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Abstract: Although linear discriminant analysis (LDA)-based subspace learning has been widely ap-
plied to hyperspectral image (HSI) classification, the existing LDA-based subspace learning methods
exhibit several limitations: (1) They are often sensitive to noise and demonstrate weak robustness;
(2) these methods ignore the local information inherent in data; and (3) the number of extracted
features is restricted by the number of classes. To address these drawbacks, this paper proposes a
novel joint sparse local linear discriminant analysis (JSLLDA) method by integrating embedding
regression and locality-preserving regularization into the LDA model for feature dimensionality
reduction of HSIs. In JSLLDA, a row-sparse projection matrix can be learned, to uncover the joint
sparse structure information of data by imposing a L2,1-norm constraint. The L2,1-norm is also
employed to measure the embedding regression reconstruction error, thereby mitigating the effects
of noise and occlusions. A locality preservation term is incorporated to fully leverage the local
geometric structural information of the data, enhancing the discriminability of the learned projec-
tion. Furthermore, an orthogonal matrix is introduced to alleviate the limitation on the number
of acquired features. Finally, extensive experiments conducted on three hyperspectral image (HSI)
datasets demonstrated that the performance of JSLLDA surpassed that of some related state-of-the-art
dimensionality reduction methods.

Keywords: hyperspectral image (HSI); dimensionality reduction; linear discriminant analysis;
embedding regression regularization

1. Introduction

With the rapid advancement of hyperspectral imaging technology, its applications
have proliferated across various fields, including agricultural [1–3] and forestry manage-
ment [4,5], urban planning [6–8], international relations [9], and resource exploration [10,11].
Compared to traditional remote sensing images, hyperspectral images (HSIs) offer superior
spectral resolution and a wealth of spectral information, which facilitates the recognition
of ground objects [12]. Nevertheless, the high spectral dimensionality of HSIs presents
significant challenges for their processing and analysis.

Dimensionality reduction (DR) is an effective approach for addressing the challenges of
high data redundancy and huge data volumes [13]. DR techniques can eliminate redundant
information by transforming high-dimensional data into more discriminative low-dimensional
subspaces, which has become an important step for the analysis of HSIs. Over the past decades,
researchers have proposed a variety of DR methods, which can mainly be categorized into
linear and nonlinear DR approaches. The most well-known linear DR methods are principal
component analysis (PCA) [14] and linear discriminant analysis (LDA) [15], whereas Laplacian
eigenmaps (LE) [16], isometric mapping (ISOMAP) [17], and locality-preserving projection
(LPP) [18] represent the foremost methods for tackling nonlinear data. These methodologies
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primarily focus on learning projections from distinct local geometric structures within the raw
data. In contrast to PCA and LDA, they are capable of preserving the spatial local geometric
structure inherent in the original data, yet they are not inherently suited for classification tasks,
as the features they derive do not inherently possess discriminability [19].

LDA stands as one of the most frequently utilized methods for obtaining discrimina-
tive features in image classification tasks [20]. It projects the data into a low-dimensional
space where samples from the same class are as close together as possible, while samples
from different classes are positioned as far apart as possible. Various extended mod-
els based on LDA have also been proposed, such as orthogonal LDA (OLDA) [21] and
discriminative local alignment (DLA) [22]. Acknowledging LDA’s approximation error,
Wang et al. [23] introduced trace ratio LDA (TRLDA) as an optimal LDA solution. They
further proposed optimal dimensionality LDA (ODLDA) to identify the optimal subspace
dimension. To overcome the limitation that LDA cannot correctly describe internal structure,
Zhu et al. [24] defined a scatter matrix based on a neighborhood composed of reverse
nearest neighbors. However, these LDA extension methods were all developed by utilizing
L2-norm as a metric criterion, which can make models sensitive to noise and outliers. To
mitigate the impact of noise, robust feature extraction techniques have garnered significant
attention across various fields. A commonly adopted approach to enhancing robustness
involves integrating robust metrics to refine existing feature extraction models. For instance,
L1-norm was applied to mitigate the negative effects of noise, and L1-norm PCA and L1-
norm-2DPCA were proposed for robust feature extraction [25,26]. Lu et al. [27] enhanced
the robustness of two-dimensional locality-preserving projections (2DLPP) by introducing
the nuclear norm. Zhang et al. [28] minimized reconstruction errors based on the nuclear
norm and L2,1-norm, and proposed two 2DNPP methods. Gu et al. [29] addressed the issue
of the classical CSP based on the squared Frobenius norm being sensitive to noise by utiliz-
ing the L2,1-norm, and proposed a regularized version of the common spatial pattern based
on the L2,1-norm (RCSP-L2,1). Nie et al. [30] proposed a robust PCA method based on L2,1-
norm maximization, which addressed the processing challenges of high-dimensional data
through non-greedy optimization algorithms, overcoming the sensitivity to outliers and
the high computational complexity of traditional PCA. Zhang et al. [31] proposed a novel
low-rank-preserving embedding regression (LRPER) approach, which employs the robust
L2,1-norm to measure the reconstruction error and regression loss, thereby effectively mod-
eling noise and occlusions. Deng et al. [32] utilized the adaptive L2,p-norm to model noise
and residuals in a low-dimensional space, enhancing the robustness and generalization.

As the L2,1-norm is an effective approach for obtaining joint sparse projections for
discriminative feature selection or extraction, a plethora of joint sparse projection learning
methods based on the L2,1-norm have been developed. In [33], Nie et al. employed L2,1-
norm regularization to select features across all data points through joint sparsity. In
an unsupervised learning environment, Yang et al. [34] introduced a discriminative L2,1-
norm minimization algorithm (UDFS) for effective feature selection without labels. Robust
sparse linear discriminant analysis (RSLDA) [35] strategically incorporates the L2,1-norm
to dynamically select the most discriminative features for enhanced classification, thus
optimizing the discriminative analysis process. Tang et al. [36] devised an unsupervised
linear feature selective projection (FSP) method for feature extraction, by integrating low-
rank embedding, dual Laplacian regularization, and L2,1-norm minimization. Li et al. [37]
constructed a new linear discriminant analysis method characterized by robustness and
sparsity using the L1-norm and L2,1-norm, which can obtain all discriminant directions
simultaneously. Long et al. [38] combined LPP with the L2,1-norm to achieve simultaneous
feature extraction and feature selection.

Although employing a sparse constraint allows selecting the most significant features
for the purpose of feature extraction, it also has several inherent limitations. Firstly, these
methods tend to focus primarily on the global structural information of data samples, often
neglecting the intrinsic local geometric structure of the data. This local information is
crucial for capturing subtle differences between data points and their local neighborhood
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relationships. The neglect of local information may result in the reduced feature representa-
tions failing to fully preserve the complex structure of the original data, thereby affecting
the accuracy of subsequent analysis tasks. Secondly, most of these methods lack robustness
to noise. Additionally, while the low-dimensional feature spaces generated by current meth-
ods achieve effective data compression, they struggle to directly identify which features
are more important or discriminative for specific target tasks. Furthermore, many existing
methods emphasize enhancing the discriminability of features by designing regression loss
functions that maximize the feature differences between different categories or samples.
However, this process often considers projection learning and regression optimization in
isolation, overlooking the potential interactions and synergies between these two stages.

