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Abstract: In view of the issues of missed and false detections encountered in small object detection
for UAV remote sensing images, and the inadequacy of existing algorithms in terms of complexity
and generalization ability, we propose a small object detection model named IA-YOLOv8 in this
paper. This model integrates the intra-group multi-scale fusion attention mechanism and the adaptive
weighted feature fusion approach. In the feature extraction phase, the model employs a hybrid
pooling strategy that combines Avg and Max pooling to replace the single Max pooling operation
used in the original SPPF framework. Such modifications enhance the model’s ability to capture
the minute features of small objects. In addition, an adaptive feature fusion module is introduced,
which is capable of automatically adjusting the weights based on the significance and contribution of
features at different scales to improve the detection sensitivity for small objects. Simultaneously, a
lightweight intra-group multi-scale fusion attention module is implemented, which aims to effectively
mitigate background interference and enhance the saliency of small objects. Experimental results
indicate that the proposed IA-YOLOv8 model has a parameter quantity of 10.9 MB, attaining an
average precision (mAP) value of 42.1% on the Visdrone2019 test set, an mAP value of 82.3% on the
DIOR test set, and an mAP value of 39.8% on the AI-TOD test set. All these results outperform the
existing detection algorithms, demonstrating the superior performance of the IA-YOLOv8 model in
the task of small object detection for UAV remote sensing.

Keywords: UAV remote sensing images; small object detection; feature fusion; attention mecha-
nism; adaptive

1. Introduction

The rapid evolution of unmanned aerial vehicle (UAV) technology has precipitated
its extensive applications across diverse sectors [1–3]. Owing to their compact form factor,
exceptional mobility, cost efficiency, and operational adaptability, UAVs have emerged
as indispensable instruments in domains such as military reconnaissance, power line
inspection, and traffic surveillance. In the sphere of military reconnaissance, UAVs can
adeptly infiltrate adversarial territories to efficiently acquire critical intelligence and monitor
enemy military installations [4,5]. For power line inspections, UAVs are proficient in
conducting systematic evaluations of high-voltage transmission lines, thereby mitigating
the hazards associated with manual assessments [6]. In the domain of traffic surveillance,
UAVs facilitate the real-time monitoring of vehicular flow and the detection of traffic
infractions [7] thus enabling timely interventions and effective accident management.

Despite the considerable potential of UAV applications, they encounter numerous
challenges in executing object detection and tracking tasks, particularly when addressing
small objects [8,9]. First, small objects occupy a minimal number of pixels in UAV remote
sensing images compared to their larger counterparts, resulting in insufficient feature
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information that complicates their detection. Second, the expansive field of view inherent
in UAV remote sensing imagery encompasses substantial background information; con-
sequently, small objects are susceptible to background noise interference, which hinders
the detector’s ability to distinguish between the object and its surroundings. In addition,
UAVs are typically equipped with lightweight embedded chips that limit computational
power; however, detecting small objects often requires greater computational resources for
processing complex image data. Thus, under real-time operational constraints, achieving
the efficient detection of small objects with restricted computational capabilities poses a
significant challenge [10].

In recent years, the advent of deep learning technology has instigated transformative
changes within the domain of image processing [11–13]. In contrast to conventional image
processing techniques, such as edge detection [14,15] and template matching [16,17], deep
learning-based object detection algorithms present substantial advantages in terms of accu-
racy and robustness. In the current domain of deep learning, object detection algorithms are
primarily classified into the following two major categories based on whether they depend
on the Region Proposal Network (RPN): two-stage object detection algorithms that are
RPN-dependent and one-stage object detection algorithms that are RPN-independent. Two-
stage object detection algorithms, like Faster R-CNN [18] and Cascade R-CNN [19], usually
entail a preprocessing step that generates candidate regions via RPN and subsequently
performs target classification and localization on these regions. In contrast, one-stage
object detection algorithms, for instance, Single Shot MultiBox Detector (SSD) [20] and
RetinaNet [21], directly predict the bounding boxes and classes of targets on the image
without the need for an extra candidate region generation process. Furthermore, object
detection algorithms can be further categorized according to whether they employ anchor
boxes. Anchor-based algorithms, such as YOLOv1-v4 [22–25] and YOLOv7 [26], predict the
position and size of targets using predefined anchor boxes. These algorithms enhance the
detection accuracy by adjusting the anchor boxes to match the actual bounding boxes. On
the other hand, anchor-free algorithms, such as YOLOv6 [27], YOLOv8 [28], YOLOv9 [29],
and YOLOv10 [30], do not rely on predefined anchor boxes but directly predict the bound-
ing boxes, which contributes to a simplification of the detection process and potentially
enhances model flexibility. These classifications not only mirror the diversity in the design
of object detection algorithms but also embody the distinct requirements for speed and ac-
curacy in practical applications. As deep learning technology continuously progress, these
algorithms are also being constantly optimized and evolved to accommodate increasingly
complex detection tasks.

Despite the significant advances achieved by the aforementioned deep learning tech-
niques in object detection, these algorithms still face specific limitations in detecting small
objects in UAV imagery, such as missed detections, false positives, and an excessive num-
ber of model parameters, which complicate deployment on resource-constrained mobile
devices. To address these challenges, numerous researchers have sought to enhance small
object detection accuracy and reduce model size through the integration of multi-scale
fusion and attention mechanisms. Incorporating the attention mechanism allows the model
to focus on the object region thus improving the detection accuracy, while multi-scale fea-
ture fusion effectively mitigates the issue of scale variation issues among small objects. To
tackle the challenges posed by background interference and scale variation in small object
detection within UAV remote sensing images, Tan et al. [31] proposed the YOLOv4_UAV
model which employs an ultra-lightweight subspace attention mechanism (ULSAM) to
generate distinct attention maps for each subspace of the feature map, facilitating multi-
scale feature representation. However, this attention mechanism does not take the channel
dimension into account. Shang et al. [32] introduced an enhanced YOLOv5s algorithm
aimed at improving small object detection in UAV aerial images by reinforcing multi-layer
feature fusion alongside advanced attention mechanisms. While this approach significantly
enhances performance for detecting small objects, it concurrently increases computational
complexity. Shen et al. [33] developed a method based on ASFF-YOLOv5s specifically
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designed for small object detection from UAVs; this method integrates the Convolutional
Block Attention Module (CBAM) with an improved adaptive spatial feature fusion (ASFF)
module to incorporate shallow feature maps into the network’s feature fusion process,
thereby augmenting the extraction capabilities for features associated with small objects.
Nonetheless, this algorithm is still vulnerable to missed detections and false positives in
complex scenarios. Li et al. [34] presented a refined YOLOv5s algorithm tailored for the
detection of small objects in UAV aerial photography by reconstructing its feature fusion
network while incorporating SPD convolution along with enhancements to EIoU loss func-
tion. Although this strategy significantly boosts both accuracy and real-time performance
in detecting smaller objects, further validation is necessary regarding its generalization
across diverse datasets or varying environmental conditions. Xiong et al. [8] proposed
AS-YOLOv5—a specialized algorithm objecting small object detection from UAVs—which
improves the capabilities concerning low-resolution objects featuring diminutive character-
istics via adaptive feature fusion coupled with an enhanced attention mechanism; however,
they pointed out that future research should explore anchor-free detection algorithms as
their current methodology may still exhibit inefficiencies or inadequacies within certain
application contexts.

