP and NBR (Figure 1) are located in the level II Commission for
Environmental Cooperation (CEC) Cold Desert ecoregion based on their environmental
characteristics [31]. From Parameter-elevation Regressions on Independent Slopes Model
(PRISM) data for 2016 through 2021, SRP and NBR experienced a monthly average of
34 mm and 37 mm precipitation during the germination months (October through March),
respectively [32]. Temperature for germination months ranges from an average minimum
of −3.9 Celsius (◦C) to an average maximum of 7.2 ◦C [32]. There was an average of
3 million hectares of cheatgrass and 12 thousand hectares of medusahead in the SRP and
NBR based on cover estimates between 2017 and 2021 based on pixels estimated to contain
at least 20% cover [20].

Elevation in the study area ranges from 630 m to 3303 m above sea level based on
the digital elevation model (DEM) [33]; however, we masked out elevations above 2350 m
because of a lack of model training data above this threshold (Figure 1). Furthermore, we
masked areas not classified as shrub or grassland by the 2019 National Land Cover Database
(NLCD) [9,17,21,34]. These restrictions provide sufficient indications of cheatgrass and
medusahead phenology derived from NDVI values.



Remote Sens. 2024, 16, 4258 4 of 21Remote Sens. 2024, 16, x FOR PEER REVIEW 4 of 22 
 

 

 
Figure 1. Study area boundaries of Snake River Plain and Northern Basin and Range ecoregions 
within the exotic annual grass (EAG) study area of western U.S. rangelands. The masked-out areas 
(white/hollow) within the ecoregion are elevations greater than 2350 m or areas not classified as 
shrub or grassland by the 2019 National Land Cover Database. 
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m NDVI datasets were used to develop training data of cheatgrass and medusahead sus-
tained growth [17]. For more information on the development of HLS-based weekly 
cloud-free NDVI composites, refer to Dahal et al. [17]. More than 298,000 scenes from HLS 
(v. 2.0) with 2–3-day temporal resolution were used to create the weekly (7-day) cloud-
free composites for 2016–2021. Utilization of machine learning enabled the development 
of quality cloud-free NDVI composites with a strong correlation coefficient between pre-
dicted and measured NDVI (r = 0.79–0.95 for 2017–2021, r = 0.47 for 2016 due to fewer HLS 
scenes) [17]. Weekly NDVI composites at 30 m resolution were used in this study because 
they provide sufficiently fine temporal frequency and cloud-free imagery to study pheno-
logical differences in short-lived cheatgrass and medusahead grass species. The weekly 
composite values formed a continuous 52-week NDVI profile to describe the growth of 
cheatgrass and medusahead over an annual phenological cycle (Figure 2). The phenology 
metrics in Figure 2 describe the detectable greenness based on NDVI time series. These 
metrics describe when cheatgrass or medusahead green up, how long they stay green, and 
when maximum greenness occurs. The resulting dynamic variables used in the model 
were 33 weeks of NDVI values (i.e., week 48 NDVI values from the previous year through 
week 28 NDVI of the targeted year). These weeks were determined to capture the in-
tended growing season time frame for cheatgrass and medusahead [21]. 

Figure 1. Study area boundaries of Snake River Plain and Northern Basin and Range ecoregions
within the exotic annual grass (EAG) study area of western U.S. rangelands. The masked-out areas
(white/hollow) within the ecoregion are elevations greater than 2350 m or areas not classified as
shrub or grassland by the 2019 National Land Cover Database.

2.2. Data

Identifying phenology characteristics from an NDVI time series requires appropriate
spatiotemporal resolution to identify sustained growth. HLS-based cloud-free weekly
30 m NDVI datasets were used to develop training data of cheatgrass and medusahead
sustained growth [17]. For more information on the development of HLS-based weekly
cloud-free NDVI composites, refer to Dahal et al. [17]. More than 298,000 scenes from HLS
(v. 2.0) with 2–3-day temporal resolution were used to create the weekly (7-day) cloud-free
composites for 2016–2021. Utilization of machine learning enabled the development of
quality cloud-free NDVI composites with a strong correlation coefficient between predicted
and measured NDVI (r = 0.79–0.95 for 2017–2021, r = 0.47 for 2016 due to fewer HLS
scenes) [17]. Weekly NDVI composites at 30 m resolution were used in this study because
they provide sufficiently fine temporal frequency and cloud-free imagery to study pheno-
logical differences in short-lived cheatgrass and medusahead grass species. The weekly
composite values formed a continuous 52-week NDVI profile to describe the growth of
cheatgrass and medusahead over an annual phenological cycle (Figure 2). The phenology
metrics in Figure 2 describe the detectable greenness based on NDVI time series. These
metrics describe when cheatgrass or medusahead green up, how long they stay green, and
when maximum greenness occurs. The resulting dynamic variables used in the model
were 33 weeks of NDVI values (i.e., week 48 NDVI values from the previous year through
week 28 NDVI of the targeted year). These weeks were determined to capture the intended
growing season time frame for cheatgrass and medusahead [21].