In response to the aforementioned issues, we propose a novel robust dimensionality
reduction method based on LDA, termed joint sparse local linear discriminant analysis
(JSLLDA). The LPP-regularization term is introduced to maintain the neighborhood rela-
tionship of the original samples by constructing a nearest neighbor weighted graph, so as to
learn the projection by simultaneously using the global information and local information
of the data. To enhance the robustness of the model, the robust measure L2,1-norm is
employed to evaluate the regression loss. Since the L2,1-norm does not involve squaring
operations, it reduces the impact of outliers on the distance measurements. Unlike the L1-
norm, the L2,1-norm also enforces row sparsity, which can make the error terms sparse and
thereby fit the noise during the projection learning process. This enhances the robustness
against outliers. In addition, JSLLDA also uses L2,1-norm regularization to constrain the
projection matrix. Unlike the L1-norm, the L2,1-norm enforces row sparsity; that is, more
discriminative features are given higher weights, while redundant information and noise
are given lower weights when obtaining low-dimensional features. This not only improves
the robustness of the model, but also enhances the interpretability of the obtained low-
dimensional features. Most importantly, the proposed method relates the projected data to
the original label information through an orthogonal matrix; that is, the interaction between
projection learning and regression is considered through a linear regression variant. The
main contributions of this work are summarized as follows:

(1) To address the issues such as insufficient robustness, limitations in feature di-
mensions, and the absence of locality manifold structures that currently affect LDA-based
subspace learning methods, a new robust dimensionality reduction method named JSLLDA
is proposed by integrating embedding regression and locality-preserving regularization
into the LDA model.

(2) In JSLLDA, the locality-preserving regularization can capture the locality manifold
geometric structural information, while the L2,1-norm imposed on the projection matrix
can reveal the joint sparse information of the data, significantly enhancing the robustness
against noise. Moreover, the embedding regression term can overcome the limitations
in the feature dimensions of LDA and improve the discriminability of low-dimensional
features by fully using the prior information.

(3) An alternating iteration algorithm was developed to improve the JSLLDA model,
and its computational complexity was analyzed both theoretically and numerically. Exper-
iments were conducted on three public HSI datasets, and the associated results verified
that the proposed method achieved a better classification performance than several state-
of-the-art methods. Specifically, the robustness analysis and ablation study of the proposed
JSLLDA method are discussed in detail.

2. Methodology

In this section, some notations commonly used in this study are first introduced. Then,
we review related foundational works, which include linear regression (LR) and linear
discriminant analysis (LDA). Finally, the formulation and optimization of the proposed
method are presented.
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2.1. Notations and Definitions

X = [x1, x2, . . . , xn] ∈ Rm×n represents the original high-dimensional data with n
samples, and Y ∈ Rc×n is the label information, where c denotes the number of classes. For
a square matrix M, its ith row data are denoted mi,:, and its ith row and jth column data
are denoted mij. The trace of matrix M is written as Tr(M). The transposition of matrix M
is denoted by MT . The L2,1-norm is defined as follows:

∥M∥2,1 =
n

∑
i=1

∥mi,:∥ =
n

∑
j=1

√
m

∑
i=1

m2
ij.

2.2. Linear Regression

Traditional linear regression (LR) mines some kind of mapping relationship hidden in
the given sample and label information [39]. It is one of the most important machine tech-
niques and has a wide range of applications in image classification and feature extraction.
Generally, the formula for LR is as follows:

W∗ = argmin
W

∥WTX − Y∥2
F. (1)

In Equation (1), W is the regression matrix, the linear regression model will choose the
best regression matrix as much as possible, so it can make the output value WTX as close as
possible to the real label Y. Generally, this method of solving a model based on minimizing
the mean square error is called the “least squares method” and is solved as follows:

W∗ =
(

XTX
)−t

XTY. (2)

Unfortunately, the classical LR model measures the regression error with the F-
norm, which is sensitive to noise. Thereby, the generalization and robustness of LR is
generally unsatisfactory.

2.3. Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a widely used supervised dimensionality reduc-
tion algorithm [40]. Its main purpose is to make data compact within the same class and as
dispersed as possible between classes after transforming the data into a low-dimensional
space. Thus, the objective function of LDA is defined as follows:

P = arg min
PT P=1

PT(Sw − λSb)P (3)

where λ is a small positive constant. LDA finds a subspace to distinguish different classes
by minimizing the rank of the intra-class dispersion matrix Sw and maximizing the rank of
the inter-class dispersion matrix Sb. Specifically, Sw and Sb are defined as follows:

Sw =
1
n

c

∑
i=1

ni

∑
j=1

(
xi

j − mi

)(
xi

j − mi

)T
(4)

Sb =
1
n

c

∑
i=1

ni(mi − m)(mi − m)T (5)

where c is the number of classes in the sample, the number of samples in the ith class is
denoted as ni, and the jth sample of the ith class is denoted as xi

j. The mean vector of class i

samples is mi =
1
ni

∑
nj
j=1 xi

j, and the mean feature of all samples is m = 1
n ∑c

i=1 ∑ni
j=1 xi

j. Nev-
ertheless, when LDA is applied to HSI dimensionality reduction, the number of extractable
features is inevitably constrained by the number of classes. Although the projections ob-
tained by LDA can reduce the distance between samples of the same class and increase the
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separability between different classes, they overlook the locality structural information of
HSI data. However, the locality information often plays an important role in the feature
dimensionality reduction of HSIs. What is worse, the number of features extracted by LDA
is limited by the number of classes, with a maximum of c − 1 features.

2.4. Formulation of JSLLDA

As previously mentioned, most existing LDA-based dimensionality reduction methods
overlook the locality structural information within data, which includes critical information
such as the spatial neighborhood relationships between data samples. Ignoring this infor-
mation may prevent the model from capturing subtle differences in the data. To address
this issue, we introduce a locality-preserving regularization term into the LDA model to
reveal the locality structural information. Mathematically, this can be expressed as follows:

min
P,W,E

Tr
(

PT(Sw − µSb)P
)
+ λ1 Tr

(
PTXLXT P

)
(6)

where P ∈ Rm×c is the projection matrix, and µ is a balance factor. Sb is the between-class
scatter matrix, and Sw is the within-class matrix. S is an undirected domain graph, in
which the points represent sample points and the edges represent the nearest neighbor
relationships between data samples. The Laplace matrix is L = D − W, where D is a
diagonal matrix where each element on the diagonal is the sum of the row or column
elements of S.