In conclusion, while the aforementioned algorithms have demonstrated improvements
in small object detection performance within UAV remote sensing images, they suffer from
high model complexity and inadequate generalization capabilities. This results in the
persistent issue of missed detections and false positives for small objects. Furthermore,
in the detection of small objects in UAV images, the detection performance is typically
deteriorated due to the following physical factors: (1) Small objects merely occupy a limited
number of pixels, making it challenging for the model to extract sufficient discriminative
features. (2) Objects in the natural environment are frequently partially occluded by other
objects, thereby triggering missed detections and false detection. (3) Changes in weather
and lighting conditions lead to a reduction in the contrast between the object and the
background, thereby influencing the detection accuracy. To cope with the challenges of the
aforementioned algorithmic deficiencies and the decline in detection performance caused
by physical factors, this paper proposes a small object detection network for UAV remote
sensing images based on YOLOv8. This approach is intended to address these challenges,
enhance the accuracy of small object detection, and facilitate its effective deployment on
UAVs. The primary contributions are as follows:

(1) We propose a novel adaptive weighted feature fusion (AWFF) module, which dynam-
ically adjusts feature weights to enhance the representation of key features, thereby
significantly improving the discriminative power of the model for object recognition.
In addition, our module effectively integrates feature information from multiple levels,
such that the model can simultaneously capture the details and semantic information
of the object;

(2) We designed a Mixed Spatial Pyramid Pooling Fast (Mix-SPPF) module that combines
the advantages of average pooling and maximum pooling to improve the accuracy of
recognizing small objects;

(3) We introduce a novel lightweight intra-group multi-scale fusion attention module
(IGMSFA) that effectively reduces the influence of background noise while ensuring
high performance in resource-constrained environments;

(4) In comparison with the current mainstream YOLO series algorithms and classical ob-
ject detection methods, our proposed IA-YOLOv8 algorithm demonstrates significant
advantages. Specifically, IA-YOLOv8 achieves a higher mAP while maintaining a
reduced number of parameters.

The structure of this paper is organized as follows: Section 2 presents related work,
discusses the choice of the foundation framework, and provides an in-depth analysis of
the attention mechanism and feature fusion strategy. Section 3 details the methodology,
including a comprehensive overview of the IA-YOLOv8 architecture and its key compo-
nents. Section 4 focuses on the experiments, outlining the experimental environment, the
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datasets used for small object detection in UAVs, and the analysis of the experimental
results. Finally, Section 5 summarizes the findings of this study and provides insights for
the future research directions.

2. Related Work
2.1. Object Detection Algorithms

Currently, small object detection algorithms are primarily developed through the
enhancement of regular conventional object detection methods. The two-stage object
detection algorithms require the generation of candidate boxes for subsequent analysis,
whereas the one-stage algorithm performs the detection directly. This distinction provides
one-stage algorithms with a clear advantage in terms of speed and computational efficiency.
Consequently, in the domain of UAV object detection, one-stage algorithms exhibit a
markedly superior performance [35].

In the domain of one-stage object detection algorithms, the YOLO family of models
has gained wide recognition in both the academic and industrial circles due to their excep-
tional performance, high accuracy, and robust scalability. In contrast with the anchor-free
approach, the anchor-based strategy employed by YOLOv1 through YOLOv5, YOLOv7
exhibits certain limitations in terms of computational speed and capacity. Moreover, among
the three most recent advances in object detection—YOLOv6, YOLOv8 to YOLOv10—these
models demonstrate superior performance compared to their predecessors on large-scale
general object detection datasets. Therefore, when selecting a foundation framework for
small object detection in UAV remote sensing imagery, it is recommended to prioritize the
utilization of YOLOv8 over YOLOv10 models.

To address the requirements for small object detection in UAV remote sensing images,
a comprehensive review of the literature [36–39] reveals that YOLOv10 exhibits slightly
inferior performance compared to YOLOv8 and YOLOv9 in this specific task. While
YOLOv9 offers advantages over YOLOv8 in terms of lightweight architecture, it lacks the
same level of task adaptation. Therefore, this study adopts YOLOv8 as the foundational
framework and seeks to enhance its performance through objected modifications aimed at
improving small object detection capabilities.

2.2. Attention Mechanisms

Recognized as plug-and-play modules, attention mechanisms have found widespread
applications in the domain of small object detection due to their straightforward architec-
ture and low computational cost. Currently, attention mechanisms based on deep learning
can be categorized into the following four fundamental types: channel attention, spatial
attention, fusion attention, and self-attention mechanisms [35,40,41]. In the context of drone
detection where objects are submerged by the complex background, Wang et al. [42] en-
hanced feature extraction by introducing the SeNet channel attention mechanism, thereby
suppressing background interference. Nevertheless, the SeNet channel attention mecha-
nism merely focuses on the information of the channel dimension and fails to effectively
capture spatial features. To overcome this constraint, Li et al. [43] incorporated the sub-
space attention mechanism (ULSAM) into the YOLOv4 model, generating distinct attention
feature maps for each feature map subspace. However, the ULSAM also only prioritizes the
spatial dimension while disregarding the channel information. Although these attention
mechanisms have demonstrated a certain degree of effectiveness in practice, they frequently
neglect the key elements of the spatial or channel dimensions, resulting in the loss of crucial
information. In response to these challenges, Wang et al. [44] proposed a global attention
mechanism that integrates the information of both the channel and spatial dimensions,
enhancing the accuracy of target detection. However, compared with methods that only
focus on a single dimension, this approach demands more computational resources and
exhibits higher complexity. The aforementioned CNN-based methods mainly focus on
object local feature enhancement; however, recent advances in large-scale models have
shifted the focus toward self-attention mechanisms grounded in Transformer architectures.
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For instance, Liu et al. [45] presented the Swin Transformer model that improves contextual
understanding by employing self-attention over the relevant regions. Although its resource
requirements significantly exceed those associated with the traditional CNN-based atten-
tional frameworks, the deployment of rendering on mobile devices is challenging. To
mitigate the computational demands while enhancing deployability for mobile applica-
tions, Hou et al. [46] proposed Coordinate Attention (CA), a lightweight method built upon
a novel CNN structure that simultaneously attends to both channel and spatial information
through horizontal and vertical feature aggregation, effectively integrating vital coordinate
data within generated representations.

Through an in-depth exploration of the attention mechanisms, we conclude that select-
ing the appropriate attention mechanisms can significantly enhance model performance
across a variety of task requirements and contexts.

2.3. Feature Fusion

Feature fusion, which involves integrating features from different levels to enhance
model performance and robustness, has been widely applied in the field of object detection.
Currently, feature fusion can be categorized into early fusion and late fusion based on the
sequence of integration [47–49].

Early fusion involves an initial fusion of multi-layer features, followed by training
on the fused representation. Common early fusion techniques include the Concat and
Add feature fusion operations. In their work, Bell et al. [50] introduced the Inside–Outside
Net (ION) method, which employs a Concat feature fusion strategy to achieve a more
discriminative integration of multi-layer features. Similarly, Kong et al. [51] proposed the
HyperNet method that utilizes an Add feature fusion strategy to consolidate the features
from various layers. Additionally, Sun et al. [52] extended the concept of a canonical
correlation analysis (CCA) to feature fusion, resulting in a CCA-based approach that lever-
ages the correlation between two input feature sets through transformations designed to
enhance their inter-correlation compared to the original sets. However, this methodology is
primarily limited by its inability to effectively maximize correlations across different feature
sets. To address this limitation, Chaib et al. [53] introduced discriminative correlation
analysis (DCA), aimed at maximizing correlations between two groups of features while
simultaneously enhancing distinctions among different classes. Furthermore, Dai et al. [54]
proposed an iterative attention feature fusion (iAFF) method based on a multi-scale channel
attention mechanism for a more effective integration of semantically and scale-inconsistent
features; this approach generates weights via an attention mechanism and then optimizes
the key information extraction process across the different layers.

Late fusion techniques enhance detection performance by integrating the results from
different layers. Currently, late fusion can be categorized into feature pyramid fusion and
multi-branch fusion based on its integration methodology [35]. The Bidirectional Cross-
scale Connections and Weighted Feature Fusion (BiFPN) [55] serves as a representative
feature pyramid fusion module that transmits the positional information of low-level fea-
tures in a bottom–up manner while conveying semantic information of high-level features
in a top–down fashion. Moreover, it establishes skip connections between input and output
features at the same layer to mitigate information loss during transmission. However,
this approach is associated with increased model complexity and computational demands,
which can hinder its deployment on mobile devices. Zhou et al. [56] introduced the Small-
Scale Feature Enhancement Module (SFEM), which enhances the feature representation
of small objects through a parallel multi-branch structure for feature fusion on the input
feature map. Nonetheless, this approach has limitations due to the elevated computational
cost arising from parallel architecture, as well as the potential low-resolution issues caused
by dilated convolutions.