Static variables that were used as inputs in the cheatgrass and medusahead phe-
nology model included digital elevation model (DEM) data from the National Elevation
Dataset [33] and derivative products of slope and aspect. Additionally, potential annual
incident direct radiation (PADR) was also used as a variable to develop the models [35].
Another set of static variables included the properties of the topsoil, which includes soil
organic matter, available water capacity, clay, silt, and sand content [17,36]. Finally, we
included 30-year climate normals of annual and winter normals for precipitation, maximum
temperature, and minimum temperature from 1988 through 2023 from Daymet [20,37]. The
total set of predictor variables included 15 static variables and 33 dynamic NDVI variables.
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Figure 2. Phenology metrics indicated on a 52-week normalized difference vegetation index (NDVI)
time-series curve.

2.3. Developing Training and Test Data

The methods consisted of a three-step process. We first identified a set of points to
derive an HLS NDVI time series based on a high probability of cheatgrass and medusahead
cover. Second, we extracted the phenological metrics used for training the models by
applying a decision tree processing technique on the NDVI time series. Finally, we utilized
automated machine learning techniques to derive phenological models that were used to
develop maps for the entire study area per 30 m pixel.

Training and test data for this study were extracted from the HLS NDVI time series
and driven by historical annual fractional cover maps of cheatgrass and medusahead that
are released via the USGS Rangeland Exotic Plant Monitoring System team [20]. We used a
stratified sampling technique to extract random pixels with a high probability of at least
20% individual cover of cheatgrass or medusahead (Figure 3a) [5,27]. To improve the
certainty of the high-probability areas, we eliminated clusters of pixels with less than five
high-probability pixels within a 3 × 3 cell moving majority window [10] and used the pixels
that intersected these two restrictions. The selected pixels were further restricted based
on the co-occurrence of cheatgrass and medusahead to create more species-pure training.
Specifically, we required pixels to contain at least 50% more relative cover of one species
than the other (e.g., a site with 25% cheatgrass and 20% medusahead would not be selected,
but a site with 25% cheatgrass and 5% medusahead would) [38]. In 2022, medusahead did
not exceed 50% more relative cover than cheatgrass in the same pixels, so random samples
were taken within pixels with at least 15% cover instead of 20%. The pixels were further
filtered using the confidence layer associated with the cheatgrass and medusahead cover
maps (ranging from 0 to 10, with higher values indicating more confidence in the percent
cover prediction [17]). Confidence values greater than 0 were required for medusahead
and greater than 9 were required for cheatgrass; due to data availability, cheatgrass had a
higher confidence restriction. NDVI values were processed to 8-bit unsigned scaled NDVI
(scNDVI) values from Equation (1):

scNDVI = ((ρNIR − ρred)/(ρNIR + ρred) × 100) + 100. (1)

The phenology metric processing approach used in this study was developed based
on an NDVI threshold approach [39–41]. The threshold approach identifies a specific NDVI
value that signifies when the growing season occurs within an NDVI time series [42]. The
NDVI threshold was calculated twice. Figure 3a shows the first calculation of the threshold
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used to develop an initial assessment using the stratified samples to determine ideal phe-
nological profiles and eliminate impractical NDVI time series. Figure 3c shows the second
calculation for determining the final NDVI threshold used to evaluate the NDVI time series
for training models. To capture the NDVI threshold, 10% of the maximum unscaled NDVI
value within the growing season (up to week 30) was added to the minimum unscaled
value (up to week 24) to determine an acceptable start of sustained increasing NDVI and
a sustained decrease in value [39–41]. The first calculation for the NDVI threshold was
averaged for all random profiles extracted (~150,000 pixels). The final NDVI threshold
(126 scNDVI) used to extract training data was developed from accepted profiles after
utilizing the first calculated threshold (Figure 3c).

Once the NDVI threshold was determined, it was utilized in the phenology metric anal-
ysis. We used decision tree analysis to extract phenology metrics from the ~150,000 stratified
random NDVI time series (Figure 3c). First, start-of-season time (SOST) and start-of-season
NDVI (SOSN) were found by analyzing when the weekly NDVI time series reached the
threshold and if the following five weeks had a consistent increase in NDVI. Next, the
end-of-season time (EOST) and end-of-season NDVI (EOSN) were determined based on a
steady decrease towards the NDVI threshold. If the NDVI threshold was not reached by
week 25, EOST and EOSN were set based on week 25 NDVI values. Week 25 was selected
as a training data limit because the climate may be too warm and dry for these species to
continue growth past the third week of June [9,43]. Lastly, the maximum time (MAXT) and
maximum NDVI (MAXN) were identified within the weekly time series between SOST
and EOST. If all values were less than the NDVI threshold, or the profile did not show
consistently increasing NDVI values, the pixels were rejected. The accepted profiles from
the decision tree analysis were further curated to profiles with at most a MAXN of 172.
The MAXN of 172 was chosen based on the maximum MAXN used in the EAG phenology
training data to remove pixels that were least likely cheatgrass or medusahead [21]. The
remaining accepted profiles were utilized as training data to represent sustained growth
for respective high-probability cheatgrass and medusahead cover.

