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Abstract: This study employed version 4.2.2 of the Weather Research and Forecasting (WRF) model
for this simulation and applied two microphysics schemes, the Thompson scheme (THOM) and
Milbrandt–Yau scheme (MY)—which are widely used in convective simulations—to simulate a
mesoscale severe convective precipitation event that occurred in southeastern China on 8 May
2017. The simulations were then compared with dual-polarization radar observations using a
radar simulator. It was found that THOM produced vertical structures of radar reflectivity (ZH)
closer to radar observations and accumulated precipitation more consistent with ground-based
observations. However, both schemes overestimated specific differential phase (KDP) and differential
reflectivity (ZDR) below the 0 ◦C level. Further analysis indicated that THOM produced more rain
with larger raindrop sizes below the 0 ◦C level. Due to the close connection between raindrop
breakup, evaporation rate, and raindrop size, sensitivity experiments on the breakup threshold
(Db) and the evaporation efficiency (EE) of the THOM scheme were carried out. It was found that
adjusting Db significantly changed the simulated raindrop size distribution and had a certain impact
on the strength of cold pool; whereas modifying EE not only significantly changed the intensity and
scope of the cold pool, but also had great effect on the raindrop size distribution. At the same time,
comparison with dual-polarization radar observations indicated that reducing the Db can improve
the model’s simulation of polarimetric radar variables such as ZDR. This paper specifically analyzes
a severe convective precipitation event in the Guangdong region under weak synoptic conditions
and a humid climate. It demonstrates the feasibility of a method based on polarimetric radar data
that modifies Db of THOM to achieve better consistency between simulations and observations
in southeast China. Since the microphysical processes of different Mesoscale Convective Systems
(MCSs) vary, the generalizability of this study needs to be validated through more cases and regions
in the future.

Keywords: cloud microphysics parameterization; dual-polarization radar simulator; raindrop
breakup; evaporation of raindrop

1. Introduction

The Guangdong province is located in southeastern China and it has a complex
terrain. It is also one of the regions with the highest rainfall in the world, with annual
precipitation exceeding 2000 mm [1]. Approximately 40–50% of the yearly rainfall occurs
during the pre-summer rainy season (PSRS) from April to June [1]. Extreme precipitation
events cause severe disasters every year, posing serious threats to life safety and social
stability [2,3]. Therefore, high-precision and high-resolution assessments of the timing and
intensity of precipitation has become an urgent issue that needs to be addressed [4–6].
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Currently, Numerical Weather Prediction (NWP) models remain the primary tool for fore-
casting convective weather. However, due to the inadequate understanding of cloud
microphysical processes [7,8] and the imprecision in the parameterization of the micro-
physical schemes [9–11], there is still significant uncertainty in the microphysical schemes
within the models when simulating cloud microphysical processes [12]. This uncertainty
leads to poor performance of numerical models in simulating the accumulated precipitation
amount and the location of heavy rainfall in urban areas [13,14].

During the development of convection, a relatively colder and denser air mass may
form at the base of the convective system, which is referred to as a cold pool [15]. The
intensity of the cold pool can influence the organization, dynamic structure, and thermody-
namic structure of the ascending/descending airflows associated with convective systems,
thereby affecting the formation and development of convection [9,16,17].

As the cold pool forms and expands, the cold air replaces the warmer air, causing
the warm air to be lifted, which in turn leads to the formation of new clouds [18]. Fur-
thermore, the downdrafts associated with the cold pool enhance the sensible and latent
heat fluxes, thereby altering the thermodynamic properties and moisture structure below
the clouds [19]. Convective cold pools play a significant role in various aspects of MCSs,
including the maintenance of squall lines and the transition of tropical convection from
weak to strong stages [20,21]. Additionally, it has also been shown that the self-sustaining
mechanisms of cold pools can lead to the prolonged maintenance of rainbands, resulting in
the persistence of heavy rainfall [22]. In the process of convective precipitation, raindrops
undergo various microphysical processes such as coalescence, breakup, and evaporation
as they fall from the cloud to the ground. Among these, the breakup of raindrops directly
affects the raindrop size distribution, which in turn affects the evaporation rate, thus affect-
ing the evolution of the cold pool [23–25]. The intense latent heat fluxes are brought by the
evaporation of rainwater, playing a significant role in the formation of cold pools [19].

Studies have demonstrated that microphysical processes are crucial for accurately fore-
casting heavy rainfall in southeastern China. Qian et al. [17] pointed out that a lower rain
evaporation rate and the resulting weaker cold pool were the reasons for the failure of simu-
lating the convective system in southeastern China. By use of three microphysical schemes,
Zhou et al. [26] pointed out that all simulations produced weaker cold pools compared to
the observations, and improving the simulated cold pool intensity and drop size distribu-
tions (DSDs) led to a significant improvement in surface precipitation. Lompar et al. [27]
incorporated the first gust front pulsation parameterization scheme into the WRF, which
not only improved the intensity and distribution of the cold pool but also enhanced the
overall simulation performance.