In summary, selecting the appropriate feature fusion strategies tailored to the specific
requirements of different scenarios and task types can significantly enhance object detection
performance, especially in the context of small object detection on mobile devices.
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3. Methods
3.1. Overall Architecture of IA-YOLOv8

To better adapt to different task requirements, the YOLOv8 family offers five distinct
scale variants—YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x—to address
diverse application requirements. These variants differ in parameter counts and detection
accuracy, facilitating a balance between speed and precision. Therefore, this paper presents
the development of the IA-YOLOv8 algorithm based on the YOLOv8s variant to enhance
the detection capability for small objects. The detailed architecture of this algorithm is illus-
trated in Figure 1. This network consists of the following four parts: (1) Input: This section
is accountable for adjusting the image to the size demanded by the network to guarantee
effectiveness during the feature extraction process. Meanwhile, the Mosaic data augmen-
tation technique is adopted to enhance the generalization ability and anti-interference
capacity of the network; (2) Backbone: This section employs the CSPDarkNet-53 network
to extract features of the input image at diverse scales to accommodate the variations in the
size of the target; (3) Neck: This section utilizes the PANet (Path Aggregation Network)
structure to enable a better integration of the spatial detail information of the shallow layers
with the semantic information of the deep layers thus forming multi-scale features; and
(4) Prediction: This section constitutes the final part of the entire detection network and is
responsible for decoding and predicting the features from the neck. It is utilized to generate
the final category and bounding box regression. By generating predictions on feature maps
of different scales, the precise detection of targets of different scales can be achieved. The
following are the enhancements made to the algorithmic framework:
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First, the backbone network of YOLOv8s integrates the Spatial Pyramid Pooling
Fast (SPPF) module to effectively capture object details across diverse scales, thereby
enhancing the model’s capacity for object perception. This paper proposes substituting
the SPPF module with a Mixed Spatial Pyramid Pooling Fast (Mix-SPPF) module. In SPPF,
using Max pooling for multi-scale feature aggregation can lead to the loss of information,
especially when addressing small objects with low resolution. Consequently, Mix-SPPF
replaces the singular max pooling operation with a hybrid approach that combines both
Max and Avg pooling to mitigate information loss and further enhance detection accuracy
for small objects.

Second, within the neck layer, YOLOv8s employs the PANet framework. In PANet,
a Concat operation is used to merge high-resolution spatial features from shallow layers
with robust semantic features from the deeper layers. However, this operation merely
concatenates feature maps without considering their individual significance or relevance;
Thus, it fails to fully leverage the complementary information between them. To address
this limitation, this paper introduces an adaptive weighted feature fusion (AWFF) module
that dynamically assigns weights to features. Compared to the Concat operation, AWFF
demonstrates enhanced efficiency in multi-layer feature fusion by reducing redundant
information and optimizing computational resources while smoothing the gradient flow
and enabling more nuanced feature selection; consequently, both model performance and
stability are improved. Furthermore, in order to enhance detection accuracy for small
objects while minimizing background interference in UAV remote sensing images, this
paper presents an intra-group multi-scale fusion attention (IGMSFA) module. This module
amplifies the focus on the critical features while significantly reducing the background
noise, thereby improving both the accuracy of small object detection and the overall
model performance.

Finally, in the prediction layer, the IA-YOLOv8s network model employs four de-
tection heads for object detection. In contrast to the three detection heads employed in
the YOLOv8s network model, this approach allows for a more efficient exploitation of
multi-scale features, thereby enabling the capture of more complex detailed features and
enhancing the detection accuracy of small objects.

3.2. Mix Spatial Pyramid Soft Pool Fast (Mix-SPPF)

In the contemporary research landscape, the following four dominant pyramid pooling
modalities have been delineated: SPP (Spatial Pyramid Pooling); SPPF; SPPCSPC (Spatial
Pyramid Pooling—Cross Stage Partial Connections); and SPPFCSPC (Spatial Pyramid
Pooling Fast—Cross Stage Partial Connections). Notably, both SPP and SPPCSPC leverage
a parallel architecture to perform Max pooling operations, employing three distinct kernel
sizes. Conversely, the SPPF and SPPFCSPC modules adopt a cascaded framework that
sequentially interconnects three Max pooling layers of identical kernel dimensions for data
processing. This architectural paradigm facilitates superior computational efficiency in
SPPF and SPPFCSPC compared to their parallel counterparts, as the former capitalizes
on an optimized serial processing mechanism that generates expedited processing times.
In addition, the computational speeds of SSPFCSPC and SSPCSPC are slower than those
of SPPF and SPP due to the higher complexity of the SSPFCSPC and SSPCSPC models
compared to the SPPF and SPP models.

To enhance the detail representation capability of small objects, this section introduces
a Mix-SPPF module that integrates an average pooling layer into the existing SPPF frame-
work, as illustrated in Figure 2. In contrast with traditional Max pooling methods, which
solely preserve max values within a local region, average pooling captures more compre-
hensive and nuanced feature information by considering all the elements within the pooling
region. Moreover, the smoothing effect provided by average pooling effectively mitigates
the effect of outliers on the results, thereby reducing the risk of overfitting. This enhance-
ment enables the Mix-SPPF module to extract more refined and high-dimensional features
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without compromising computational efficiency, significantly enhancing the generalization
capability of the model with respect to the input data.

Remote Sens. 2024, 16, 4265 8 of 27 
 

 

framework, as illustrated in Figure 2. In contrast with traditional Max pooling methods, 
which solely preserve max values within a local region, average pooling captures more 
comprehensive and nuanced feature information by considering all the elements within 
the pooling region. Moreover, the smoothing effect provided by average pooling effec-
tively mitigates the effect of outliers on the results, thereby reducing the risk of overfitting. 
This enhancement enables the Mix-SPPF module to extract more refined and high-dimen-
sional features without compromising computational efficiency, significantly enhancing 
the generalization capability of the model with respect to the input data. 

 
Figure 2. Mix-SPPF Module. 

3.3. Adaptive Weighted Feature Fusion (AWFF) Module 
Multi-scale feature fusion represents a key strategy for augmenting the detection per-

formance of a model and has been extensively utilized in the domain of object detection. 
The underlying principle of this methodology is that shallow feature maps exhibit high 
resolution and encapsulate intricate details, yet they are characterized by limited semantic 
richness and heightened noise; in contrast, deep feature maps provide substantial seman-
tic information but suffer from lower resolution and reduced detail fidelity. By synergis-
tically integrating shallow and deep feature maps, it becomes possible to leverage their 
respective strengths, thereby enhancing the overall detection efficiency of the model. 

In the contemporary landscape of object detection, the prevalent feature fusion strat-
egies predominantly include the Concat and Add operations. The Concat operation 
merges feature maps across various levels along the channel dimension to facilitate effi-
cient feature integration; however, this approach may introduce redundant information 
due to partial content overlaps among the feature maps at different levels. In contrast, the 
Add operation combines feature maps from distinct levels through simple addition to 
achieve a fusion effect. Nevertheless, this method merely executes basic arithmetic and 
fails to fully exploit the complementary information inherent in each feature layer, leading 
to some degree of information loss, which is particularly pronounced when significant 
scale disparities exist. Figure 3 illustrates a schematic representation of these commonly 
employed feature fusion strategies. 

  
(a) (b) 

Figure 3. Commonly employed feature fusion strategies. (a) Add; (b) Concat. 

Figure 2. Mix-SPPF Module.

3.3. Adaptive Weighted Feature Fusion (AWFF) Module

Multi-scale feature fusion represents a key strategy for augmenting the detection
performance of a model and has been extensively utilized in the domain of object detection.
The underlying principle of this methodology is that shallow feature maps exhibit high
resolution and encapsulate intricate details, yet they are characterized by limited semantic
richness and heightened noise; in contrast, deep feature maps provide substantial semantic
information but suffer from lower resolution and reduced detail fidelity. By synergistically
integrating shallow and deep feature maps, it becomes possible to leverage their respective
strengths, thereby enhancing the overall detection efficiency of the model.