The decision tree rules were tested among the accepted 6591 NDVI profiles that were
used to train EAG phenology models from Benedict et al. [21] (Figure 3b). The EAG
phenology training data were utilized to test how well the decision tree analysis extracted
phenology metrics based on the manually extracted metrics from Benedict et al.’s [21]
methodology. We evaluated for a high correlation in Pearson’s r and a low error in mean
absolute error (MAE) to verify if the decision tree rules matched the results.
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Figure 3. Phenology method flowchart. This flowchart is the overview of capturing the phenology
training data for cheatgrass (BRTE [44]) and medusahead (TACA8 [44]). (a) The methods for extracting
high probability BRTE and TACA8 pixels, (b) the decision tree analysis development using exotic
annual grass (EAG) training data from Benedict et al. [21], (c) developing the training data, and
(d) developing the phenology model.
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2.4. Modeling Phenology

Utilizing machine learning techniques, Python scikit-learn [45], and XGBoost software
(version 2.0.3) libraries [46], we created an ensemble of five regression tree models with
a multi-regressor output for SOST, MAXT, and EOST (Figure 3d). XGBoost’s early stop
approach based on MAE was used for the calibration of the models. The classification
determined pixel-by-pixel values and was not influenced by surrounding pixels. Further-
more, the final estimated maps were the median values of the five regression tree model
iterations (Figure 3d). The model was trained on 2017–2021 data and was then applied to
2022 variables and NDVI datasets to develop an annual map that estimates cheatgrass and
medusahead phenological patterns.

Using the estimated SOST, MAXT, and EOST, a pixel-drilling method was developed
to extract the remaining phenology metrics (i.e., SOSN, EOSN, MAXN, duration (DUR),
and amplitude (AMP)) based on the individual pixel’s NDVI raster (Figure 3d). The
pixel-drilling method extracted the actual NDVI values per pixel’s NDVI time series at
its associated temporal metric for SOSN and EOSN. MAXN was extracted as the relative
maximum NDVI between SOST and EOST in the NDVI time series. This was developed
to improve the previous EAG phenology model (developed by Benedict et al. [21]) to
minimize errors for values that can be extracted from their respective NDVI profiles using
the model-estimated temporal metrics.

A five-fold cross-validation approach was applied to calculate accuracy and error
within the estimated temporal metrics. Each model was run five times with a unique
subset of 20% of the training data withheld as validation, resulting in five cross-validations.
Therefore, each data point was used once to test a model and four times to train a model.
The final map represents the median values of the five mapped iterations. The final maps
were then evaluated using 20% withheld from the original set of training data for testing,
data that were not included in model development for cheatgrass or medusahead (Figure 3d
labeled as “20% held for testing”). Pearson’s correlation coefficient (r) was used to evaluate
how the observed values compared to the estimated values, where a high r value would
indicate a highly correlated model. To test the model’s accuracy, we calculated the MAE
using Equation (2) and then normalized the root mean square error (RMSE) (Equation (3)):

MAE =
1
N ∑N

i=1 |yi − ŷi| , (2)

RMSE =

√
1
N ∑N

i=1(yi − ŷi)
2. (3)

where yirepresents the ith measured value and ŷi represents the ith predicted or estimated
value. Lower MAE indicated better model fit. To normalize RMSE (hereafter relative root
mean square error (RRMSE) (%)), we divided Equation (3) by the measured average and
multiplied by 100 to determine how good of a fit the model was compared to the measured
values [47,48]. The standard interpretation was that a model with excellent fit would have
an RRMSE of <10%; for a good fit, 10% < RRMSE < 20%; fair, 20% < RRMSE < 30%; and a
poor model would have RRMSE > 30% [47–49]. The Mann–Whitney U-test was used to
test for significant differences between cheatgrass and medusahead due to non-parametric
testing and results from the Shapiro–Wilk test showing a non-normal distribution. The rank-
biserial correlation was used to calculate the effect size of the Mann–Whitney U-test [50].
Rank-biserial correlations represented proportions of medusahead and cheatgrass, and
values ranged from −1 to 1. A value of 0 indicates that cheatgrass and medusahead were
present in equal proportions, a value of −1 indicates complete coverage by medusahead,
and a value of 1 indicates complete coverage by cheatgrass [50].
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3. Results
3.1. Phenology Decision Tree Analysis

The application of the decision tree rules to the EAG phenology training data (6591 NDVI
profiles in Figure 3b) resulted in the acceptance of 94% (6191 points) of the training data
used for the EAG phenology model from Benedict et al. [51]. Table 1 shows the correlation
and MAE from comparing the phenology decision tree output and the EAG training data.
Overall, there was a high correlation for each metric. The EOST metric had the lowest
correlation (0.89) and the highest MAE within the temporal metrics, although the MAE
was still less than 1 week. The EOSN had the largest error for NDVI metrics (MAE = 1.79
scNDVI values) and the second lowest correlation coefficient (0.93) [21].

Table 1. Pearson’s r correlation and mean absolute error (MAE) for phenology decision tree analysis
validation using the 6591 training data points used in building the exotic annual grass phenology
model [21]. MAE units for start-of-season time (SOST), end-of-season time (EOST), and maximum
time (MAXT) are based on weeks. MAE units for start-of-season NDVI (SOSN), end-of-season NDVI
(EOSN), and maximum NDVI (MAXN) are based on scaled NDVI values.