Further considering linking the projection with regression, a linear regression variant
is introduced into the model. In order to obtain more feature information, the regression
matrix is decomposed into a regression matrix W and a projection matrix P. In detail, W
and P are the orthogonal matrix and projection matrix of c × k, m × k, respectively, and k
denotes the number of features to be extracted. The projection matrix P can only obtain c− 1
projections, while the orthogonal matrix W has the size c × k, implying that k projections can
be obtained. k can be set to any positive integer by the user, as required. At this point, the
number of features acquired by LDA is no longer limited by the number of classes. More
importantly, a regression matrix W is introduced to consider the reconstruction relationship
between the projected samples and the label information, i.e., the constraint Y = WPTX + E
can make the samples projected onto the low-dimensional space retain the label energy of
the original data as much as possible. Equation (6) is rewritten as follows:

min
P,W,E

Tr
(

PT(Sw − µSb)P
)
+ λ1 Tr

(
PTXLXT P

)
s.t. Y = WPTX + E, WTW = I.

(7)

E denotes the reconstruction error, which is utilized to fit noise. Considering the
sparseness and robustness of the L2,1-norm, which mitigates the influence of outliers, we
utilize this norm to measure the reconstruction error E.

min
P,W,E

Tr
(

PT(Sw − µSb)P
)
+ λ1 Tr

(
PTXLXT P

)
+ λ2∥E∥2,1

s.t. Y = WPTX + E, WTW = I.
(8)

In addition, the L2,1-norm can be further applied to constrain the projection matrix to
further mine the joint sparse information and to distinguish high-low-dimensional features.
Specifically, imposing an L2,1-constraint on the projection matrix can render the matrix row-
sparse, thereby assigning larger weights to significant features, while assigning weights
close to zero to redundant features or noise. Evidently, these features endowed with larger
weights are precisely what we need. Then, the objective function of JSLLDA is formulated
as follows:
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min
P,W,E

Tr
(

PT(Sw − µSb)P
)
+ λ1 Tr

(
PTXLXT P

)
+ λ2∥E∥2,1 + λ3∥P∥2,1

s.t. Y = WPTX + E, WTW = I.
(9)

where λ1, λ2, and λ3 are regularization parameters. P is the projection matrix, and µ is
balance factor. In the above model, the first term is a linear discriminant analysis term,
which promotes the low-dimensional subspaces to be more cohesive in the same class.
The second term is the LPP term, which makes up for the disadvantage of ignoring local
information in the linear discriminant analysis and makes full use of local information to
improve the representation ability of the extracted features. The third term utilizes the
L2,1-norm to measure the reconstruction error. Compared with the Frobenius norm, it
lacks a square operation, which is beneficial for improving the robustness of the model. In
addition, the fourth term imposes a L2,1-constraint on the projection matrix P, which gives
more weight to important features and less weight to redundant features or noise close to
0, showing that those features are needed for the actual task.

2.5. Optimization to JSLLDA

In this section, an iterative method is designed to solve the optimization problem
of JSLLDA by using the alternating direction method of multipliers (ADMM) [41]. The
corresponding generalized Lagrangian function for problem (9) is written as

L(W, P, E, Y) = Tr
(

PT(Sw − µSb)P
)
+ λ3∥P∥2,1 + λ2∥E∥2,1+

λ1 Tr
(

PTXLXT P
)
− 1

2β
∥η∥2

F +
β

2

∥∥∥∥Y − WPTX − E +
η

β

∥∥∥∥2

F
,

(10)

where β is the penalty factor and Y is the Lagrange multiplier. The specific solution scheme
is as follows:

• Step 1: Fix W and E to update P. The problem Equation (10) is transformed into the
following optimization problem:

min
P

Tr
(

PT(Sw − µSb)P
)
+ λ3∥P∥2,1 + λ1 Tr

(
PTXLXT P

)
+

β

2

∥∥∥∥Y − WPTX − E +
η

β

∥∥∥∥2

F
,

(11)

where H is defined as Hii =
1

2∥pi∥2
, Y − E + η

β is defined as M.

By evaluating the derivative of Equation (11) with respect to P and setting it to 0, the
following can be obtained:

2(Sw − µSb)P + λ3HP + β
(

XXT P − XMTW
)
+ λ1XLXT P = 0. (12)

then, P is calculated as follows:

P =
[
2(Sw − µSb) + λ3H + βXXT + λ1XLXT

]−
βXMTW. (13)

• Step 2: Fix P and E to update W. The solution to W can be obtained by minimizing
the equivalence problem (7)

min
WTW=I

∥∥∥∥Y − WPTX − E +
η

β

∥∥∥∥2

F
. (14)
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Let Y − E + η
β = M, and problem (14) is rewritten as

min
WTW=I

∥∥∥M − WPTX
∥∥∥2

F
= max

WTW=I
Tr
(

WT MXT P
)

. (15)

Suppose the SVD of MXT P is

SVD
(

MXT P
)
= USVT . (16)

Then, the solution of W can be obtained by

W = UVT . (17)

• Step 3: Fix W and P to update E. Let us discuss a situation where W and P are
provided. At this point, E can be solved using the following function:

min
E

λ2∥E∥2,1 +
β

2

∥∥∥∥Y − WPTX +
η

β
− E

∥∥∥∥2

F
. (18)

According to [42], E can be expressed as the following closed solution:

E = Ω λ2
β

(
Y − WPTX +

η

β

)
, (19)

where Ω is the shrinkage operator.
• Step 4: update η, β

η = η + β
(

Y − WPTX − E
)

,

β = min(ρβ, βmax).
(20)

where ρ and βmax are constant. The iterative solving process of JSLLDA is summarized
in Algorithm 1.

Algorithm 1: The Iterative Algorithm for Solving JSLLDA
Input: Sample data X, label matrix Y, class compactness graph weight matrix S,
reduced dimension m, parameters λ1, λ2, λ3, and maximum number of iteration
steps T.
Initialize: β = 0.1, ρ = 1.01, βmax = 105, µ = 10−5. Q = 0, E = 0, η = 0, where 0 is
zero matrix, initialize P as an orthogonal matrix.
while not converge do

1. Update P by using (13),
2. Update W by using (17),
3. Update E by using (19),
4. Update η, β by using (20).
5. Check the convergence conditions

end while
Output: W, P, E.

3. Experiments

In this section, the effectiveness of JSLLDA was validated on HSIs using the Salinas
dataset, the University of Pavia dataset, and the Heihe dataset. To provide a comprehensive
comparison, results from several state-of-the-art algorithms, including LDA [15], LPP [18],
RSLDA [35], TRLDA [23], LRPER [31], and L2,p-RER [32], are presented. SVM classifiers
were utilized to classify the dimensionality-reduced data, with classification accuracy
serving as the quantitative evaluation metric for each method. The objective metrics
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employed were the overall accuracy (OA), the average accuracy (AA), the kappa coefficient
(κ), and standard deviation.