In the contemporary landscape of object detection, the prevalent feature fusion strate-
gies predominantly include the Concat and Add operations. The Concat operation merges
feature maps across various levels along the channel dimension to facilitate efficient feature
integration; however, this approach may introduce redundant information due to partial
content overlaps among the feature maps at different levels. In contrast, the Add operation
combines feature maps from distinct levels through simple addition to achieve a fusion
effect. Nevertheless, this method merely executes basic arithmetic and fails to fully exploit
the complementary information inherent in each feature layer, leading to some degree
of information loss, which is particularly pronounced when significant scale disparities
exist. Figure 3 illustrates a schematic representation of these commonly employed feature
fusion strategies.

Remote Sens. 2024, 16, 4265 8 of 27 
 

 

framework, as illustrated in Figure 2. In contrast with traditional Max pooling methods, 
which solely preserve max values within a local region, average pooling captures more 
comprehensive and nuanced feature information by considering all the elements within 
the pooling region. Moreover, the smoothing effect provided by average pooling effec-
tively mitigates the effect of outliers on the results, thereby reducing the risk of overfitting. 
This enhancement enables the Mix-SPPF module to extract more refined and high-dimen-
sional features without compromising computational efficiency, significantly enhancing 
the generalization capability of the model with respect to the input data. 

 
Figure 2. Mix-SPPF Module. 

3.3. Adaptive Weighted Feature Fusion (AWFF) Module 
Multi-scale feature fusion represents a key strategy for augmenting the detection per-

formance of a model and has been extensively utilized in the domain of object detection. 
The underlying principle of this methodology is that shallow feature maps exhibit high 
resolution and encapsulate intricate details, yet they are characterized by limited semantic 
richness and heightened noise; in contrast, deep feature maps provide substantial seman-
tic information but suffer from lower resolution and reduced detail fidelity. By synergis-
tically integrating shallow and deep feature maps, it becomes possible to leverage their 
respective strengths, thereby enhancing the overall detection efficiency of the model. 

In the contemporary landscape of object detection, the prevalent feature fusion strat-
egies predominantly include the Concat and Add operations. The Concat operation 
merges feature maps across various levels along the channel dimension to facilitate effi-
cient feature integration; however, this approach may introduce redundant information 
due to partial content overlaps among the feature maps at different levels. In contrast, the 
Add operation combines feature maps from distinct levels through simple addition to 
achieve a fusion effect. Nevertheless, this method merely executes basic arithmetic and 
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In the contemporary landscape of image processing and computer vision, common
operations often face the problem of low feature fusion efficiency, especially for small
object detection. To address this issue, we introduced an adaptive weighted feature fusion
(AWFF) module, optimized from the Attention Feature Fusion (iAFF) module developed
by the Nanjing University of Aeronautics and Astronautics [54]. The primary advantage of
the AWFF module is its capacity to dynamically assign weights to various feature layers,
thereby enhancing both efficiency and accuracy in feature fusion. The architecture of the
AWFF module is depicted in Figure 4.
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Considering that the dimensions of the adjacent feature maps F1 and F2 are both
H × W × C, we initiate an Add feature fusion operation on F1 and F2 to produce a fused
result denoted as F′. Subsequently, we analyze the influence of weight vectors on the
feature maps F1 and F2 by extracting their respective weight vectors across height and
width dimensions through global average pooling (GAP). Following this, we normalize
these weight vector elements utilizing a Sigmoid function to derive γ1, γ2, β1, and β2.
Furthermore, to ascertain the weight vector α for the fused result F′, we implement global
average pooling (GAP) along the channel dimension, followed by normalization via a
Sigmoid function. Thereafter, we amalgamate γ1, γ2, and α with feature map F1 to generate
a new feature map designated as F1′′′; Similarly, we integrate β1, β2, and (1 − α) with
feature map F2 to yield another new feature map referred to as F2′′′. Ultimately, an Add
feature fusion operation is executed on these newly generated feature maps, F1′′′ and F2′′′

thus resulting in the final output feature map labeled as F3. The details of the calculation
are described as follows:

F′ = F1 ⊕ F2 (1)

F1′′′ = γ1 ⊗ γ2 ⊗ α ⊗ F1 (2)

F2′′′ = β1 ⊗ β2 ⊗ (1 − α)⊗ F2 (3)

F3 = F1′′′ ⊕ F2′′′ (4)

In this context, H, W, and C denote the height, width, and number of channels of the
feature map, respectively. The dimensions of F3, F1′′′, and F2′′′ are uniformly H × W × C.
‘⊕’ denotes the Add fusion operation, while ‘⊗’ denotes element-wise multiplication.
Importantly, α, β1, β2, γ1, and γ2 are normalized using the Sigmoid activation function,
which constrains their values within a range of 0 to 1.

In the adaptive weighted feature fusion (AWFF) module, weights are determined
based on the scale of input features and are generated through a global average pooling
operation across multiple dimensions. This design allows the module to optimize its feature
fusion strategy in an adaptive manner. Such dynamism enhances both the flexibility and
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robustness of the model when dealing with multi-scale features. Furthermore, distinct
features often encapsulate rich information. Thus, adaptive fusion maximizes the extraction
of complementary information, thereby augmenting the discriminative power of the model.
Compared to the conventional feature fusion methods, AWFF effectively mitigates the effect
of irrelevant or redundant features by dynamically adjusting the weights thus improving
the efficacy of feature representations.

3.4. Intra-Group Multi-Scale Fusion Attention Module (IGMSFA)

The core of the attention mechanism resides in concentrating on the key information
within an image and inhibiting background interference. Particularly in UAV remote
sensing images, due to the complexity of the background, the high proportion of small
targets, and the low resolution, problems such as missed detection and false detection
are prone to occur when conducting small target detection. To address this challenge and
guarantee that the proposed scheme can be effectively deployed on the UAV platform,
this paper puts forward a lightweight intra-group multi-scale fusion attention module
(IGMSFA) by enhancing the ultra-light subspace attention module (ULSAM) [57]. The
IGMSFA module effectively overcomes the limitation of ULSAM that merely focuses on
the spatial dimension. The specific improvement scheme is as follows:

To enable the attention module to simultaneously focus on both spatial and channel
dimensions, we propose a Fusion Attention (FA) mechanism. The underlying principle
of this fusion module is illustrated in Figure 5. This mechanism integrates the coordinate
attention mechanism with the spatial attention mechanism while also enhancing the co-
ordinate attention component to reduce parameter count. First, GAP is applied to the
input feature map F ∈ RH×W×g along both the X and Y directions to encode the channel
dimension. Consequently, the output for the g-th channel at height h and width w can
be represented as zh

g and zw
c . Furthermore, by performing a 1 × 1 convolution followed

by Sigmoid normalization on zh
g and zw

c , we obtain corresponding weight vectors σ and τ.
These weights are then used to multiply with feature map F, resulting in a new feature map
denoted as F′

1 ∈ RH×W×g. Subsequently, feature map F′
1 undergoes both average pooling

and max pooling operations to generate two channel descriptions of size H × W × 1.
These two descriptions are concatenated along the channel dimension, yielding a combined
description of size H × W × 2. Following this step, a 7 × 7 convolution operation coupled
with Sigmoid normalization is performed on this description to derive weight vector ζ.
Finally, we multiply feature map F′

1 by weight vector ζ to produce an updated feature map
denoted as F2. This proposed mechanism effectively addresses the limitation encountered
when utilizing only spatial attention mechanisms, specifically their tendency to prioritize
spatial information at the expense of neglecting channel information. The mathematical
formulation is presented as follows:

zh
g =

1
W ∑

0<i<W
xg(h, i) (5)

zw
g =

1
H ∑

0<j<H
xg(j, w) (6)

σ = Sigmoid(Conv1×1(zh
g)) (7)