With the development of dual-polarization radar detection technology, polarimetric
radar observations have become widely used to compare the microphysical characteristics
of heavy rainfall between observations and the NWP models [28,29]. Polarimetric radar is
capable of transmitting and receiving polarized electromagnetic waves in two orthogonal
directions. Because the polarization of the echo is influenced by particle properties, it can
provide rich microphysical characteristic information such as the phase state, density, and
shape of hydrometeors [30,31]. In addition to the radar reflectivity (ZH) for horizontal
polarization, there are two other commonly used polarimetric variables. One is the differ-
ential reflectivity (ZDR), which reflects the shape and size of hydrometeors, and the other
is the specific differential phase (KDP), which primarily indicates the liquid water content
within the sampling volume [31–33]. The combination of ZH and ZDR can reveal the char-
acteristics of drop size distributions (DSDs) as well as the “fingerprints” of microphysical
processes such as evaporation, coalescence, and breakup [32,34]. This paper will compare
simulation results from NWP models with polarimetric radar observations by converting
model output data into polarimetric radar data by the use of a radar simulator [35,36].

Meteorologists typically use NWP models with complex physical parameterization
schemes to simulate and understand the mechanisms of weather systems [37]. Compared
to bin microphysics schemes, bulk microphysics schemes offer superior computational effi-
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ciency, and are extensively utilized in both scientific research and operational contexts [10].
Two-moment (2M) bulk microphysical schemes generally forecast two parameters—the
intercept parameter N0 and the slope parameter λ—while one moment (1M) bulk schemes
prespecify N0 [7,38]. Due to the increased flexibility in parameter prediction, 2M schemes
often produce better simulation results when evaluated against observational data than
1M schemes [8,11,39]. Therefore, this study employs two microphysics 2M schemes, the
Thompson scheme (THOM) and Milbrandt–Yau scheme (MY), which are widely used in
convective simulations.

The focus of this study is comparing polarimetric radar data with simulation results,
evaluating and improving the parameterization scheme’s representation of macroscopic
and microscopic features of the convective system. The structure of this paper is as follows:
Section 2 introduces the radar data, simulation settings, and the radar simulator used
in this study. Section 3 compares and analyzes the composite radar reflectivity, vertical
cross-sections of radar polarimetric variables, and 18-hour accumulated precipitation from
observations and simulations, and continues to compare and analyze different aspects of
the simulation, including the hydrometeor mixing ratios, hydrometeor source and sink
terms, cold pool, and the raindrop mass-weighted diameter (Dm,r) distribution. Section 4
modifies the parameters related to raindrop breakup and evaporation and assesses the
results of these modifications. Finally, Section 5 discusses the results, and Section 6 draws
conclusions and proposes possible measures for further improvement.

2. Materials and Methods
2.1. Radar Data

The radar data are derived from the Guangzhou S-band dual-polarization radar (Z9200;
23.00◦N, 113.36◦E), which was put into operation in May 2016. The radar operates in a
dual-transmit dual-receive mode with a wavelength of 10 cm, an azimuthal resolution of 1◦,
a radial resolution of 250 m, and an observation radius of 230 km. This radar can provide
a series of dual-polarization variables, including reflectivity (ZH), differential reflectivity
factor (ZDR), correlation coefficient (CC), specific differential phase (KDP), and differential
phase (φDP), which can characterize the microphysical structure of precipitation. The
volume scan time of the dual-polarization radar is approximately 6 min, using the VCP21D
scanning pattern, which includes nine elevation angles: 0.5◦, 1.5◦, 2.4◦, 3.3◦, 4.3◦, 6.0◦, 9.9◦,
14.6◦, and 19.5◦.

2.2. Simulation Settings

On 8 May 2017, a significant convective precipitation event occurred in Guangdong,
China, and the local development was rapid, with extreme precipitation intensity. On
a spatial scale, the mature squall line was approximately 800 km long and 40 km wide,
advancing at a speed of 30 to 40 km per h, sweeping across much of the Guangdong
province [40]. In this study, we simulated the case using the generation mesoscale numerical
model WRF and employed version 4.2.2 of the WRF-ARW. For the simulation, the THOM
and MY microphysics schemes within the WRF model were selected. The simulation used
two-layer nested domains with resolutions of 3 km for the outer and 1 km for the inner
domain. The simulation period spanned from 18:00 UTC on 7 May 2017 to 18:00 UTC on
8 May 2017. The spin-up time of the model was set to 6 h, and the numerical simulation
results following 00:00 UTC on 8 May 2017 were compared with radar observations. The
initial and boundary field data were obtained from ERA5 with a resolution of 0.25◦ × 0.25◦.
The boundary layer scheme chosen was the Mellor–Yamada–Janjic (Eta) TKE scheme,
and the surface layer scheme used was the Monin–Obukhov (Janjic Eta) scheme. The
land-surface process scheme employed was the unified Noah land-surface model with
the Rapid Radiative Transfer Model (RRTM) for the Global Climate Model (GCM) for
shortwave and longwave radiation. The cumulus parameterization was turned off in
two domains. This convective process occurred in Qingyuan City, Guangdong province.
Therefore, two nested domains, d01 and d02, were set up, centered on Qingyuan City, with
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both domains consisting of 481 × 481 grid points. The setup of the simulation domain is
shown in Figure 1.
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This study delves into two extensively utilized 2M cloud microphysics schemes:
THOM [41] and MY [42]. As shown in Table 1, THOM predicts the mixing ratios (q) for
cloud water, rain, cloud ice, snow, and graupel, as well as the number concentrations (N)
specifically for rain and cloud ice. Conversely, MY forecasts q and N for a broader spectrum
of hydrometeors, including cloud water, rain, cloud ice, snow, graupel, and hail.