SOST SOSN EOST EOSN MAXT MAXN

Pearson’s r 0.96 0.94 0.89 0.93 0.99 1.00
MAE 0.39 0.65 0.92 1.79 0.08 0.03

3.2. Phenology Training Data

Quality training data are crucial for developing useful models, and understanding the
training data is helpful in managing expectations and understanding data characteristics.
While evaluating the training data, some relations were identified in the SOST and MAXT
between cheatgrass and medusahead. In Figure 4, the boxplots show the distributions of
the training data for years 2017–2021 with a median SOST for medusahead equal to week
17 and cheatgrass equal to week 12. The MAXT had a smaller difference as medusahead
reached its maximum NDVI three weeks after cheatgrass on average. Although the yearly
median SOST changes from year to year for both medusahead and cheatgrass, we observed
a phenological lag every year where medusahead SOST occurs after the cheatgrass SOST,
consistent with expectations from the literature. In 2021, there was more overlap in the
SOST, where the first quartiles of cheatgrass and medusahead were equal. The 2021 medians
also were the latest SOST for cheatgrass and earliest SOST for medusahead. Knowing this,
we would expect 2021 phenology metrics to begin earlier for medusahead when compared
to previous years as seen in Figure 5.
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Figure 4. Box and whisker plots comparing training data for start-of-season time (SOST) (a) and
maximum time (MAXT) (b) metrics for cheatgrass (BRTE [44]) and medusahead (TACA8 [44]) based
on pixels with at least 20% cover.
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Figure 5. Training data median values per year and combined years for cheatgrass (BRTE [44]) and
medusahead (TACA8 [44]) start-of-season time (SOST), end-of-season time (EOST), and maximum
time (MAXT) based on pixels with at least 20% cover.

Comparing medians between cheatgrass and medusahead, there seems to be a differ-
ence in the extracted NDVI profiles. Both species profiles were subject to the same NDVI
threshold and the same phenology assessments, resulting in divergence between species.

3.3. Model Results

The five-fold cross-validation results for both species were calculated using the median
between the five modeling iterations. Overall, observed and estimated weeks of medusa-
head SOST and MAXT were highly correlated and had low MAE, whereas correlations
between observed and estimated weeks of medusahead EOST were relatively high but
were the lowest of all regression models. As shown in Figure 6, there are some deviations
from the 1:1 line, but most closely followed the observed-equals-estimated relation. Cheat-
grass models used 31,281 data points, and models for medusahead included 14,798 data
points, which may have contributed to the lower Pearson’s r values for the EOST model
for medusahead. The SOST and EOST values for the medusahead (Figure 6d,e) model
occurred later in the season and had a smaller range compared to SOST and EOST values
for cheatgrass (Figure 6a,b). The medusahead model showed a better accuracy than the
cheatgrass model with MAE less than a quarter of a week off for temporal metrics, whereas
cheatgrass MAXT and EOST MAE were more than a third of a week off.

The cross-validation statistics are important for estimating temporal metrics, but
the maps must match expected patterns to be useful. We inspected the model-estimated
outputs using the residual 20% phenology profiles that were not used in the model training
(Figure 3d “20% held for test”). These points validated cheatgrass and medusahead
maps for areas with at least 20% cheatgrass and 20% medusahead cover, respectively.
Pixels with at least 20% cover of cheatgrass showed a high correlation (r > 0.85) for each
year’s phenological metrics when comparing the phenology decision tree results with the
modeled results (Table 2). Given fewer samples for modeling compared to cheatgrass, the
medusahead regression tree did well at estimating phenological metrics relative to the
phenology decision tree results. EOST had the lowest correlation with an average Pearson’s
r of 0.73 (R2 = 0.53). Extracting the results from the medusahead estimations and comparing
them to the 20% withheld from the model (Table 2) revealed that the maps had a high
correlation with the temporal metrics and maintained a strong relation with NDVI metrics.
Table A1 displays each year’s estimated phenology compared to the decision tree analysis.
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Figure 6. Phenology model cross-validation scatter plots for cheatgrass (a–c) and medusahead (d–f)
based on five-fold cross-validation using median Pearson’s r (r) and mean absolute error (MAE).
Model-estimated start-of-season time (SOST) (a,d), end-of-season time (EOST) (b,e), and maximum
time (MAXT) (c,f). The black lines are the 1:1 lines, and the dark blue lines represent the linear
regression between estimated and observed weeks. The number of samples for cheatgrass (a–c) was
31,281 samples, and medusahead (d–f) had 14,798 samples.

Table 2. Cheatgrass (BRTE [44]) and medusahead (TACA8 [44]) estimated phenology metrics com-
pared to decision-tree-produced phenology. The estimated phenology metrics compared are as
follows: start-of-season time (SOST), start-of-season NDVI (SOSN), end-of-season time (EOST), end-
of-season NDVI (EOSN), maximum time (MAXT), and maximum NDVI (MAXN). The comparison
statistical results are the five-year average (2017–2021) coefficient of determination (R2), Pearson’s r
(r), mean absolute error (MAE), and relative root mean square error (RRMSE). The number of samples
for cheatgrass was 7813, and medusahead had 3693 total points.