τ = Sigmoid(Conv1×1(zw
g )) (8)

F′
1 = F ⊗ σ ⊗ τ (9)

F2 = Sigmoid(Conv7×7(Cat[Avgpool(F1
′), Maxpool(F1

′)])) (10)
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(1) In order to effectively capture multi-level information within the input feature map,
this section employs convolution kernels of varying sizes within the same convo-
lutional layer to extract local features across different spatial ranges. Furthermore,
to mitigate the computational complexity associated with convolution operations
and enhance computational efficiency, this study introduces a method that combines
depth-wise separable convolutions with dilated convolutions. Figure 6 illustrates
the Multi-Scale Attention Fusion (MSAF) module, wherein depth-wise separable
convolutions decompose the traditional convolutions into two distinct steps: depth-
wise convolution and point-wise convolution for each channel. This decomposition
significantly reduces both parameter count and computational load while preserving
model performance. Dilated convolutions expand the receptive field by applying
zero padding between the convolution kernel and input features without incurring
additional parameters or computational overhead, thereby improving the network’s
capacity to capture extensive contextual information. The mathematical expression
for the receptive field of dilated convolutions is presented as follows:
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RFS = [1 + (k − 1)× (d − 1)]× s (11)

In this context, k denotes the size of the convolutional kernel, s indicates the stride,
and d represents the dilation rate.

(2) The MSAF module is integrated into the ULSAM module to replace its single spatial
attention mechanism. Additionally, to further enhance information flow, a lightweight
intra-group multi-scale fusion attention module (IGMSFA) is introduced, as shown
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in Figure 7. Firstly, for the input feature map F ∈ RH×W×G (where G = n × 4 g), it is
uniformly divided into n groups along the channel dimension, with the number of
channels in each group being 4 g, to obtain the following:
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F ∈ RH×W×G → [F1, F2, . . . , Fn] ∈ RH×W×4g (12)

Secondly, a multi-scale fusion attention mechanism is applied to each feature map to
obtain the weighted feature map [F̂1, F̂2, . . . , F̂n] ∈ RH×W×4g.

[F̂1, F̂2, . . . , F̂n] = MSAF([F1, F2, . . . , Fn]) (13)

Ultimately, a feature fusion operation based on concatenation is executed for each
group of feature maps, followed by a reorganization of channels to yield refined feature
representations.

F′ = Shu f f le
(
Concat[F̂1, F̂2, . . . , F̂n]

)
(14)

3.5. Loss Function

The Intersection over Union (IoU) [58] is a critical evaluation metric extensively utilized
in the context of small object detection tasks for UAVs, serving to assess the performance
of models in this domain. IoU quantitatively measures the degree of overlap between the
predicted bounding box and the ground truth bounding box, with values ranging from 0
to 1. A higher IoU value signifies a greater degree of overlap between the predicted and
actual boxes, thereby indicating superior detection performance. The formal definition of
IoU is as follows:

IoU =
Bp ∩ Bg

Bp ∪ Bg
(15)

where Bp denotes the predicted bounding box, while Bg signifies the ground truth bounding box.
To maximize the Intersection over Union (IoU) during the training process, researchers

have proposed a series of IoU-based loss functions. These loss functions are specifically
designed to directly optimize IoU and its variants, thereby enhancing the model’s detection
performance. Notably, IoU_Loss maximizes the IoU value by utilizing 1 − IoU as the loss
function, which is defined as follows:

IoU_Loss = 1 − IoU (16)
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Despite the advancements made by IoU_Loss in addressing variable independence
and scale invariance, it remains ineffective in optimizing scenarios where there is no
intersection between the ground truth box and the predicted box. Furthermore, it does
not adequately capture the overlapping relationship between these two boxes. To address
this limitation, Rezatofighi et al. [59] introduced the concept of the minimum enclosing
rectangle based on IoU to enhance the matching process between predicted and ground
truth boxes. Consequently, they proposed GIoU and defined a loss function based on GIoU,
which is articulated as follows:

GIoU = IoU −
∣∣C − Bp ∪ Bg

∣∣
|C| (17)

GIoU_Loss = 1 − GIoU (18)

In this context, C denotes the smallest enclosing rectangle that encompasses both the
predicted bounding box and the ground truth bounding box.

However, due to the slow convergence and insufficient regression accuracy associated
with GIoU_Loss, Zheng et al. [60] proposed a DIoU-based loss function, termed DIoU_Loss.
This method considers the distance between the centers of the predicted bounding box and
the ground truth bounding box. Its definition is as follows:

DIoU = IoU −
[
d
(

Bp, Bg
)]2

c2 (19)

DIoU_Loss = 1 − DIoU (20)

In this context, c denotes the Euclidean distance between the two diagonal vertices
of the minimum bounding rectangle, while d(Bp, Bg) represents the Euclidean distance
between the center points of the predicted and ground truth bounding boxes.

To further optimize the regression loss function, Zheng et al. [60] proposed the
CIoU_Loss by considering factors such as the overlapping area, center point distance,
and aspect ratio. The definition is as follows:

CIoU = IoU −
([

d
(

Bp, Bg
)]2

c2 + αυ

)
(21)

υ =
4

π2

(
arctan

wg

hg − arctan
wp

hp

)2
(22)

α =
υ

(1 − IoU) + υ
(23)

CIoU = 1 − CIoU (24)

In this context, wg and hg denote the width and height of the ground truth box,
respectively. wp and hp represent the width and height of the predicted box. Additionally,
α and υ signify the correlation terms associated with width and height.

The four mainstream loss functions primarily focus on the overlapping regions be-
tween the predicted and ground truth bounding boxes, neglecting the other areas that may
exist between them. This oversight can result in biased evaluation outcomes. To address
this issue, Tong et al. [61] introduced the following three novel loss functions: WIoU v1_Loss,
WIoU v2_Loss, and WIoU v3_Loss.

WIoU v1: A distance-based attention mechanism was developed, resulting in a two-
layer attention framework.

WIoUv1_Loss = RWIoU × IoU_Loss (25)
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RWIoU = exp

(xp − xg
)2

+
(
yp − yg

)2(
W2

g + H2
g

)∗
 (26)

In this context, xp and yp denote the coordinates of the predicted bounding box, while
xg and yg represent the coordinates of the ground truth bounding box. Additionally, Wg
and Hg indicate the width and height of the minimum enclosing rectangle, respectively.
The symbol ∗ signifies a separation operation.

WIoU v2: Based on WIoU v1, a monotonic focusing mechanism was introduced to the
cross-entropy loss function. This effectively mitigates the influence of simple examples
on the overall loss value, thereby enabling the model to concentrate more effectively on
challenging instances.

WIoUv2_Loss =
(

L∗
IoU

LIoU

)γ

× WIoUv1_Loss, γ > 0 (27)

In this context, L∗
IoU ∈ [0, 1] denotes the monotonic focusing coefficient, while LIoU

represents the exponential moving average.
WIoU v3: A non-monotonic focusing coefficient r was constructed using the outlier co-

efficient β and applied to WIoU v1, resulting in WIoU v3 with a dynamic non-monotonic FM.

WIoUv3_Loss = r × WIoUv1_Loss (28)

r =
β

δαβ−δ
(29)

β =
L∗

IoU

LIoU
(30)

In this context, α and δ represent hyperparameters.
In the context of small object detection tasks in UAV remote sensing, traditional Inter-

section over Union (IoU) metrics may struggle to effectively differentiate minor variations
in bounding boxes due to the typically small size of the objects. In contrast, weighted
Intersection over Union (WIoU) provides a more precise reflection of these subtle discrepan-
cies. This study employs WIoUv3_Loss as the regression loss function, which significantly
enhances the model’s localization capabilities for small objects through a dynamic non-
monotonic mechanism.

4. Experiments and Analysis

In this section, we systematically and comprehensively validate the proposed method
across the following four key dimensions: experimental environment setup and dataset
introduction, ablation studies, comparative experiments, and visualization analysis. This
comprehensive approach aims to ensure the effectiveness, stability, and superiority of
the method.