Table 1. Summary of microphysics options for THOM and MY schemes.

Scheme Mass Ratio Number Concentration

THOM qc, qr, qi, qs, qg Nr, Ni
MY qc, qr, qi, qs, qg, qh Nc, Nr, Ni, Ns, Ng, Nh

c: cloud; r: rain; i: ice; s: snow; g: graupel; h: hail.

2.3. Radar Simulator

This paper utilizes the Polarimetric Radar Simulator (CAPS-PRS) developed by the
Center for Analysis and Prediction of Storms (CAPS) at the University of Oklahoma, USA
for non-hydrostatic weather forecasting models with explicit microphysics schemes. It
includes calculations of reflectivity for horizontal and vertical polarizations, KDP, ZDR, ρhv.
This simulator is capable of simulating polarimetric radar measurements in the weather
radar frequency band and can take forecast variables simulated by NWP models using
single-moment, two-moment, and three-moment microphysics schemes as inputs [43].

3. Results Analysis
3.1. Comparison Analysis of Observational and Simulated Results
3.1.1. Assessment of Convective System Simulations

The intense convective precipitation process in the Guangdong region was divided
into three stages: development, maturity, and dissipation. The radar observations of
composite reflectivity clearly illustrate the evolution of the MCS (Figure 2(a1–c1)). The
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convective cloud began to form outside of the Guangdong region, and then rapidly de-
veloped into a convective band by 0600 UTC, moving southeastward and continuing to
develop (Figure 2(a1)). During the development stage (0600 UTC), both the convective and
stratiform cloud areas expanded rapidly. By the time the system reached its maturity stage
(0854 UTC), the front was characterized by a high and strong convective band associated
with heavy rainfall, marking the peak of convective activity (the time with the highest
hourly precipitation amount) (Figure 2(b1)). Other notable features included a transition
zone with lower radar reflectivity directly following the convective zone. As the system
entered the dissipation phase (1200 UTC), the convective cloud band began to weaken, and
mesoscale organization gradually diminished (Figure 2(c1)).
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1200 UTC; the composite reflectivity from the THOM simulation (a2–c2) at 0630, 0930, and 1230 UTC
and the MY simulation (a3–c3) at 0630, 0830, and 1200 UTC. The black lines represent the vertical
cross-section transects.

Overall, by comparing the simulated composite reflectivity with the observation,
both schemes simulate the development trends, intensities, and spatial positions of the
convective process at different stages well. The three stages to the simulations by THOM cor-
respond to 0630 UTC (Figure 2(a2)), 0930 UTC (Figure 2(b2)), and 1230 UTC (Figure 2(c2)),
as well as to the simulations by MY at 0630 UTC (Figure 2(a3)), 0830 UTC (Figure 2(b3)),
and 1200 UTC (Figure 2(c3)). The convective development simulated by THOM is slower
compared to the observations, causing a delay in the timing of the mature and dissipation
stages. In contrast, MY simulated faster convective development, resulting in an earlier
timing for the mature stage. The reflectivity intensity in the convective region is stronger
than the observed values, and the reflectivity intensity simulated by the MY scheme is
weaker than that of the THOM scheme.
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3.1.2. Analysis of Radar Polarimetric Parameters

Due to the similar vertical structures of observed and simulated characteristics in
three stages of this MCS, this section will only focus on the mature stage. Figure 3 presents
the vertical cross-sections of radar polarimetric parameters during the mature stage, with
the transects indicated by the black lines shown in Figure 2. These transects are nearly
perpendicular to the convective system, and their positions were selected to simultaneously
observe the vertical structural characteristics of the convective region, stratiform region,
and transition zone during the mature stage.
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As the convective system enters the mature stage (Figure 3(a1)), the radar echo coverage
expands significantly, the echo tops surpass 16 km in altitude, while the strong echo zones
(ZH > 40 dBZ) ascend to around 9 km (Figure 3(a1)). THOM simulates radar echo tops
reaching above 15 km, with the strong echo zones rising to around 10 km. Below the 0 ◦C layer,
the THOM-simulated ZH slightly exceeds the observed values, with peak values exceeding
55 dBZ (Figure 3(b1)). In contrast, the MY scheme produces echo tops approximately at 14 km,
with the strong echo zones ascending close to the −40 ◦C isotherm. Below the 0 ◦C layer, ZH
reaches above 50 dBZ, and notably, there remains a vast area of strong echoes in the upper
cloud area (Figure 3(c1)). Both THOM and MY generate extensive stratiform cloud regions
and successfully simulate the transition zone. However, ZH in the stratiform areas generated
by both schemes is lower than that which is observed by radar.