3.1. Experimental Datasets

(1) The Salinas hyperspectral dataset was captured by the AVIRIS sensor over Salinas
Valley, California, with a spatial resolution of 3.7 m per pixel. Originally consisting of
224 bands, the dataset was reduced to 204 usable bands by removing bands [108–112],
[154–167], and the 224th band, due to water absorption. The image dimensions are
512 × 217 pixels, yielding a total of 111,104 pixels, of which 54,129 pixels are of practi-
cal use. These pixels are categorized into 16 classes, including fallow, grapes_untrained,
and soil_vineyard_develop.

(2) The University of Pavia hyperspectral dataset was captured by the Reflective Optics
Spectrographic Imaging System in 2003, covering part of the city of Pavia, Italy, with a
spatial resolution of 1.3 meters. The dataset originally contained 115 bands, but 12 bands
were removed due to damage, leaving 103 spectral bands in use. The image dimensions are
610 × 340 pixels, totaling 2,207,400 pixels. Excluding background elements, 42,776 pixels
are of practical use. These pixels are classified into nine different categories, including
bitumen, trees, and gravel.

(3)The Heihe dataset was collected by CASI/SASI sensors. There are eight types of
land cover in the dataset, and the dataset size is 684 × 453 pixels, with a spatial resolution of
2.4 m. After removing 14 bands that are heavily affected by noise, the remaining 135 bands
were utilized.

3.2. Evaluation Index

This subsection describes how OA, AA, and κ are calculated. To compute OA, AA,
and κ, it is first necessary to compute the following confusion matrix:

M =

 m11 . . . m1C
...

. . .
...

mC1 · · · mCC

 (21)

In Equation (21), mij denotes the number of samples that originally belonged to class i
but were predicted to be class j, and C denotes the total number of classes. OA is the ratio
of the number of data samples accurately classified to the total number of samples tested
and is calculated as follows:

OA =
C

∑
i=1

mii
Ntest

(22)

In Equation (22), Ntest represents the total number of test set samples and mii is the
diagonal element in the confusion matrix, representing the number of samples of class i
correctly classified. AA is the average of the accuracy of each category and is calculated
as follows:

AA =
1
C

C

∑
i=1

mii
Ni

(23)

where Ni is the total number of samples of class i. κ is a statistical measure used to assess
the agreement between the classification results and the true classification. κ ranges from
−1 to 1, where higher values indicate a stronger alignment between the method’s results
and the actual classifications. The coefficient is calculated as follows:

κ =
OA − pe

1 − pe
(24)
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where pe is the expected random classification accuracy calculated as pe =
1

N2 ∑C
i=1(Mi· × M·i).

Mi· is the sum of row i in the confusion matrix, and M·i is the sum of column i in the
confusion matrix. For the metrics OA, AA, and κ, higher values indicate better model
performance. Conversely, for the standard deviation, a lower value signifies greater stability
in the model’s performance.

3.3. Experiment Setup

For the proposed JSLLDA, there are three crucial parameters: the regularization
parameters λ1, λ2, and λ3. These parameters control the effect of the locality-preserving
term, the reconstruction error term, and the joint sparse term in the objective function,
respectively. To achieve the best performance for JSLLDA, we conducted cross-validation
experiments on the three datasets separately. The parameters λ1, λ2, and λ3 were tested
with values set to 0.1, 0.01, 0.001, 0.0001, 0.00001. Figures 1–3 present the results of tuning
λ1, λ2, and λ3 for the Salinas, University of Pavia, and Heihe datasets, respectively. The
red crosses in these three figures are the best parameter positions we found. For ease of
presentation, λ3 was fixed at 0.1, 0.01, 0.001, 0.0001, 0.00001, and the variations in OA with
respect to λ1 and λ2 were then analyzed. As illustrated in Figure 1, the third panel shows
that when λ3 was set to 0.001, there existed a combination of λ1 and λ2 where the overall
accuracy (OA) reached its peak. Specifically, for the Salinas dataset, the optimal parameters
were (λ1, λ2, λ3) = (0.1, 0.1, 0.001). Similarly, for the University of Pavia dataset, the second
panel of Figure 2 indicates that the model performed best when λ1, λ2, and λ3 were set to
(0.01, 0.1, 0.01). For the Heihe dataset, the optimal parameters, as shown by the red markers
in the second panel of Figure 3, were (λ1, λ2, λ3) = (0.1, 0.1, 0.01).

(a) (b) (c)

(d) (e)

Figure 1. For the Salinas dataset, the OA varied with λ1 and λ2 when λ3 was set to (a) 0.1, (b) 0.01,
(c) 0.001, (d) 0.0001, and (e) 0.00001.
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(a) (b) (c)

(d) (e)

Figure 2. For the University of Pavia dataset, the OA varied with λ1 and λ2 when λ3 was set to (a) 0.1,
(b) 0.01, (c) 0.001, (d) 0.0001, and (e) 0.00001.

(a) (b) (c)

(d) (e)

Figure 3. For the Heihe dataset, the OA varied with λ1 and λ2 when λ3 was set to (a) 0.1, (b) 0.01,
(c) 0.001, (d) 0.0001, and (e) 0.00001.

According to Figure 4, for the three hyperspectral datasets, the OA values of all
methods in the experiment, except for LDA, tended to stabilize after reaching a certain
number of retained features. Specifically, OA tended to stabilize after retaining 30 features
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for all methods except LDA. However, for LDA, since it can only obtain at most c − 1
features, in Figure 4, the low dimensional feature dimensions obtained by LDA for the Salinas
dataset, University of Pavia dataset, and Heihe dataset are set to 15, 8, and 7, respectively.
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Figure 4. The average recognition rates for the different datasets versus the different dimensions
of the features extracted by different methods. (a) The Salinas dataset. (b) The University of Pavia
dataset. (c) The Heihe dataset.

3.4. Experimental Results and Analysis

The AA, OA, κ, and their standard deviation for the different dimensionality reduc-
tion methods on the three hyperspectral datasets are presented in Tables 1–3. And the
corresponding highest classification accuracy for each class is bolded. Figures 5–7 illustrate
the visualization results obtained by applying the LDA, LPP, RSLDA, TRLDA, LRPER,
L2,p-RER, and JSLLDA methods for dimensionality reduction on the three hyperspectral
datasets, followed by classification using an SVM classifier.