4.1. Experimental Environment Setup and Data Set Introduction

To ensure the reliability and reproducibility of the experimental results, we employed
the following configuration for the experimental environment in this study—an NVIDIA
GeForce RTX 4080 SUPER with 16 GB of memory running on Windows 10. The CPU used
was an Intel(R) Core(TM) i7-14700KF. We implemented CUDA version 11.8, while PyTorch
version 2.0.0 and Python version 3.9 were utilized for programming purposes. Additionally,
no pre-trained weights were incorporated during the model training phase. Detailed key
parameter settings relevant to the model training process are provided in Table 1.
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Table 1. Parameter Settings for the Training Phase.

Parameters Value

Epochs 300
Batch_size 6

Input image size 512 × 512
Regression loss function WIOU v3

Gradient Optimizer SGD
Momentum 0.935

Initial learning rate 0.01
Final learning rate 0.00001
Data enhancement Mosaic

IoU 0.5

In addition, to comprehensively assess the efficacy of the proposed IA-YOLOv8 al-
gorithm, this section will examine the experiments utilizing large-scale datasets such as
Visdrone 2019, DIOR, and AI-TOD which are extensively recognized in the domain of small
object detection within UAV remote sensing imagery.

The Visdrone 2019 dataset [62] is a large-scale benchmark dataset developed by the
AISKYEYE team at the Machine Learning and Data Mining Laboratory of Tianjin University,
China, in 2019. This dataset was captured using multiple UAV cameras and encompasses
a diverse range of dimensions, including geographic locations (spanning 14 different
cities across China that are thousands of kilometers apart), environmental types (urban
versus rural settings), object objects (such as pedestrians, vehicles, bicycles, etc.), and scene
densities (ranging from sparse to crowded). The dataset comprises a total of 10,209 static
images across 10 object categories, with 6471 images designated for training purposes,
548 for validation, and 3190 for testing.

The DIOR dataset [63] is a large-scale benchmark dataset for optical remote sensing
object detection, which was released by Northwestern Polytechnical University in 2019.
This dataset utilizes Google Earth satellite imagery as its data source and encompasses
20 object classes, comprising a total of 23,463 images and 192,472 instances. Each image
has a pixel resolution of 800 × 800 pixels, with spatial resolutions ranging from 0.5 m to
30 m. The dataset is partitioned into a training and validation set (11,725 images) and
a test set (11,738 images). To ensure an effective distinction between the training and
validation sets, we evenly allocated the 11,725 images into 5862 training samples and
5863 validation samples.

The AI-TOD dataset [64] is a large-scale dataset for the detection of micro-targets in
aerial images, which was released by Wuhan University in 2021. This dataset was con-
structed by extracting some images and object instances from datasets such as DOTAv1.5,
xView, VisDrone2018, Airbus Ship, and DIOR. It encompasses eight categories, with a
total of 28,036 aerial images and 700,621 instances. The pixel resolution of each image is
800 × 800 pixels, and the average size of the targets in the images is 12.8 pixels. Addition-
ally, for a better evaluation of the algorithms, 11,214 images were utilized for training, 2804
for validation, and 14,018 for testing.

4.2. Ablation Experiment

To comprehensively assess the specific contributions of each key component in the
proposed IA-YOLOv8 algorithm to model performance, this section meticulously designs
a series of ablation experiments and conducts an in-depth analysis on the challenging
Visdrone2019 dataset. The experimental baseline is established using the YOLOv8s model,
with core evaluation metrics including parameter count, precision (P), recall (R), mean
average precision (mAP), and floating-point operations per second (GFLOPs) employed
to quantitatively analyze the effectiveness of each component. The experimental results
presented in Table 2 indicate that each component of the IA-YOLOv8 model plays a critical
role in enhancing the detection performance for small objects. The four detection heads are
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denoted as “4 × Head”, while the five IGMSFA modules are labeled as “5 × IGMSFA”, and
the three AWFF modules are identified as “3 × AWFF”.

√
indicates the use of this module.

Table 2. Ablation Study on Visdrone 2019.

Baseline 4 × Head Mix-SPPF 5 × GMSFA 3 × AWFF R (%) P (%) mAP (%) Parameter (MB) GFLOPs

YOLOv8s

32.9 49.9 34.2 10.6 28.5√
39.0 52.9 40.8 10.1 36.7√ √
39.9 53.2 40.9 10.2 36.7√ √ √
40.3 54.2 41.2 10.4 37.2√ √ √ √
41.2 54.6 42.1 10.9 37.3

The experimental results presented in Table 2 illustrate that the integration of an
additional detection branch into the YOLOv8s benchmark model not only significantly en-
hances the model’s detection capabilities but also effectively increases its architectural depth.
Specifically, the model depth was augmented from the original 168 layers to 207 layers,
accompanied by a moderate rise in computational complexity to 36.7 GFLOPs, representing
an approximate increase of 22.3% compared to the baseline model. Notably, despite this
escalation in computational demands, the number of parameters was reduced from 10.6 MB
to 10.1 MB, achieving a significant decrease of 4.7%. In terms of the detection performance
metrics, this modification yielded the following substantial improvements: precision (R)
rose from 32.9% to 39.0%, recall (P) increased from 49.9% to 52.9%, and the mean aver-
age precision (mAP) escalated from 34.2% to 40.8%. These findings clearly indicate that
augmenting the detection branch constitutes an effective strategy for enhancing model per-
formance in complex scenarios. Thus, its significance should not be underestimated. These
data robustly support both the high efficacy and necessity of this approach for improving
detection performance within intricate environments.

To further enhance the performance of the model, we incorporated the designed
IGMSFA module into our framework. The experimental results presented in Table 2
demonstrate that the introduction of the IGMSFA module resulted in an increase in both
the parameter count and computational load by 0.2 MB and 0.5 GFLOPs, respectively.
Furthermore, in small object detection tasks, improvements were observed in precision
(R), recall (P), and average precision, with increases of 0.4%, 1.0%, and 0.3%, respectively.
These findings indicate that the IGMSFA module plays a significant role in augmenting
the model’s capacity to learn and represent complex scene features, thereby serving as an
effective strategy for enhancing detection accuracy for small objects.

To further enhance the performance of the model, we incorporated the designed
IGMSFA module into our framework. The experimental results presented in Table 2
demonstrate that, with a minimal increase of 0.2 MB in parameter size and 0.5 GFLOPs
in computational complexity, the introduction of the IGMSFA module significantly im-
proved detection performance: precision (R), recall (P), and mean average precision (mAP)
achieved increases of 0.4%, 1.0%, and 0.3%, respectively. These findings indicate that the
IGMSFA module plays a crucial role in augmenting the model’s capacity to learn and
represent complex scene features, thereby serving as an effective approach to enhancing
detection accuracy.

We incorporated the AWFF module into specific Concat operations within the neck
layer to enhance the feature fusion process. The experimental results presented in Table 2
demonstrate that, following the introduction of the AWFF module, precision (R), recall (P),
and mean average precision (mAP) improved by 0.9%, 0.4%, and 0.8%, respectively, with a
slight increase in the parameters by 0.5 MB and computational load by 0.1 GFLOPs. These
findings indicate that the AWFF module significantly enhances feature fusion strategies
and improves model detection accuracy, making it an essential tool for optimizing model
performance in practical applications.