In the vertical cross-sections of the radar observations for ZH and ZDR (Figure 3(a1,a3)),
the stratiform cloud region behind is separated from the forward convective region by a
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weak echo transition zone with lower ZH and ZDR values. The ZDR in the stratiform and
convective regions shows a significant increase with decreasing altitude below the 0 ◦C
level, with the ZDR maxima (~1.5–2.5 dB) existing below the 4 km altitude (Figure 3(a3)). In
the convective region, KDP values exceeding 0.5◦/km are observed in the upper part of the
columnar ZDR, which may be due to the presence of supercooled raindrops adjacent to the
updraft or hail coated with supercooled water [44,45]. The increase in KDP below the 0 ◦C
level in the convective region is associated with high ZH (>45 dBZ). This may be related to
ice particles melting too quickly below the 0 ◦C level, which need to be further analyzed.

It is noted that KDP primarily represents the content of liquid water per unit volume [26].
Although the structures of the observed and the simulated KDP are similar, both schemes
overestimated the KDP values below the 0 ◦C layer in the convective region (Figure 3(a2–c2)).
This situation is different from the simulations under North American climatic conditions,
where both microphysical schemes produced weaker KDP values than observed [46].

Like KDP, both schemes simulate higher ZDR values below the 0 ◦C layer than what is
observed (Figure 3(a3–b3)). Larger ZDR values indicate a greater difference in the horizontal
and vertical dimensions of the particles, which is a significant microphysical factor for
pure and large size rain [31]. This suggests that, in comparison to radar observations,
the raindrop size within the convective area below the 0 ◦C layer is overestimated by
both schemes.

It is shown that the MY’s microphysical scheme simulates stronger radar reflectivity
zones compared to the observations, whereas the THOM’s simulated radar reflectivity is
more closely aligned with the observations. Both schemes simulate a weak echo transition
zone between the convective and stratiform regions, corresponding to the radar observa-
tions, with the ZDR and KDP simulated by both schemes being significantly greater than
the observation below the 0 ◦C level in the convective region.

3.1.3. Comparison of the Accumulated Precipitation

Figure 4 shows the accumulated surface precipitation from the onset to the dissipation
of the convective system (from 0000 to 1800 UTC, 8 May 2017). Generally, both schemes
basically reproduced the distribution of surface precipitation, albeit with narrower precipi-
tation areas compared to the ground observations. Both schemes simulated more heavy
precipitation centers than observed with greater intensity and underpredicted intensity
of precipitation in the southwest of the Guangzhou radar (Figure 4a–c). Considering
the distribution and magnitude of several precipitation centers observed, THOM exhib-
ited more concentrated and widespread precipitation centers in the areas north of the
Guangzhou radar, leading to a better representation of precipitation (Figure 4b). The MY
scheme simulated a similar precipitation pattern with respect to the THOM scheme, but
with more scattered precipitation centers north of the Guangzhou radar (Figure 4c). This
suggests that the inherent differences in microphysical schemes could significantly impact
the precipitation patterns and rainfall rates.
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3.2. Analysis of the Simulation Results
3.2.1. Vertical Distribution of Hydrometeors

Figure 5 presents the vertical profiles of the regional averaged hydrometeors mixing
ratio (q) during the mature stages of the convective event. There is a significant difference
in snow mixing ratio for the two schemes, which may relate to the different microphysical
treatments of snow. Previous studies have noted that THOM has a broader distribution of
snow due to its special treatment of snow [9,16,47], which helps THOM to better simulate
convective and stratiform cloud regions [46,48,49]. It is noteworthy that the two schemes,
which differ significantly in the treatment of ice-phase particles, produce similar sur-
face precipitation (Figure 4) as well as mixing ratios of rain (Figure 5), which must be
further analyzed.

Remote Sens. 2024, 16, x FOR PEER REVIEW 8 of 20 
 

 

 
Figure 4. The 18-hour accumulated precipitation (units: mm) from 0000 to 1800 UTC on 8 May 2017, 
obtained from ground observation stations (a), THOM (b), and MY (c). The white triangle marks the 
location of the radar (GZRD). 