For the Salinas dataset, 1% of the samples in each category were randomly selected
for training. Table 1 and Figure 5 present the numerical results and visualization of
SVM classification after dimensionality reduction using various methods on the Salinas
dataset. Table 1 provides the detailed classification accuracy for each method, as well as the
OA, AA, and the κ coefficient. Figure 5 illustrates a corresponding visual representation
of the classification results. The classification results presented in Table 1 demonstrate
that the proposed JSLLDA achieved superior performance in terms of average AA, OA,
and the κ. Specifically, JSLLDA surpassed LDA, LPP, RSLDA, TRLDA, LRPER, and L2,p-
RER by 0.52% to 8.84%, 0.2% to 6.54%, and 0.22% to 7.4% for AA, OA, and κ coefficient,
respectively. It is evident that the standard deviations of the metrics for our proposed
method were the smallest. This indicates that the performance of JSLLDA exhibited
minimal fluctuations, which typically means that results are relatively stable across multiple
experiments. Notably, JSLLDA also achieved the highest single-class accuracies for Class 2
(Broccoli-green-weeds-2), Class 3 (Fallow), Class 4 (Fallow-rough-plow), Class 5 (Fallow-
smooth), Class 6 (Stubble), Class 9 (Soil-vineyard-develop), Class 10 (Corn-senesced-green-
weeds), and Class 16 (Vineyard-vertical-trellis). These findings are further corroborated
by Figure 5, which shows that the regions corresponding to these classes were more
homogeneous compared to those obtained using other methods. In Figure 5, Classes 2
and 3 are circled with light cyan dashed lines. By comparing Class 2 in Figure 5f,h, it can
be observed that the region classified by JSLLDA, which had the highest recognition rate,
is smoother than that classified by TRLDA, which had the lowest recognition rate. This
smoother appearance was due to fewer misclassifications in JSLLDA. The same result was
found for the similar Class 3.
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Table 1. Classification accuracies obtained by applying SVM on the features extracted from the
Salinas hyperspectral dataset.

Class # LDA LPP RSLDA TRLDA LRPER L2,p-RER JSLLDA

1 93.42 ± 6.41 98.48 ± 0.36 98.24 ± 1.81 96.74 ± 1.02 100 ± 0.00 98.85 ± 0.86 98.24 ± 1.50
2 98.77 ± 0.42 99.14 ± 0.20 98.53 ± 0.46 98.45 ± 0.33 99.45 ± 0.15 99.49 ± 0.22 99.91 ± 0.05
3 92.57 ± 2.96 94.65 ± 4.30 92.72 ± 4.58 86.93 ± 6.05 77.58 ± 6.60 92.79 ± 3.74 99.12 ± 0.75
4 96.52 ± 2.54 97.68 ± 0.99 97.48 ± 1.95 98.73 ± 0.92 97.54 ± 0.07 99.23 ± 0.46 99.41 ± 0.53
5 94.73 ± 2.51 96.66 ± 1.49 95.53 ± 1.31 93.87 ± 2.45 95.07 ± 3.21 91.83 ± 4.98 98.15 ± 0.75
6 99.65 ± 0.16 99.55 ± 0.12 98.83 ± 0.36 98.54 ± 1.02 98.92 ± 0.43 99.69 ± 0.10 99.71 ± 0.21
7 99.59 ± 0.19 99.46 ± 0.11 98.57 ± 0.46 80.92 ± 5.19 99.50 ± 0.13 99.77 ± 0.09 99.72 ± 0.12
8 92.20 ± 5.60 87.18 ± 1.97 85.23 ± 2.99 80.92 ± 5.19 82.27 ± 1.81 85.37 ± 2.51 86.25 ± 1.82
9 97.55 ± 1.24 98.94 ± 0.79 97.79 ± 1.08 96.99 ± 0.85 96.36 ± 1.41 99.27 ± 0.63 99.60 ± 0.29

10 90.57 ± 2.25 84.20 ± 6.80 86.61 ± 4.28 83.39 ± 5.38 84.33 ± 2.05 93.24 ± 3.08 93.87 ± 2.07
11 91.41 ± 1.61 91.92 ± 1.54 85.87 ± 6.61 90.79 ± 3.96 33.52 ± 4.22 90.02 ± 4.02 90.84 ± 3.27
12 94.87 ± 2.27 96.99 ± 4.01 94.92 ± 3.51 98.24 ± 1.79 78.83 ± 7.24 99.44 ± 0.57 99.39 ± 0.94
13 97.92 ± 0.43 97.62 ± 0.51 96.66 ± 1.31 96.16 ± 3.05 94.08 ± 1.99 98.51 ± 0.68 97.66 ± 1.20
14 95.26 ± 1.89 93.42 ± 1.29 90.49 ± 4.70 90.09 ± 4.93 84.87 ± 3.35 96.96 ± 1.13 94.58 ± 1.72
15 16.05 ± 12.54 48.85 ± 4.67 60.33 ± 3.93 53.67 ± 7.27 64.38 ± 4.87 67.75 ± 3.78 63.44 ± 3.68
16 95.28 ± 3.45 96.77 ± 1.78 91.29 ± 2.46 90.82 ± 0.63 90.09 ± 4.09 97.70 ± 1.05 98.30 ± 0.79

AA 90.40 ± 0.73 92.59 ± 0.58 91.82 ± 0.70 86.05 ± 0.77 90.52 ± 0.86 94.37 ± 0.30 94.89 ± 0.22
OA 84.61 ± 0.63 88.23 ± 0.64 88.64 ± 0.35 86.41 ± 0.55 86.09 ± 0.37 90.95 ± 0.50 91.15 ± 0.26

κ 82.73 ± 0.74 86.84 ± 0.72 87.32 ± 0.39 84.83 ± 0.61 84.47 ± 0.42 89.91 ± 0.55 90.13 ± 0.29

For the University of Pavia dataset, 1% of the samples from each class were randomly
selected for training, while the remaining samples were used for testing. As shown in
Table 2, JSLLDA achieved an OA that was 14.24%, 11.66%, 4.58%, 6.73%, 9.58%, and 2.57%
higher than LDA, LPP, RSLDA, TRLDA, LRPER, and L2,p-RER, respectively. The standard
deviation for OA was slightly higher than that of LPP and L2,p-RER, but it was still lower
than that of the other methods. Additionally, the AA and κ coefficient were also 4.29%
to 18.75% and 3.44% to 19.79% higher, respectively. Similarly, in terms of the stability
of the AA and Kappa coefficients, JSLLDA was only slightly less stable than LPP and
L2,p-RER. Figure 6 visually confirms that JSLLDA produced smoother classification regions
compared to the other dimensionality reduction methods, particularly for Class 3 (Gravel),
Class 4 (Trees), Class 5 (Painted metal sheets), Class 6 (Bitumen), Class 7 (Bare soil), and
Class 9 (Shadows). Furthermore, despite the relatively small number of samples in Class
7 (Bitumen), the regions classified as such were notably larger and more homogeneous.
Classes 6 and 7 have been highlighted in our analysis. As shown in Table 2, LDA’s
recognition rates for Classes 6 and 7 were below 50%. Consequently, in Figure 6b, more
than half of the areas corresponding to Classes 6 and 7 are displayed in incorrect colors
due to the high number of misclassified samples. In contrast, in Figure 6h, Classes 6
and 7 exhibit a relatively higher classification accuracy, leading to a greater display of
homogeneous regions.