Furthermore, to facilitate a more comprehensive comparison of the performance
between YOLOv8s and IA-YOLOv8 methods before and after ablation, we constructed
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confusion matrices for both approaches, as illustrated in Figure 8. Figure 8a presents the
confusion matrix for YOLOv8s, revealing that this method exhibits notably low detection
rates for small objects such as people, bicycles, and awning-tricycles. Additionally, it
frequently misclassifies vans as cars, bicycles as motorcycles, and awning-tricycles as cars.
In contrast, the confusion matrix for IA-YOLOv8 depicted in Figure 8b demonstrates that
this approach effectively reduces the false positive rate associated with small objects while
significantly enhancing overall detection accuracy. It can be observed from Figure 8 that
when comparing the classification results of YOLOv8 and AS-YOLOv8, the background
category exerts an influence on the classification outcome. This is attributed to the fact that
the image scenes in the VisDrone2019 dataset are complex, with a majority of the samples
belonging to the background category, while the samples of other target categories are
relatively scarce compared to the background category. In cases where the features of the
background category and the target categories are similar or the boundaries are ambiguous,
the model may erroneously classify an object as the background.
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Figure 8. Comparison of confusion matrices for the YOLOv8s and IA-YOLOv8 algorithms on the
Visdrone2019 dataset at an IoU threshold of 0.5. Panel (a) illustrates the confusion matrix produced
by the YOLOv8s algorithm, while panel (b) presents the confusion matrix generated by the IA-
YOLOv8 algorithm.

4.3. Comparative Experiment

To comprehensively validate the superiority of the proposed IA-YOLOv8 algorithm,
this study conducted a comparative analysis with several mainstream methods currently
prevalent in the field. Under consistent experimental settings and evaluation metrics, we
assessed the performance of each method. Tables 3–5 present the experimental results
obtained on the Visdrone2019, DIOR, and AI-TOD validation sets. Moreover, for a more
in-depth assessment of the superiority of the IA-YOLOv8 algorithm proposed in this paper,
we conducted a comparison between it and the two algorithms currently dedicated for the
small object detection of unmanned aerial vehicles [65,66] on various datasets.
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Table 3. Comparative Analysis of Different Algorithms on the Visdrone2019 Dataset.

Method Backbone Network Input_Size Parameter (MB) Model Size (MB) mAP (%)

Faster RCNN [18] ResNet50 + FPN 600 × 600 41.5 83.3 28.6
Cascade-RCNN [19] ResNet50 + FPN 600 × 600 64.3 128.9 32.7

SSD [26] VGG16 300 × 300 23.7 47.7 15.3
RetinaNet [27] ResNet50 + FPN 800 × 800 36.8 73.9 24.9

YOLOv5s CSPDarkNet-53 512 × 512 8.7 17.6 33.4
YOLOv8s [28] CSPDarkNet-53 512 × 512 10.6 21.5 34.2
YOLOv9s [29] CSPDarkNet-53 512 × 512 6.8 13.8 34.7

YOLOv10s [30] CSPDarkNet-53 512 × 512 7.7 15.6 32.5
M-YOLOv8s [65] CSPDarkNet-53 300 × 300 5.9 11.8 41.2

Imporved_YOLOv8 [66] CSPDarkNet-53 300 × 300 5.6 11.2 37.4
IA-YOLOv8 (ours) CSPDarkNet-53 512 × 512 10.9 22.1 42.1

Table 4. Comparative Analysis of Different Algorithms on the DIOR Dataset.

Method Backbone Network Input_Size Parameter (MB) Model Size (MB) mAP (%)

Faster RCNN [18] ResNet50 + FPN 600 × 600 41.5 83.3 65.3
Cascade-RCNN [19] ResNet50 + FPN 600 × 600 64.3 128.9 72.7

SSD [26] VGG16 300 × 300 23.7 47.7 55.4
RetinaNet [27] ResNet50 + FPN 800 × 800 36.8 73.9 68.8

YOLOv5s CSPDarkNet-53 512 × 512 8.7 17.6 79.1
YOLOv8s [28] CSPDarkNet-53 512 × 512 10.6 21.5 79.3
YOLOv9s [29] CSPDarkNet-53 512 × 512 6.8 13.8 78.9

YOLOv10s [30] CSPDarkNet-53 512 × 512 7.7 15.6 77.1
M-YOLOv8s [65] CSPDarkNet-53 300 × 300 5.9 11.8 80.7

Imporved_YOLOv8 [66] CSPDarkNet-53 300 × 300 5.6 11.2 80.2
IA-YOLOv8 (ours) CSPDarkNet-53 512 × 512 10.9 22.1 82.3

Table 5. Comparative Analysis of Different Algorithms on the AI-TOD Dataset.

Method Backbone Network Input_Size Parameter (MB) Model Size (MB) mAP (%)

Faster RCNN [18] ResNet50 + FPN 600 × 600 41.5 83.3 25.6
Cascade-RCNN [19] ResNet50 + FPN 600 × 600 64.3 128.9 27.4

SSD [26] VGG16 300 × 300 23.7 47.7 14.7
RetinaNet [27] ResNet50 + FPN 800 × 800 36.8 73.9 26.3

YOLOv5s CSPDarkNet-53 512 × 512 8.7 17.6 30.7
YOLOv8s [28] CSPDarkNet-53 512 × 512 10.6 21.5 35.9
YOLOv9s [29] CSPDarkNet-53 512 × 512 6.8 13.8 30.9

YOLOv10s [30] CSPDarkNet-53 512 × 512 7.7 15.6 29.5
M-YOLOv8s [65] CSPDarkNet-53 300 × 300 5.9 11.8 38.6

Imporved_YOLOv8 [66] CSPDarkNet-53 300 × 300 5.6 11.2 37.4
IA-YOLOv8 (ours) CSPDarkNet-53 512 × 512 10.9 22.1 39.8

As presented in Table 3, the Faster R-CNN algorithm, a classical two-stage detection
approach, possesses a parameter volume of 41.5 MB and a model size of 83.3 MB, featuring
a relatively high complexity. Nevertheless, its detection accuracy is relatively low, with
a mean average precision (mAP) merely reaching 28.6%. This implies that, in scenarios
with limited resources or stringent real-time requirements, it might not be the optimal
option. The Cascade-RCNN algorithm, by virtue of its cascading structure, significantly
enhanced the detection accuracy, raising the mAP by 4.1% compared to Faster R-CNN.
However, this improvement was accompanied by an additional 22.8 MB of parameters and
a 45.6 MB increment in the model size. Conversely, the SSD algorithm, an early one-stage
detection method, despite having a parameter size of 23.7 MB and a model size of 47.7 MB,
exhibited suboptimal performance (with an mAP of only 15.3%) in complex environments,
highlighting its limitations in such contexts. After the introduction of the focal loss function,
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RetinaNet achieved a significant improvement based on SSD, increasing the mAP by 9.6%,
although this also led to a parameter increase of 13.1 MB and a model size increase of
26.2 MB compared to the SSD algorithm. The YOLO series represents a new generation of
one-stage detection methodologies that integrate lightweight models with high detection
precision and has received wide acclaim in real-time applications. Notably, YOLOv5s
achieved an mAP of 33.4% while maintaining a parameter size of only 8.7 MB and a model
size of 17.6 MB, significantly outperforming the previously mentioned algorithms. Com-
pared to YOLOv5s, YOLOv8s realized an mAP improvement of 0.8%, while only increasing
the parameter size by 1.9 MB and the model size by 3.9 MB. Meanwhile, compared to
the YOLOv8s algorithm, YOLOv9s achieved an mAP growth of 0.5% while reducing the
parameter size and model size by 3.8 MB and 7.7 MB, respectively. Despite the fact that the
parameter size of YOLOv10s was approximately 0.9 MB larger than that of YOLOv9s while
the model size was 1.8 MB larger, unfortunately, its mAP decreased by approximately 2.2%.
Compared to YOLOv9s, the IA-YOLOv8 algorithm proposed in this paper witnessed a
significant mAP improvement of 7.4% while only increasing the parameter size and model
size by 4.1 MB and 8.3 MB, respectively, thereby demonstrating remarkable performance
enhancement in this context. Additionally, when comparing M-YOLOv8s with IA-YOLOv8,
although the parameter size and model size decreased by 5.0 MB and 10.3 MB, respectively,
the mAP decreased by 0.9%. When comparing Improved_YOLOv8 with IA-YOLOv8, the
parameter size and model size decreased by 5.3 MB and 10.9 MB, respectively, and the
mAP decreased by 4.7%. It is evident that although the mAP values of M-YOLOv8s and
Improved_YOLOv8 algorithms are slightly lower than the algorithm proposed in this paper,
their parameter sizes and model sizes are much smaller than those proposed herein. This is
because both the M-YOLOv8s and Improved_YOLOv8 algorithms eliminated the feature
mapping layers responsible for detecting large targets, resulting in a significant reduction
in model size and parameter volume. However, their drawback lies in that, during the
experiments, it was discovered that the computational complexity of the M-YOLOv8s and
Improved_YOLOv8 algorithms is far greater than that of the algorithm proposed in this
paper, leading to higher requirements for the equipment.