SOST SOSN EOST EOSN MAXT MAXN
BRTE TACA8 BRTE TACA8 BRTE TACA8 BRTE TACA8 BRTE TACA8 BRTE TACA8

2017–
2021

R2 0.95 0.97 0.91 0.91 0.84 0.53 0.93 0.86 0.87 0.88 1.00 1.00
r 0.98 0.98 0.95 0.95 0.92 0.73 0.97 0.93 0.94 0.94 1.00 1.00

MAE 0.19 0.11 0.22 0.11 0.44 0.29 0.69 0.56 0.37 0.23 0.00 0.00
RRMSE 4.73 2.82 0.56 0.35 3.75 3.43 1.40 1.36 3.26 2.32 0.02 0.05

The estimated phenology maps were trained on cheatgrass- and medusahead-dominated
areas but mapped across all vegetation types in the SRP and NBR. We evaluated 48 predictor
variables for the cheatgrass models and the medusahead models, and the top variables were
noted as most influential across the model tree in Figure 7. The SOST for cheatgrass was
driven greatly by week 14 NDVI values and medusahead by week 15 NDVI. Changes in
those top influential drivers can impact the SOST values by an increase or decrease in NDVI
values. The remainder of the variables had lower relative driver factors but collectively
influenced the outcome. EOST showed more variance in usage throughout all predictor
variables, which is why the “Other” category has a larger percentage than its counterparts
in Figure 6. This showed the difficulty in identifying EOST with active vegetation present
and not being able to rely on a few NDVI variables.
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Figure 7. Top five features within cheatgrass (a) and medusahead (b) phenology models for start-
of-season time (SOST), maximum time (MAXT), and end-of-season time (EOST). Week of year is
represented with “Wk” followed by the week number, and the percentage used within the model.
The “Other” variable is the sum of the remaining variables that were used less than the top five
labeled here.

The phenology metric maps displayed the differences between the start of sustained
active growth of cheatgrass and medusahead throughout the entire study area. Figure 8
illustrates the final estimated maps throughout the six years mapped. Pixels labeled with
at least 1% medusahead more than doubled in 2022 compared to previous years, with a
majority of the increase between 1% and 5% cover [20]. An earlier SOST for cheatgrass
(SOST less than week 12) and medusahead (SOST less than week 14) was noticed in lower-
elevation areas in the SRP ecoregion. These earlier SOST areas also spatially aligned with
areas of at least 15% cheatgrass or 5% medusahead cover in the six-year (2017–2022) average.
Figure A1 illustrates the annual cover for cheatgrass (Figure A1a–f) and medusahead
(Figure A1g–l). Phenology results for 2022 SOST (Figures 8f and 8l, respectively) and
MAXT captured similar growing season lag for medusahead’s phenology compared to
cheatgrass’s in the previous years. Data for 2022 maps were not used to train phenology
models, so identifying similar latency patterns in SOST and MAXT with pixels of at least
15% cover shows some robustness in these models. These models continued to show
robustness by differentiating cheatgrass and medusahead phenology based on the same
NDVI time series unseen by the models.



Remote Sens. 2024, 16, 4258 13 of 21
Remote Sens. 2024, 16, x FOR PEER REVIEW 14 of 22 
 

 

 
Figure 8. Cheatgrass start-of-season time (SOST) for 2017–2022 (a–f, respectively) and medusahead 
SOST for 2017–2022 (g–l, respectively). The grey masked pixels represent areas where medusahead 
or cheatgrass cover is estimated at less than 1% for the respective year or is outside of the study area. 

Figure 8. Cheatgrass start-of-season time (SOST) for 2017–2022 (a–f, respectively) and medusahead
SOST for 2017–2022 (g–l, respectively). The grey masked pixels represent areas where medusahead
or cheatgrass cover is estimated at less than 1% for the respective year or is outside of the study area.

Using the stratified pixels described in Section 2.3 and Figure 3a, we extracted the
values from the phenology maps for comparison (104,963 points for cheatgrass and
52,070 points for medusahead). Figure 9 shows the estimated values of medusahead
SOST for the years 2017–2022, which had an average difference of +2.7 weeks compared to
cheatgrass. The MAXT showed a closer difference between medusahead and cheatgrass
with an average of 2 weeks from 2017 to 2022. The Figure 9 distribution showed similar
ranges to those shown by training data in Figure 4. The estimated data values’ interquar-
tile ranges increased in Figure 9, capturing more variety within the larger sample size
for medusahead’s MAXT, displaying the delayed greenness as compared to cheatgrass.
Figure 9 captures the annual SOST and MAXT differences for cheatgrass and medusahead
and shows a reduction in differences throughout the years. Based on the NDVI profiles
for pixels with 20% cover, the annual NDVI values are also decreasing with the species.
We found that the extracted average week 14 and week 15 NDVI also had these similar
differences between cheatgrass and medusahead. In Figure 9, the reduction in the difference
between medusahead and cheatgrass was noticed for SOST and MAXT throughout the
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years because of the decrease in NDVI values for these models’ most important drivers
(week 14 and week 15 NDVI (Figure 7)). Training data values for 2021 (Figure 3) showed
similar temporal patterns and ranges for cheatgrass and medusahead, but medusahead’s
delayed greenness compared to cheatgrass was still captured in the maps (Figure 8). Cap-
turing these different growing patterns was important because this was a notable difference
between cheatgrass and medusahead phenological patterns. The models were able to an-
nually capture the delayed latent growing seasons of medusahead compared to cheatgrass
while using the same NDVI datasets for both species’ models.
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Figure 9. Comparison between the start-of-season time (SOST) (a) and maximum time (MAXT)
(b) phenology maps for cheatgrass (BRTE [44]) and medusahead (TACA8 [44]) with at least 20%
cover from stratified sampling except for 2022. In 2022, medusahead did not exceed 50% more cover
than cheatgrass in the same pixels, so random samples were taken within pixels with at least 15%
cover. Cheatgrass SOST and MAXT extracted from 104,963 points and medusahead SOST and MAXT
extracted from 52,070 points total.