3.2. Analysis of the Simulation Results 
3.2.1. Vertical Distribution of Hydrometeors 

Figure 5 presents the vertical profiles of the regional averaged hydrometeors mixing 
ratio (q) during the mature stages of the convective event. There is a significant difference 
in snow mixing ratio for the two schemes, which may relate to the different microphysical 
treatments of snow. Previous studies have noted that THOM has a broader distribution 
of snow due to its special treatment of snow [9,16,47], which helps THOM to better simu-
late convective and stratiform cloud regions [46,48,49]. It is noteworthy that the two 
schemes, which differ significantly in the treatment of ice-phase particles, produce similar 
surface precipitation (Figure 4) as well as mixing ratios of rain (Figure 5), which must be 
further analyzed. 

 
Figure 5. Vertical distribution of the regional averaged hydrometeor mixing ratios (units: g kg−1) at 
the mature stage for the two schemes, with (a) for the THOM scheme and (b) for the MY scheme. 
The red solid line indicates the 0 °C isothermal layer. 

For the MY scheme, it can be found that the strong radar reflectivity regions above 
the 0 °C level in the convective zone are primarily contributed by graupel and hail parti-
cles. Therefore, the differences in the heights of the strong radar reflectivity regions be-
tween the two schemes are due to the different vertical distribution of graupel and hail 
particles. Below the 0 °C level, the distribution characteristics of KDP is mainly contributed 
by rainwater. 

The analysis in this section indicates that the differences between the two schemes, 
as well as the discrepancies between radar observations and simulation results, mainly 
arise from the variations in raindrops and graupel/hail particles. The next section will 

Figure 5. Vertical distribution of the regional averaged hydrometeor mixing ratios (units: g kg−1) at
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For the MY scheme, it can be found that the strong radar reflectivity regions above
the 0 ◦C level in the convective zone are primarily contributed by graupel and hail par-
ticles. Therefore, the differences in the heights of the strong radar reflectivity regions
between the two schemes are due to the different vertical distribution of graupel and
hail particles. Below the 0 ◦C level, the distribution characteristics of KDP is mainly
contributed by rainwater.

The analysis in this section indicates that the differences between the two schemes, as
well as the discrepancies between radar observations and simulation results, mainly arise
from the variations in raindrops and graupel/hail particles. The next section will analyze
the source and sink terms of raindrop particles and graupel/hail particles to elucidate the
specific reasons for these differences.

3.2.2. Analysis of the Source and Sink Term for Rainwater and Graupel/Hail Particles

To compare the main microphysical processes related to rain and graupel/hail particles
for the two schemes, Figure 6a,b display the average tendency of raindrops during the
mature stage, while Figure 6c–e show the equivalent for graupel/hail particles. As can
be inferred from Figure 6a,b, between the 0 ◦C level and 2 km in altitude, the raindrop
evaporation process is weaker (qr_rev in the Figure 6a), and the production and growth of
raindrops are mainly due to the melting of graupel and snow particles (qr_sml & qr_gml
in the Figure 6a), as well as the collection of graupel and cloud water (qr_rcg & qr_rcc
in the Figure 6a) by raindrops in THOM. In the same altitude range, the production and
growth of raindrops in the MY scheme also rely on the melting of ice-phase particles such
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as graupel, hail, and snow (qr_gml & qr_hml & qr_sml in the Figure 6b), and the collection
of cloud water by raindrops (qr_rcc in the Figure 6b). At the same time, the rate of hail
collecting raindrops (qr_rch in the Figure 6b) and the evaporation of raindrops (qr_rev in
the Figure 6b) also increase with decreasing altitude, but the source term rate of raindrops is
significantly greater than the sink term. Between 2 km and the ground level, in the THOM
scheme, graupel and snow particles are almost completely melted (qr_sml & qr_gml in the
Figure 6a), and the rate of raindrops collecting graupel particles (qr_rcg in the Figure 6a)
and the collection of cloud droplets by raindrops (qr_rcc in the Figure 6a) all decrease with
altitude decreasing, while the evaporation rate of raindrops (qr_rev in the Figure 6a) first
increases and then slowly decreases with decreasing altitude. The source term rate is less
than the sink term rate, leading to a decrease in the rain mixing ratio with decreasing height.
As a result, both schemes produced similar surface precipitation.
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Figure 6. Vertical distribution of the mean tendency of rain and graupel/hail mixing ratios
(units: g kg−1) during the mature stage for the two schemes; (a) for raindrops in THOM, and (b) for
raindrops in MY, (c) for graupel particles in THOM, (d) for graupel particles in MY, (e) for hail
particles in MY. The red solid line indicates the 0 ◦C isothermal layer. The full names of microphysical
processes are listed in the Appendix A Tables A1 and A2.

Similarly, in MY, between 2 km and the surface level, the main source terms for
raindrops are the melting of hail and the collection of cloud water by raindrops (qr_hml
& qr_rcc in the Figure 6b), while the main sink terms are the collection of hail particles
by raindrops (qr_rch in the Figure 6b) and the evaporation of raindrops (qr_rev in the
Figure 6b). In this case, the source term rate is also less than the sink term rate, resulting in
a decrease in the rain mixing ratio with decreasing height. Consistent with Figures 5 and 6,
similar to the distribution trend of raindrops content with height, the KDP also shows a
trend of increasing first and then decreasing with the decrease in height.