For the Heihe dataset, 20 samples from each class were selected for the training set,
with the remaining samples used for testing. As shown in Table 3, the proposed method
enhanced the OA by 1.31% to 20.81%, and the Kappa coefficient was 0.22% to 7.4% higher
compared to the other methods. Observing the standard deviation of OA, it is evident that
our proposed method performed comparably to LRPER, with only a slight difference. For
the AA and κ coefficient, the performance of our method was slightly inferior only to that
of L2,p-RER. In Figure 7, Class 3 has been specifically highlighted. It is observed that the
higher the recognition rate, the closer the corresponding classification result map aligned
with the actual land cover distribution of Heihe, as shown in Figure 7a.
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Table 2. Classification accuracies obtained by applying SVM on the features extracted from the
university of Pavia hyperspectral dataset.

Class # LDA LPP RSLDA TRLDA LRPER L2,p-RER JSLLDA

1 66.89 ± 3.04 79.82 ± 4.30 84.86 ± 2.01 83.79 ± 2.07 83.06 ± 1.70 90.57 ± 1.97 87.01 ± 2.47
2 93.83 ± 2.06 90.81 ± 1.05 94.52 ± 1.83 92.17 ± 2.55 96.53 ± 1.18 93.98 ± 1.24 95.56 ± 1.22
3 46.97 ± 11.03 45.91 ± 3.49 49.66 ± 3.54 49.15 ± 4.88 50.19 ± 1.12 57.22 ± 6.11 63.16 ± 3.97
4 78.95 ± 5.22 82.23 ± 1.82 78.71 ± 5.21 79.27 ± 4.96 69.25 ± 5.31 81.87 ± 2.87 82.53 ± 3.81
5 99.78 ± 0.09 98.69 ± 0.43 98.43 ± 0.84 92.35 ± 4.13 95.61 ± 5.04 98.36 ± 1.28 98.47 ± 0.93
6 31.94 ± 11.53 48.88 ± 4.58 53.83 ± 7.57 48.76 ± 7.22 21.28 ± 3.25 70.43 ± 3.66 75.77 ± 2.97
7 40.62 ± 11.58 39.82 ± 8.08 68.63 ± 9.15 66.37 ± 9.75 53.76 ± 5.38 57.66 ± 10.74 73.02 ± 5.87
8 53.951 ± 9.65 49.23 ± 6.13 84.22 ± 2.58 83.10 ± 2.49 77.96 ± 2.50 74.97 ± 3.90 85.87 ± 2.01
9 79.30 ± 6.24 87.75 ± 2.85 99.57 ± 0.27 98.98 ± 0.46 98.40 ± 1.21 97.28 ± 2.68 99.54 ± 0.31

AA 65.80 ± 3.20 69.24 ± 0.56 79.16 ± 1.24 77.10 ± 1.73 71.78 ± 0.97 80.26 ± 1.20 84.55 ± 0.82
OA 73.79 ± 1.79 76.37 ± 0.42 83.45 ± 1.00 81.30 ± 1.25 78.45 ± 1.16 85.46 ± 0.51 88.03 ± 0.70

κ 64.20 ± 2.57 68.20 ± 0.52 77.63 ± 1.37 74.78 ± 1.67 70.15 ± 1.64 80.55 ± 0.66 83.99 ± 0.94

(a) (b) (c) (d)

(e) (f) (g) (h)

Brocoli-green-weeds-1 Brocoli-green-weeds-2 Fallow Fallow-rough-plow Fallow-smooth Stubble Celery Grapes-untrained

Soil-vinyard-develop
Corn-senesced-green-

weeds
Lettuce-romaine-4wk Lettuce-romaine-4wk

WaLettuce-romaine-

4wkter
Lettuce-romaine-4wk Vinyard-untraind Vinyard-vertical-trellis

Figure 5. Classification maps of the different methods for the Salinas dataset. (a) Ground truth,
(b) LDA, (c) LPP, (d) RSLDA, (e) TRLDA, (f) LRPER, (g) L2,p-RER, (h) JSLLDA.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Asphalt Meadows Gravel Painted metal sheets Bare SoilTrees Bitumen Self-Blocking Bricks Shadows

Figure 6. Classification maps of different methods for the University of Pavia dataset. (a) Ground
truth, (b) LDA, (c) LPP, (d) RSLDA, (e) TRLDA, (f) LRPER, (g) L2,p-RER, (h) JSLLDA.

Table 3. Classification accuracies obtained by applying SVM on the features extracted from the Heihe
hyperspectral dataset.

Class # LDA LPP RSLDA TRLDA LRPER L2,p-RER JSLLDA

1 73.83 ± 11.04 78.56 ± 4.76 87.61 ± 2.49 85.12 ± 2.45 90.86 ± 1.84 90.79 ± 2.29 91.37 ± 1.52
2 73.93 ± 6.91 77.56 ± 3.79 89.06 ± 6.26 98.78 ± 0.31 92.41 ± 1.04 96.63 ± 1.21 96.96 ± 0.88
3 64.60 ± 6.46 76.05 ± 2.44 84.83 ± 2.59 78.52 ± 3.52 81.84 ± 1.49 84.71 ± 0.12 89.54 ± 3.40
4 65.26 ± 8.21 49.41 ± 12.51 71.18 ± 5.70 77.08 ± 4.18 75.75 ± 9.39 86.45 ± 1.75 85.27 ± 4.90
5 83.17 ± 5.10 79.69 ± 6.05 88.68 ± 4.19 84.78 ± 3.56 94.25 ± 1.39 94.05 ± 1.42 96.04 ± 1.01
6 55.77 ± 4.31 78.82 ± 4.84 81.52 ± 5.65 83.82 ± 4.00 83.88 ± 4.39 89.64 ± 1.50 90.67 ± 3.50
7 61.68 ± 9.87 58.19 ± 11.89 69.51 ± 5.88 75.70 ± 4.98 80.49 ± 2.60 81.61 ± 9.01 91.64 ± 2.50
8 86.20 ± 5.68 82.11 ± 5.98 90.30 ± 3.42 78.50 ± 5.48 92.22 ± 1.90 90.09 ± 1.66 92.23 ± 2.85

AA 70.56 ± 3.75 72.55 ± 1.73 82.84 ± 2.34 86.41 ± 1.55 86.17 ± 0.46 89.51 ± 1.44 92.09 ± 0.98
OA 71.48 ± 5.69 75.57 ± 2.58 86.07 ± 2.07 86.80 ± 1.25 88.36 ± 0.99 90.91 ± 0.39 92.29 ± 0.68

κ 63.40 ± 6.46 68.22 ± 3.06 81.39 ± 2.63 82.15 ± 1.65 84.30 ± 1.27 87.74 ± 0.47 89.58 ± 0.89
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Figure 7. Classification maps of the different methods for the Heihe dataset. (a) Ground truth,
(b) LDA, (c) LPP, (d) RSLDA, (e) TRLDA, (f) LRPER, (g) L2,p-RER, (h) JSLLDA.

4. Model Analysis

In this section, the computational complexity of the proposed method is first con-
sidered. Subsequently, the robustness of the model was validated through a series of
experiments, and the specific roles of each component of the model were explored. Based
on these comprehensive experimental results and analyses, a thorough discussion and
evaluation of JSLLDA is then conducted, highlighting its advantages, while also candidly
acknowledging its limitations. Finally, future research directions for JSLLDA are outlined,
and its potential value in diverse application scenarios is explored.