Comparing cheatgrass and medusahead phenology metrics’ median values, the com-
bined years showed all temporal metrics for medusahead had a significantly later seasonal
pattern than cheatgrass (Table A2). Some of the individual years were not as strongly
significant with a rank-biserial correlation of closer to 0 than −0.4. The overall largest
significant difference was found for MAXT, where the combined years had an effect size of
70% of medusahead values being larger than cheatgrass.

Figure 10 violin plots show the variance distribution of the NDVI values for SOSN
and MAXN around the median values. The wider the area on the plot, the more densely
populated that NDVI value. NDVI metrics had a different pattern emerge because the
NDVI metrics were extracted based on the modeled temporal values. Although MAXT
was significantly different (p < 0.05), MAXN did not show this same significant difference.
The combined years for MAXN had an effect size of only 14% of medusahead values being
greater than cheatgrass (Table A2). The only comparison that had no significant difference
(p > 0.05) was MAXN for 2022 (p = 0.28). This was likely due to the pixels evaluated having
similar cover estimates.
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Figure 10. Comparison between the start-of-season NDVI (SOSN) (a) and maximum NDVI (MAXN)
(b) phenology maps for cheatgrass (BRTE [44]) and medusahead (TACA8 [44]) with at least 20% cover
from stratified sampling except for 2022. In 2022, medusahead did not exceed 50% more cover than
cheatgrass in the same pixels, so random samples were taken within pixels with at least 15% cover.
Cheatgrass SOSN and MAXN extracted from 104,963 points and medusahead SOSN and MAXN
extracted from 52,070 points total.

4. Discussion

We were able to differentiate medusahead and cheatgrass phenology patterns at 30 m
resolution by training a regression tree phenology model on pixels with at least 20% cover of
cheatgrass or medusahead. Because the SOST, EOST, and MAXT test data were significantly
(p < 0.05) different between the species, we infer that based on our phenology metrics we can
differentiate phenological differences between cheatgrass and medusahead at 30 m spatial
resolution. The temporal metrics were highly significant with a large effect size in favor of
medusahead having a later growing season than cheatgrass. The overall insignificance of
MAXN for the combined years was expected because the relative maximum between the
SOST and EOST was close to the same NDVI value for both species. Because cheatgrass
and medusahead have similar vegetation behavior and structure, NDVI values are likely
similar. Our results indicate that SOSN, EOSN, and MAXN values can be used to identify
the NDVI thresholds for cheatgrass and medusahead in the SRP and NBR ecoregions.

To interpret the NDVI values, we focused on the sustained growth of cheatgrass and
medusahead. The sustained growth was interpreted as the 5 weeks of sequential increasing
scNDVI. Although the NDVI pixels have a heterogeneous community of vegetation, the
increase in one scNDVI value is equivalent to one one-hundredth of an increase in raw
NDVI, which is a relatively large increase compared to raw NDVI. The differences in
sustained growth between species we found agree with previous studies that observed two-
to-three-week divergences between vegetation stages (i.e., heading and flowering stages)
dates for these two species in Idaho [13,52]. Generally, NDVI values increase as vegetation
progresses through life cycles up to the flowering stage, in which the maximum NDVI is
achieved, and then decreases as the plants senesce [53]. For cheatgrass and medusahead,
the flowering stage occurs after the boot stage, and this transitional period corresponds to
MAXT, which aligned with observations conducted in the Idaho area [13,52]. The flowering
stages for cheatgrass and medusahead were reported as weeks 21 and 24 [13], respectively,
and 21 and 23, respectively [52]. In our study, for years 2017–2022, the median estimated
cheatgrass and medusahead MAXT ranged from week 19 to 21 (cheatgrass) for years
2017–2022, and week 20 to 23 (medusahead). This timing aligned with observed flowering
stages. The MAXT maps showed similar results to those findings from year to year.

Several studies have shown that the growing seasons for cheatgrass and medusahead
are different [13,18,24,52], and that difference was observed in our training data. The
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training data had median phenology values that averaged 3.5 weeks difference for SOST,
and 2.4 weeks difference for MAXT between cheatgrass and medusahead. These differences
boosted the authors’ confidence in using these training datasets for developing phenology
models. Developing the decision tree rules involved several steps for reiterating the manual
processing for identifying active growth. Developing these decision tree rules reduced
human error and generated optimized phenometrics, which lowered errors. This approach
may, however, cause some model errors that human eyes could detect, such as identifying
if an area has suitable EAG cover or an area that was not masked out by NLCD [21]. To
prevent these errors in the training data, we were able to modify restrictions and omit
potential outliers. We then produced model-estimated annual phenology metrics that were
highly correlated with the manually influenced automated decision tree phenology that
was withheld from the training data.