Above 8 km in altitude, the growth of THOM graupel particles is primarily due to
the collection of cloud droplets (qg_gcc in the Figure 6c). The growth of MY graupel
particles is mainly influenced by the combined action of collecting cloud droplets (qg_gcc
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in the Figure 6d) and the deposition of water vapor (qg_vvd in the Figure 6d). The
growth of MY hail particles is mainly from the collection of cloud droplets (qh_hcc in the
Figure 6e). Comparisons of the two schemes indicate that graupel/hail particles of MY
has a significantly higher growth rate above 8 km in altitude than THOM, consistent with
the more graupel/hail particles above 8 km in altitude (Figure 5) and the more intensified
radar reflectivity above freezing level in MY schemes.

3.2.3. Characteristics of Cold Pool

Figure 7 shows the potential temperature at a 540 m height during the mature stage
for both schemes. It is noteworthy that the spatial distributions of the cold pool simulated
by the two schemes are similar, which contrasts with the usual outcome in previous
studies where different microphysical schemes typically lead to distinct thermodynamic
structures [17,50]. However, this does not imply that the impact of microphysical processes
on the cold pool is negligible.
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3.2.4. Analysis of Raindrop Mass-Weighted Diameter

In 2M microphysics schemes, the evaporation rate is closely tied to the rain-
drop size distribution [38,41], which is crucial for the formation of cold pools [24,39].
Zhou et al. [51] highlighted the importance of cold pool evolution for the development
of bow echoes based on observational data analysis. This section will analyze the im-
pact of Dm,r on the simulation of cold pools. As shown in Figure 8, Dm,r distribution in
THOM is similar to that in MY, with the majority of raindrop diameter below the 0 ◦C
level being between 0 and 2 mm, and a small fraction of raindrops with Dm,r larger than
2 mm. Below the 0 ◦C level, the ZDR in THOM and MY is greater than the observed
values, indicating that THOM and MY overestimate the raindrop sizes (Figure 3(a3–c3)).
Since THOM simulates the overall structure of the convective cloud evolvement and
the accumulated precipitation more closely to observations, the next section will further
explore the possible mechanisms and pathways to improve the simulation of Dm,r and
radar polarimetric quantities in THOM.
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4. Sensitivity Experiments

Previous studies have shown that the evaporation of raindrops, which can produce or
intensify cold pools, have significant impacts on the lifecycle of convection [9,19]. Mean-
while, changes in the size distribution or spectrum caused by raindrop breakup may
alter evaporation, thus affecting the cold pool [23–25]. The comparison of the simulated
and the observed ZDR found that both schemes’ default settings overestimated raindrop
sizes (Figure 3(a3–c3)).

It is found that the evaporation process rapidly depletes small raindrops, thereby increas-
ing the Dm,r, whereas the breakup process, due to the transformation of large raindrops into
smaller ones, tends to decrease the Dm,r [52]. From Figure 8, it can be seen that simulation
results of MY exhibit a consistent increase in the Dm,r below the 0 ◦C level, where THOM
shows a pattern of first decreasing and then increasing Dm,r below the 0 ◦C level.

Based on the aforementioned analysis, sensitivity experiments were conducted in
THOM to specifically address the raindrop breakup and evaporation processes. For the
raindrop breakup process, we modified the threshold diameter Db in the coalescence-
breakup efficiency (Appendix B Formula (A1)) of the THOM scheme. Db is the threshold
diameter for initiating breakup, modifying Db directly impacts the raindrop size distri-
bution, which in turn affects the evaporation process, and for the raindrop evaporation
processes, we directly modified the evaporation efficiency EE (Appendix B Formula (A2))
by multiplying it by different factors. The alteration in EE has a direct impact on the
evaporation process of rainwater.

As shown in Table 2, for the raindrop breakup process, six simulations were con-
ducted with Db set at 1.0, 1.2, 1.4, 1.6, 1.8, and 2.2 mm, respectively (THOM_BKP1000,
THOM_BKP1200, THOM_BKP1400, THOM_BKP1600, THOM_BKP1800, THOM_BKP2200).
For the raindrop evaporation process, similar to Qian et al. [17], five simulations were
conducted by directly multiplying the evaporation efficiency EE by 0.5, 1.5, 3.0, 5.0,
and 10.0, respectively (THOM_EVP0.5, THOM_EVP1.5, THOM_EVP3.0, THOM_EVP5.0,
THOM_EVP10.0). For comparison, the original THOM simulation will be referred to as
THOM_CTR in the following text.