4.1. Computational Complexity Analysis

In this subsection, the computational complexity of JSLLDA is analyzed. Suppose that
m is the dimension of the original data, projecting P reduces the original dimension to a
low-dimensional space with d features. The major time-consuming computation is divided
into two parts, originating from step 1 and step 2 in Algorithm 1. In step 1, the main
computational cost originates from the inverse operation of the matrix, which has a time
complexity of approximately O(m3). While in step 2, the singular value decomposition of
the matrix contributes the second part of the complexity, which is approximately O(md2).
Furthermore, considering that JSLLDA requires T iterations to achieve convergence, the
total time complexity of JSLLDA can be estimated as O(T(m3 + md2)). In general, m > d,
when the total computational complexity is about O(Tm3).

To provide a straightforward comparison of the computational efficiency of various
methods, each method was executed 10 times, and the average runtime in seconds was
recorded as the experimental result. These results are presented in Table 4. Notably, all
the programs used in the aforementioned experiments were run on a computer equipped
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with a 3.40 GHz Intel(R) Core(TM) i7-13700KF CPU and 32 GB of RAM, utilizing MATLAB
2021a as the programming platform. As shown in Table 4, the LRPER method exhibited
the longest runtime across the three datasets, while LDA had the shortest runtime. The
single execution time of JSLLDA was consistently under one second, indicating a significant
advantage over comparative algorithms and demonstrating its negligible computational
burden in practical applications.

Table 4. Average calculation time (seconds) for different dimensionality reduction methods.

Dataset LDA LPP RSLDA TRLDA LRPER L2,p-RER JSLLDA

Salinas 0.018 0.054 0.2247 0.0943 20.7665 5.0521 2.6303
University of Pavia 0.0056 0.0026 0.1156 0.0455 25.6457 2.5703 1.1550

HeiHe 0.0113 0.0036 0.1159 0.0644 1.441 0.3218 0.2203

4.2. Robustness Analysis

To comprehensively assess the robustness of the proposed model, zero-mean Gaussian
noise with a local variance of 0.5 was introduced into the datasets: the first 100 spectral
bands of the Salinas dataset, the first 50 bands of the University of Pavia dataset, and the first
40 bands of the Heihe dataset. The performance of the various dimensionality reduction
methods was then evaluated on these noise-corrupted datasets, with the results presented
in Tables 5–7. And, we bolded the highest value for each metric. This thorough evaluation
aimed to demonstrate the stability and effectiveness of the model under challenging
noisy conditions.

Upon a detailed examination and analysis of the experimental results presented in
Tables 5–7, it is clear that the JSLLDA method proposed in this study significantly outper-
formed the other comparative approaches in terms of OA, AA, and κ across three datasets
with varying levels of data corruption: Salinas, University of Pavia, and Heihe. Specifically,
for the Salinas dataset, JSLLDA demonstrated a substantial improvement in OA, ranging
from 3.14% to 42.29%, highlighting its superior performance. Similarly, on the University of
Pavia dataset, JSLLDA achieved notable results, with an OA enhancement between 0.11%
and 35.22%, markedly surpassing the other benchmark algorithms. Furthermore, the evalu-
ation on the Heihe dataset revealed that JSLLDA delivered an OA improvement within the
range of 1.56% to 46.26%, further corroborating its stability and superiority across diverse
corrupted scenarios. In summary, the JSLLDA method not only demonstrated significant
efficiency in hyperspectral data classification tasks but also highlighted its robust capability
to manage complex data corruption scenarios.

Table 5. Comparison of the OA (%) classification results of the SVM classifiers after processing the
Salinas dataset corrupted with Gaussian noise, using the different dimensionality reduction methods.

Metrics LDA LPP RSLDA TRLDA LRPER L2,p-RER JSLLDA

OA 46.53 ± 1.39 76.82 ± 0.93 85.63 ± 0.62 79.54 ± 3.05 82.85 ± 0.67 77.69 ± 4.33 88.77 ± 0.72
AA 45.62 ± 1.23 77.34 ± 1.35 89.79 ± 0.96 80.78 ± 4.50 84.56 ± 0.74 75.37 ± 6.35 91.73 ± 0.57

κ 40.80 ± 1.50 74.11 ± 1.03 83.95 ± 0.69 77.09 ± 3.41 80.87 ± 0.74 75.15 ± 4.83 87.48 ± 0.80

Table 6. Comparison of the OA (%) classification results of the SVM classifiers after processing the
Pavia dataset corrupted with Gaussian noise, using the different dimensionality reduction methods.

Metrics LDA LPP RSLDA TRLDA LRPER L2,p-RER JSLLDA

OA 44.91 ± 2.58 74.41 ± 0.22 80.02 ± 0.82 78.75 ± 1.03 61.56 ± 1.50 77.19 ± 2.12 80.13 ± 0.58
AA 12.11 ± 1.85 68.08 ± 1.25 68.87 ± 2.11 66.53 ± 2.66 43.22 ± 2.85 67.05 ± 5.68 72.44 ± 2.15

κ 3.30 ± 6.21 65.76 ± 0.27 72.59 ± 1.21 70.77 ± 1.50 46.25 ± 3.06 69.39 ± 2.85 73.35 ± 0.76
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Table 7. Comparison of the OA (%) classification results of the SVM classifiers after processing the
Hiehe dataset corrupted with Gaussian noise, using the different dimensionality reduction methods.

Metrics LDA LPP RSLDA TRLDA LRPER L2,p-RER JSLLDA

OA 40.23 ± 6.16 80.37 ± 2.31 84.93 ± 1.68 78.15 ± 1.76 65.13 ± 1.64 76.68 ± 2.64 86.49 ± 1.28
AA 41.82 ± 4.56 79.34 ± 1.64 86.25 ± 1.15 76.04 ± 1.45 65.49 ± 0.39 71.58 ± 1.86 83.85 ± 0.82

κ 28.49 ± 7.09 74.25 ± 2.82 80.09 ± 2.11 71.31 ± 2.13 56.08 ± 1.74 69.22 ± 3.23 82.01 ± 1.63

4.3. Ablation Study

In this subsection, the impact of the regression regularization (RR), joint sparsity (JS),
and locality-preserving regularization (LP) terms on the performance of the proposed
JSLLDA model was analyzed via ablation experiments. Notably, when JSLLDA was
stripped of these regularization terms (RR, JS, and LP), it was reduced to the classical LDA
model, which served as the baseline for comparison. We evaluated the dimensionality
reduction models using OA, AA, and the κ coefficient. The results of the ablation study are
presented in Tables 8–10, where ‘!’ indicates that the model contains the corresponding
component and ‘%’ indicates that it does not.

As is evident from Table 8, the introduction of the RR term RR enhanced the baseline
model in terms of OA, AA, and κ by 3.45%, 3.48%, and 3.68%, respectively. This demon-
strates that the introduction of regression allowed the orthogonal matrix to better preserve
the label information in the low-dimensional data. Additionally, the orthogonal compo-
nents generated more discriminative information, which enhanced the model’s resistance
to external noise.