Extracting MAXT for NDVI is relatively straightforward within an NDVI time series of
a monoculture. However, given exotic annual grasses often grow intermixed with perennial
forbs and other rangeland species that have a similar growing season [18,22], extracting
maximum time for NDVI is difficult. A heterogeneous vegetation community within 30 m
pixels makes extracting the maximum NDVI values for a particular species challenging [38].
Previously, we extracted the local maximum NDVI values which created uniform maximum
metrics between cheatgrass and medusahead [51]. We opted for modeling cheatgrass and
medusahead MAXT, which extracted the delayed maximum growth between cheatgrass
and medusahead based on the same NDVI time series given the desired pixel. Pixels with
high medusahead and cheatgrass cover (≥20%) produced similar temporal values (SOST
comparison r2 = 0.97 and MAXT comparison r2 = 0.86). The mixed pixel effect decreased
the temporal estimates compared to their respective medians in Figure 9 for medusahead
in the years 2017–2022 by one week and increased cheatgrass by one week. The mixed pixel
effect influenced the phenology temporal metrics (by ±1 week) between pixels with the
same amount of species cover (at least 20% cover) [38].

One pattern emerged in the phenology metric maps where pixels with higher cheat-
grass or medusahead cover had an earlier start of sustained growth. This pattern could be
an indication of capturing earlier sustained growth by the dominant species in the pixel [38].
When in the field, we observed a plot with early season medusahead emergence covered
by the previous year’s medusahead plant residue. This plot was south of our study area
and showed useful growing observations of medusahead (e.g., emerging within dormant
species or blanketing the ground with last year’s growth) which gave the impression of
early emergence near Reno, Nevada (during a visit on 31 January 2024). At the end of the
week, snow fell and covered the plot after a weekly average maximum temperature of
15.2 ◦C [54], which could have halted the detectable growth of medusahead or suppressed
its reflectance. This early emergence seems plausible because the average temperature for
the visiting week was above the average normal maximum temperature of 8.6 ◦C (measured
from 1981 to 2010 for 28 January–2 February) [55]. An earlier onset of spring thaw can occur
with warmer than average temperatures and has been indicated as a driver for cheatgrass
and medusahead growth [8,18,19]. The pixels with more cheatgrass or medusahead cover
should have a more homogeneous reflectance cover because the photosynthetic activity
will be similar, making it easier to detect sustained growth, and indicate earlier greenness
with less influence of dormant native vegetation’s NDVI values [38]. The NDVI values of
pixels with lower cover of the species could be influenced by the dormant vegetation that
stands above the emerging greenness, suppressing the plant reflectance early in the season.
This may affect the uniformity throughout the maps where the same cover values differ
in temporal signatures, but more data filtering would be needed to prevent mixed pixel
effects that may influence phenology patterns [38].

We focused on the SOST and MAXT during the sustained growing period because
these metrics have been shown to influence timing for mitigation [25,26]. Herbicide applica-
tions have reduced cheatgrass and medusahead cover during vegetation and reproductive
stages and prior to maturity. Herbicide applications can be planned using SOST and
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MAXT [26]. SOST and MAXT can also be used to plan grazing. Research has found greater
nutritional values prior to MAXT for medusahead [25]. Mowing was also shown to be
more effective at reducing medusahead cover before the final stages of seed development
(past the peak portion of the growing season) according to Brownsey et al. [25]. Our annual
phenology products for cheatgrass and medusahead can be used to inform the planning of
those mitigation approaches.

5. Conclusions

Overall, we found developing species-oriented models for cheatgrass and medusahead
to be challenging. Although difficult to produce, species-oriented models were used to
identify past active growing seasons of sustained growth. Developed maps can be used
to find patterns among the differences in these species. Developing training data for
additional years would create a more robust model that could be applied to a broader study
area, potentially expanding the utility of the modeling effort.

Developing each metric model individually using its own set of parameters and
hyperparameters could help improve future phenology estimates by further constraining
the modeled variables to features within the metrics’ range. For example, when SOST
did not surpass week 23 or MAXT only occurred between a certain range of weeks, the
model could omit NDVI variables later than week 23 or not within the specified range.
These restrictions could help focus the model on the more key features for development.
Another consideration for increasing accuracy is to loosen EOST restrictions based on
specific species, such as the continued growth of medusahead after cheatgrass matures.

These phenology metrics can be used by rangeland managers to inform planning
treatments designed to reduce the spread of these exotic species. The model-estimated
results include SOST, MAXT, and EOST, followed by pixel drilling to extract SOSN, MAXN,
and EOSN, and calculated DUR and AMP. Aligning herbicide or grazing timing with
the timing of SOST and MAXT may best target the annual grasses at peak vulnerability.
Phenology characteristics can be used to inform the development of efficient management
plans by identifying optimal peak timing to control cheatgrass and medusahead with
less effort.
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Appendix A

Table A1. Cheatgrass (BRTE [44]) and medusahead (TACA8 [44]) estimated phenology metrics
compared to decision-tree-produced phenology. The estimated phenology metrics compared are as
follows: start-of-season time (SOST), start-of-season NDVI (SOSN), end-of-season time (EOST), end-
of-season NDVI (EOSN), maximum time (MAXT), and maximum NDVI (MAXN). The comparison
statistical results are the coefficient of determination (R2), Pearson’s r (r), mean absolute error (MAE),
and relative root mean square error (RRMSE).