Figure 9 presents a PDF of the difference in simulated Dm,r between sensitivity experi-
ments and THOM_CTR during the mature stage. Overall, for the BKP tests, as Db decreases,
the proportion of raindrops Dm,r larger than 2 mm decreases, while the proportion of
smaller raindrops (Dm,r is 0–2 mm) increases, indicating an enhanced raindrop breakup
process (Figure 9(a1–e1)); as Db increases, it has little impact on raindrops Dm,r larger than
2 mm (Figure 9(f1)). As for the EVP experiments, for the simulations with increased EE,
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due to the substantial evaporation of smaller raindrops (Dm,r is 0–1 mm), the proportion
of raindrops Dm,r larger than 1mm below the freezing layer increases (Figure 9(b2–e2));
conversely, the situation with a decrease in EE is just the opposite (Figure 9(a2)). This
phenomenon suggests that decreasing Db and decreasing EE can generate more smaller
raindrops, while increasing EE will enhance the proportion of larger raindrops.

Table 2. Introduction to sensitivity experiments.

Modified Variables The Name of Sensitivity Experiments

Db (1.95 mm) THOM_BKP1000, THOM_BKP1200, THOM_BKP1400,
THOM_BKP1600, THOM_BKP1800, THOM_BKP2200

EE
THOM_EVP0.5, THOM_EVP1.5, THOM_EVP3.0,

THOM_EVP5.0, THOM_EVP10.0
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Figure 10(a1–f1,a2–e2) illustrate the difference of cold pools between two sets of sen-
sitivity experiments and the THOM_CTR. As expected, the reduction of Db in the BKP
experiments (enhancing breakup efficiency) led to the production of smaller raindrops
(Figure 9(a1–e1)), resulting in higher rates of rain evaporation and stronger cold pools
(Figure 10(a1–e1)). However, only in THOM_BKP1000, modifying the breakup parame-
ters significantly affected the intensity and extent of the cold pool, and its particle size
distribution already diverged significantly from THOM_CTR (Figure 8a). This suggests
that modifying the raindrop breakup process not only improves the mass-weighted diam-
eter distribution, but also leads to a substantial increase in cold pool intensity or extent.
Regarding the EVP experiments, there were significant changes in both cold pool inten-
sity and extent across all five simulations, particularly evident in THOM_EVP0.5 and
THOM_EVP3.0 (Figure 10(a2–e2)). The transition from THOM_EVP3.0 to THOM_EVP5.0
and then to THOM_EVP10.0 showed only marginal changes in the cold pool.

As shown in Figure 5a, raindrops are primarily located below 4 km in altitude. The
observation indicates that ZDR is mainly distributed between 0 and 1 dB at altitudes below
4 km (Figure 11a). Compared to THOM_CTR, where ZDR is mainly distributed between
0 and 3 dB (Figure 11b), THOM_BKP1000 shows ZDR values more closely aligned with
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observations (Figure 11c), concentrated between 0 and 1 dB below 4 km. Therefore, we
believe that reducing Db can better improve the simulation results.
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5. Discussion

In recent years, dual-polarization radar has been used to compare the microphysical
characteristics of heavy rainfall between observations and NWP models in order to improve
the microphysical schemes within the models [28,53–55]. Zhou et al. [26] pointed out that
the default settings of microphysics schemes used in the WRF model that was primarily
designed based on the environmental characteristics of North America produced poor
simulation results in southeastern China. With three 2M schemes (THOM, Morrison,
and WDM6) employed, it is shown that both THOM and WDM6 underestimated KDP
and ZDR, while Morrison significantly overestimated them. Increasing the coalescence-
breakup and evaporation efficiencies in THOM improved the simulation results. Sun
et al. [56] compared the polarimetric radar variables and corresponding hydrometeor types
derived from the WRF model and radar simulator, and conducted radar observations
and retrievals of a strong squall line over central China. By comparing ZDR and KDP, it
was found that the Morrison and WDM6 schemes simulated a lower proportion of large
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raindrops and lower liquid water content in the convective region [56]. Zhou et al. [57]
simulated a heavy precipitation process in Guangdong, with the three 2M microphysics
schemes (Morrison, THOM, and MY), overestimated KDP and ZDR, and raindrops’ mass-
weighted mean diameter (Dm,r). Reducing the coalescence-break efficiency in the MY
scheme led to better simulation results after the initial stage [57]. These studies indicate
that dual-polarization radar plays a crucial role in evaluating and improving microphysics
schemes in models.

6. Conclusions

In this study, we utilized the S-band dual-polarization radar parameters (ZH, KDP,
ZDR) located in Guangzhou, and conducted a simulation analysis of a severe convective
precipitation process in Guangdong on 8 May 2017 using the THOM and MY microphysical
schemes in a WRF model. The outputs from WRFv4.2 were transformed into simulated
radar polarization parameters by use of the CAPS-PRS radar simulator. The aim of this
study was to deepen our understanding of the impact of microphysical processes on the
development and evolution of convective systems in models through the investigation of
parameterizations of raindrop breakup and evaporation.