The experimental results presented in Tables 4 and 5 indicate that the IA-YOLOv8 al-
gorithm proposed herein attains average precisions (mAP) of 82.3% and 39.8% on the DIOR
and AI-TOD datasets, respectively. This showcases a superior performance in comparison
to other algorithms and accentuates its robust generalization capability. Notably, contrary
to the trend witnessed for YOLOv9s on the VisDrone2019 dataset, as well as on the DIOR
and AI-TOD datasets, the reduction in the quantity of parameters and model size does
not align with an enhancement in performance. The mAP of YOLOv9s declines as both
the number of parameters and the model size decrease. This phenomenon underlines the
inadequate generalization ability of YOLOv9s within the context of optical remote sensing
image processing.

4.4. Visual Analysis

In order to evaluate the performance of the IA-YOLOv8 algorithm proposed in this
study for small target detection more intuitively and effectively, we selected detection
samples from the three test sets of Visdrone2019, DIOR, and AI-TOD. Incorporating the
outcomes of the aforementioned comparative experiments, a visualization is presented.
Specifically, Figure 9 presents the comparison results of IA-YOLOv8 and YOLOv9s on
the Visdrone2019 dataset; Figure 10 showcases the comparison status of IA-YOLOv8 and
YOLOv8s on the DIOR dataset; and Figure 11 exhibits the comparative analysis of IA-
YOLOv8 and YOLOv8 on the AI-TOD dataset. The achievements of these visualization
experiments offer direct evidence for the performance of the IA-YOLOv8 algorithm.
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Figure 9. Detection results of YOLOv9s and IA-YOLOv8 on the Visdrone2019 test dataset. The figures
in (a–c) illustrate the input images. The figures in (a1,b1,c1) present the detection results obtained
using YOLOv9s. The figures in (a2,b2,c2) present the detection results obtained using IA-YOLOv8.

According to Figure 9, the red dashed boxes delineate the areas of comparison for
the two algorithms. A comparison between Figure 9(a1,a2) reveals that the YOLOv9s
algorithm misclassifies a van as a car and fails to detect low-resolution individuals, whereas
the IA-YOLOv8 algorithm effectively mitigates both false positives and missed detections.
In comparing Figure 9(b1,b2), it is evident that the IA-YOLOv8 algorithm successfully
identifies cars at greater distances with lower resolution, while also demonstrating robust
performance in suppressing instances where YOLOv9s misidentifies vans as cars and
trucks as buses. Similar trends are observed in the comparison between Figure 9(c1,c2).
These findings indicate that, on the Visdrone2019 test set, IA-YOLOv8 exhibits superior
capabilities in small object detection compared to YOLOv9s, significantly reducing both
the false positive rates and missed detections.

According to Figure 10, the blue dashed lines delineate the areas of comparison for
the two algorithms. A comparative analysis of Figure 10(a1,a2) reveals that the YOLOv8s
algorithm fails to detect low-resolution storage tanks and red vehicles, as well as exhibiting
missed detections for vehicles whose colors closely match those of their surrounding en-
vironment. In contrast, the IA-YOLOv8 algorithm successfully identifies these objects. In
examining Figure 10(b1,b2), it is evident that in scenes featuring storage tanks, the YOLOv8s
algorithm struggles to recognize tanks with similar background colors and lower reso-
lutions, whereas the IA-YOLOv8 algorithm demonstrates accurate detection capabilities.
Furthermore, a comparison between Figure 10(c1,c2) indicates that for ships characterized
by low resolution and sparse pixel density, the YOLOv8s algorithm is prone to missed
detections. Conversely, the IA-YOLOv8 algorithm exhibits robust detection performance.
In summary, on the DIOR test set, the IA-YOLOv8 algorithm shows significant advantages
over its YOLOv8s counterpart.
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Figure 10. Detection results of YOLOv8s and IA-YOLOv8 on the DIOR test dataset. The figures in
(a–c) illustrate the input images. The figures in (a1,b1,c1) present the detection results obtained using
YOLOv8s. The figures in (a2,b2,c2) present the detection results obtained using IA-YOLOv8.

According to Figure 11, the green dashed lines delineate the comparison regions for
the two algorithms. Through the comparison of Figure 11(a1,a2), it can be ascertained
that the YOLOv8s algorithm fails to detect low-resolution “persons” and “vehicles”. By
contrast, the IA-YOLOv8 algorithm can successfully identify these objects. When observ-
ing Figure 11(b1,b2), it is shown that in scenarios containing “vehicles”, the YOLOv8s
algorithm has a considerable miss detection rate for low-resolution “vehicles”, while the
IA-YOLOv8 algorithm not only exhibits precise detection capabilities but also reduces the
miss detection rate to a certain extent. Likewise, by contrasting Figure 11(c1,c2), it can be
observed that for “vehicles” with a low resolution, the YOLOv8s algorithm is prone to miss
detections. Conversely, the IA-YOLOv8 algorithm presents robust detection performance.
In conclusion, on the AI-TOD test set, the IA-YOLOv8 algorithm demonstrates significant
superiority over the YOLOv8s algorithm.

To further validate the effectiveness of IA-YOLOv8 from a visual perspective, we
employed gradient-weighted class activation mapping (Grad-CAM) for an interpretability
analysis of the IA-YOLOv8 method. By generating heatmaps for both YOLOv9s and
IA-YOLOv8 using Grad-CAM, we obtained a clear representation of the extent to which
each network model focuses on different regions within the image. In these heatmaps,
red indicates areas of highest attention, while blue signifies areas with minimal focus. As
illustrated in Figure 12, the experimental results indicate that YOLOv8s exhibits suboptimal
performance in object aggregation and demonstrates limited capability in capturing distant
small objects. Conversely, IA-YOLOv8 not only effectively concentrates on objects intended
for detection and recognition but also significantly outperforms YOLOv8s in its ability to
capture distant small objects. Thus, the IA-YOLOv8 method proposed in this study shows
marked advantages in small object detection tasks.
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5. Conclusions

In this paper, we proposed IA-YOLOv8, a UAV small object detection algorithm
that addresses the challenges of identifying low-resolution and indistinct small objects in
UAV remote sensing images by incorporating an intra-group multi-scale fusion attention
mechanism and adaptive weighted feature fusion mechanism. The algorithm effectively
mitigates detail loss associated with the original SPPF’s reliance on Max pooling alone by
integrating Avg pooling and Max pooling, thereby significantly enhancing the model’s
capacity to capture and represent small object features. Furthermore, an adaptive feature
fusion module combines deep semantic features with shallow detail features to enable a
more comprehensive capture of small object characteristics. Additionally, we introduced
a lightweight intra-group multi-scale fusion attention module to improve small object
feature information while reducing background interference. Experimental results on the
Visdrone2019, DIOR, and AI-TOD datasets demonstrate that our IA-YOLOv8 algorithm
achieves mAP values of 42.1%, 82.3%, and 39.8%, respectively, requiring only 10.9 MB
of parameters, thereby showcasing substantial improvements over the existing object
detection algorithms.

Future research will explore the integration of super-resolution techniques to further
enhance detection capabilities for such minuscule objects, thereby improving existing mod-
els’ efficacy in extreme small object detection. Moreover, challenges associated with sample
annotation represent another critical factor influencing small object detection performance.
The infrequent occurrence of small objects in remote sensing imagery combined with a com-
plex annotation process renders the current datasets insufficiently comprehensive across
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diverse scenarios. Consequently, we aim to investigate few-shot learning methodologies in
future studies to address the issues related to inadequate labeled data and enhance both
model generalization and detection performance.
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