SOST SOSN EOST EOSN MAXT MAXN
BRTE TACA8 BRTE TACA8 BRTE TACA8 BRTE TACA8 BRTE TACA8 BRTE TACA8

2017

R2 0.96 0.98 0.94 0.92 0.71 0.55 0.86 0.84 0.78 0.90 1.00 1.00
r 0.98 0.99 0.97 0.96 0.86 0.75 0.94 0.92 0.88 0.95 1.00 1.00

MAE 0.21 0.11 0.24 0.12 0.76 0.57 1.35 0.86 0.45 0.34 0.00 0.00
RRMSE 5.55 2.76 0.57 0.36 5.53 5.22 2.27 1.79 3.72 2.90 0.01 0.05

2018

R2 0.96 0.97 0.91 0.95 0.87 0.61 0.94 0.96 0.90 0.85 1.00 1.00
r 0.98 0.98 0.95 0.98 0.94 0.78 0.97 0.98 0.95 0.92 1.00 1.00

MAE 0.13 0.05 0.17 0.03 0.42 0.12 0.64 0.31 0.32 0.16 0.00 0.02
RRMSE 3.84 2.25 0.60 0.22 3.58 2.28 1.36 0.97 2.97 1.93 0.02 0.17

2019

R2 0.98 0.99 0.95 0.98 0.86 0.41 0.94 0.91 0.92 0.89 1.00 1.00
r 0.99 1.00 0.98 0.99 0.94 0.64 0.97 0.96 0.96 0.95 1.00 1.00

MAE 0.11 0.04 0.13 0.04 0.40 0.19 0.54 0.36 0.31 0.15 0.00 0.00
RRMSE 2.90 1.31 0.38 0.18 3.57 3.10 1.20 1.14 2.88 1.88 0.02 0.03

2020

R2 0.96 0.99 0.94 0.95 0.90 0.55 0.96 0.90 0.91 0.92 1.00 1.00
r 0.98 0.99 0.97 0.97 0.95 0.75 0.98 0.95 0.95 0.96 1.00 1.00

MAE 0.16 0.08 0.16 0.09 0.32 0.26 0.45 0.46 0.32 0.18 0.00 0.00
RRMSE 4.53 2.00 0.42 0.28 2.98 3.41 1.03 1.24 2.97 2.00 0.00 0.00

2021

R2 0.91 0.92 0.80 0.75 0.83 0.56 0.95 0.72 0.87 0.86 1.00 0.98
r 0.96 0.96 0.90 0.87 0.91 0.75 0.98 0.87 0.94 0.94 1.00 0.99

MAE 0.33 0.29 0.38 0.29 0.29 0.28 0.48 0.80 0.44 0.32 0.00 0.00
RRMSE 6.81 5.76 0.82 0.70 3.09 3.15 1.13 1.65 3.77 2.87 0.04 0.00

Table A2. Cheatgrass and medusahead Mann–Whitney U-test statistics for 2017–2022. U-statistic
with a p-value < 0.01 is indicated by “**”, 0.01 < p-value < 0.05 is indicated by “*”, and p-value > 0.05
is indicated by “ ”. Effect size was calculated by rank-biserial correlation; a value of 0 indicates that
cheatgrass and medusahead were present in equal proportions, a value of −1 indicates complete
coverage by medusahead, and a value of 1 indicates complete coverage by cheatgrass. MAXN 2022
p-value = 0.28.

SOST SOSN EOST EOSN MAXT MAXN

2017
U-statistic 197,468,344.5 ** 89,387,548.5 ** 141,249,540.5 ** 85,685,862.5 ** 187,547,484.5 ** 35,507,098 **
effect size −0.85 0.16 −0.32 0.20 −0.76 0.67

2018
U-statistic 210,365,165 ** 93,046,952.5 ** 151,436,039 ** 113,544,012.5 ** 197,023,902.5 ** 75,791,524 **
effect size −0.82 0.20 −0.31 0.02 −0.70 0.35

2019
U-statistic 180,185,628.5 ** 146,370,580 ** 188,988,769 ** 182,153,827 ** 215,571,194.5 ** 164,276,548 **
effect size −0.40 −0.14 −0.47 −0.42 −0.68 −0.28

2020
U-statistic 147,928,271.5 ** 125,572,657 ** 179,987,034.5 ** 176,333,033 ** 190,429,299.5 ** 163,344,940.5 **
effect size −0.38 −0.17 −0.68 −0.65 −0.78 −0.53

2021
U-statistic 56,210,773 ** 68,597,582 ** 70,585,046 ** 74,527,591 ** 59,946,545 ** 77,348,693.5 **
effect size −0.33 −0.62 −0.66 −0.76 −0.41 −0.82

2022 a U-statistic 10,676,011.5 ** 10,289,900 * 14,793,177 ** 7,371,812 ** 13,857,482.5 ** 9,785,941
effect size −0.07 −0.04 −0.49 0.26 −0.39 0.02

2017–2022
U-statistic 4,475,995,305 ** 3,157,955,127.5

**
4,320,763,126.5

**
3,824,070,167.5

**
4,862,155,702.5

** 3,256,081,399 **

effect size −0.56 −0.10 −0.51 −0.34 −0.70 −0.14
a SOSN 2022 p-value = 0.012 and MAXN 2022 p-value = 0.28.
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