Furthermore, upon integrating the JS and LP terms into the baseline + RR model (i.e.,
baseline + RR + JS and baseline + RR + LP), we observed OA improvements of 4.69% and
6.16%, respectively, compared to the baseline+RR model. The JS term accentuates discrimi-
native features in high-dimensional data by assigning larger weights to salient features,
while suppressing less important ones, resulting in a more discriminative information
extraction. Meanwhile, the LPP-R term preserves the neighborhood relationships in the
original data, ensuring that the projection matrix retains the primary energy of the raw
data, thereby enhancing the discriminability of the low-dimensional space.

Crucially, the model that incorporated all three regularization terms—RR, JS, and
LPP-R (our proposed JSLLDA)—achieved the optimal classification performance, with the
OA, AA, and kappa coefficient reaching 91.24%, 95.07%, and 90.22%, respectively. These
values marked improvements of 8.73%, 9.55%, and 9.65% over the baseline model. Similar
trends were observed on the University of Pavia dataset, where the integration of RR,
JS, and LPP into the baseline model led to significant enhancements in OA, AA, and κ
by 13.85%, 16.49%, and 19.29%, respectively. Analogous conclusions held true for the
Heihe dataset.

In summary, we can confidently conclude that the inclusion of RR, JS, and LP terms
playd a pivotal role in enhancing the discriminative feature extraction capabilities of
JSLLDA. Each term contributes uniquely and synergistically to achieving a superior classi-
fication performance.

Table 8. Ablation experiments on the Salinas dataset.

Baseline RR JS LPP-R OA AA κ

! % % % 82.51 ± 0.97 85.52 ± 1.12 80.57 ± 1.07
! ! % % 85.96 ± 1.05 89.00 ± 1.57 84.25 ± 1.21
! ! ! % 90.65 ± 0.42 94.75 ± 0.13 89.58 ± 0.47
! ! % ! 88.67 ± 0.60 93.13 ± 0.47 87.35 ± 0.68
! ! ! ! 91.24 ± 0.35 95.07 ± 0.15 90.22 ± 0.39
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Table 9. Ablation experiments on the University of Pavia dataset.

Baseline RR JS LPP-R OA AA κ

! % % % 73.79 ± 1.79 65.80 ± 3.20 64.20 ± 2.57
! ! % % 76.23 ± 0.75 66.28 ± 1.64 68.15 ± 1.01
! ! ! % 87.19 ± 0.64 82.41 ± 1.55 82.86 ± 0.86
! ! % ! 77.51 ± 0.83 68.45 ± 1.39 69.79 ± 1.09
! ! ! ! 87.64 ± 0.94 82.29 ± 2.21 83.49 ± 1.25

Table 10. Ablation experiments on the Heihe dataset.

Baseline RR JS LPP-R OA AA κ

! % % % 71.48 ± 5.69 70.56 ± 3.75 63.40 ± 6.46
! ! % % 72.58 ± 3.86 67.33 ± 4.20 64.21 ± 4.82
! ! ! % 90.45 ± 2.33 90.91 ± 0.97 87.16 ± 2.98
! ! % ! 71.57 ± 4.47 66.67 ± 2.60 63.06 ± 5.21
! ! ! ! 92.32 ± 0.67 92.16 ± 0.96 89.63 ± 0.89

4.4. Discussion

The classification results across the three hyperspectral datasets demonstrated that our
proposed method consistently achieved superior performance. Notably, the representative
methods RSLDA and JSLLDA, which extend LDA by imposing an L2,1 constraint on the
projection matrix, generally outperformed both LDA and TRLDA. This improvement was
due to the L2,1 constraint, which enforces row sparsity in the projection matrix, thereby
giving greater weight to important features and enhancing the discriminative power of
the acquired features. Furthermore, regression-based methods such as LRPER, L2,p-RER,
and JSLLDA tend to surpass traditional models like LDA and LPP. This advantage arises
because regression-based models account for the interplay between projection and re-
gression, with the orthogonal matrix providing the classifier with more comprehensive
feature information, significantly improving performance. Among the algorithms com-
pared, only LPP focuses exclusively on local information, while LDA, RSLDA, TRLDA,
LRPER, and L2,p-RER emphasize global information. In contrast, our proposed method in-
tegrates both local and global information, which was a crucial factor in JSLLDA’s superior
classification performance.

Furthermore, the complexity analysis demonstrated the feasibility of our approach
in practical scenarios. However, our proposed method still has some shortcomings. The
ablation experiments also indirectly explained the advantages of the model. Specifically,
the RR term establishes a link between projection and regression, aiding the projection
in extracting more discriminative low-dimensional features. The LP term ensures that
neighborhood information in the high-dimensional space is retained in the low-dimensional
space. Additionally, by imposing an L2,1 constraint on the projection matrix, the model
captures joint sparse information, allowing the low-dimensional space to preserve more of
the essential information from the original data. The sparse error term further enhances the
robustness of the model. In the pre-processing process, three-dimensional hyperspectral
image data are converted into two-dimensional data and input into JSLLDA for processing,
which destroys the original spatial structure of the hyperspectral image data and loses
certain spatial information. In future work, we hope to continue to investigate how to
directly use high-dimensional data as an input to preserve more original information.

Although hyperspectral images are highly effective in capturing the spectral charac-
teristics of objects, they are also prone to interference from external noise. Our proposed
robust feature extraction method addresses this issue by mitigating the impact of varying
environmental conditions, such as changes in lighting and shadows, thereby enhancing the
accuracy of crop classification in agricultural production. Similarly, in mineral exploration,
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where the presence of irrelevant spectral bands and complex surface cover can introduce
noise, our method improves the detection and classification accuracy of mineral types.

5. Conclusions

In this study, a robust LDA-based dimensionality reduction method called JSLLDA
was proposed. In JSLLDA, a locality-preserving regularization term was introduced to
capture the locality structure of data, while a regression variant was utilized to fully exploit
the interaction between regression and projection. Moreover, the model’s robustness
was further enhanced using a L2,1-norm constraint, which is imposed on the regression
loss. Additionally, the interpretability of the projections was improved through a L2,1-
norm constrained projection matrix. Furthermore, an alternating iterative algorithm was
designed to optimize the proposed JSLLDA model, and its time complexity was analyzed
theoretically and experimentally. To evaluate the performance of JSLLDA, experiments
were conducted on three public hyperspectral datasets. To further assess the robustness of
JSLLDA, Gaussian noise of varying concentrations was randomly added to the datasets
for testing. Compared with several related dimensionality reduction methods, the results
demonstrated that JSLLDA was more effective in extracting distinctive low-dimensional
features for hyperspectral image classification. Finally, to validate the contribution of each
component of the model, a series of ablation experiments were performed, confirming that
each part was beneficial for JSLLDA.
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