Key conclusions obtained are as follows:
(1) The THOM scheme produced more snow crystals, while the MY scheme produced

more graupel particles. The total ice water content of both schemes was very close. The
ice-phase particles of both schemes melted rapidly below the 0 ◦C level and had similar
evaporation efficiencies, resulting in comparable surface precipitation.

(2) The simulated vertical cross-section of ZH from THOM was closer to the observa-
tions than MY. It is shown that THOM’s simulation of the strong radar reflectivity region
in the convective area was closer to the observations, which is due to the graupel/hail
particles simulated by the MY scheme that exists at higher altitudes.

From the source and sink terms in two schemes, it is evident that the increase in the
liquid water mixing ratio below the 0 ◦C level primarily originates from the melting of
the ice-phase particle. Between the 0 ◦C level and 2 km in altitude, almost all ice-phase
particles have melted. Below 2 km in altitude, the liquid water mixing ratio decreases
primarily due to evaporation. Therefore, the differences between the simulated and the
observed KDP between the melting layer and 2 km in altitude may be due to the default
settings of the raindrop evaporation or breakup parameterization schemes.

(3) Compared to the observations of ZDR, the simulations produced overestimated the
raindrop size. This discrepancy suggests that the relatively lower efficiency of raindrop
breakup in the default settings of the THOM may be the contributing factors. To further
investigate the impact of microphysical processes on raindrop size distributions and cold
pool dynamics, two sets of numerical experiments were conducted, focusing on modifying
the breakup diameter threshold (Db) and the evaporation efficiency (EE) to assess their
effects on Dm,r and cold pool, respectively. It was found that adjusting Db significantly
changed the simulated raindrop size distribution, and had a certain impact on the strength
of cold pool, whereas modifying EE significantly not only changed the intensity and scope
of the cold pool, but also had great effect on the Dm,r. We then compared the ZDR from the
sensitivity experiments with those observed and found that reducing Db can cause ZDR to
concentrate within the 0–1 dB range (consistent with observations) and THOM_BKP1000
most closely matched the observations. Therefore, we conclude that reducing Db can
produce better simulation results of ZDR.

The schematic diagram of the potential impact of droplet breakup and evaporation
on convective development can be shown in Figure 12. After the decrease/increase in Db,
more/fewer small raindrops will be generated, and the intensity and extent of the cold
pool will slightly increase/decrease, subsequently affecting the strengthening/weakening
of downdrafts/updrafts. The increase/decrease in EE has little effect on raindrop size, but
it significantly enhances/weakens the intensity and extent of the cold pool, leading to the
strengthening of downdrafts/updrafts.
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Figure 12. A schematic diagram of the potential impact of droplet breakup and evaporation on
convective development, divided into five parts: control group THOM_CTR, increased/decreased
Db, and increased/decreased EE. In the figure, the depth of color and size of the grey ellipses
represent the intensity and extent of the cold pool, the size of the blue/red arrows indicates the
magnitude of the downdraft/updraft, and the red dashed line represents the zero-degree isotherm.

This paper specifically analyzed a severe convective precipitation event under weak
synoptic conditions (the 0–6 km vertical wind shears of MCSs in southeast China during
PSRS range from 10 to 20 m/s [51,58,59], which is weaker than the North America counter-
parts of 15–30 m/s [50,60]) and a humid climate in the Guangdong region. Future research
should continue to utilize dual-polarization radar to explore the relationship between
the formation of bow echoes and the environmental conditions in southeast China. This
highlights the complexity of microphysical processes and the need for comprehensive
parameter tuning. Our study demonstrates the feasibility of modifying the default mi-
crophysics settings of THOM based on polarimetric radar data and a radar simulator to
improve the simulation of MCSs in southeast China. However, the effectiveness of this
approach needs to be confirmed through additional case studies to refine the simulation
and forecasting of MCSs in this region.
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Appendix A

Table A1. THOM source and sink terms and full names of microphysical processes.

Self-Named Titles Original Titles Microphysical Process

qg_gcc prg_gcw Graupel collecting cloud water.
qr_gml prr_gml Graupel melting into rain.
qg_ihm prg_ihm Ice multiplication from rime-splinters.
qg_rcg prg_rcg Rain collecting graupel.
qg_gde prg_gde Deposition/sublimation of graupel.
qg_rfz prg_rfz Rain freezing into graupel.
qg_rci prg_rci Ice collecting rain into graupel.
qg_rcs prg_rcs Snow collecting rain into graupel.
qg_scc prg_scw Snow collecting cloud water into graupel.
qr_sml prr_sml Snow melting into rain.
qr_rci prr_rci Rain collecting ice.
qr_rcs prr_rcs Rain collecting snow.
qr_rcg prr_rcg Rain collecting graupel.
qr_rcc prr_rcw Rain collecting cloud water.
qr_cau prr_wau Autoconversion.
qr_rev prv_rev Rain evaporation.
qi_rfz pri_rfz Rain freezing into ice.

Table A2. MY source and sink terms and full names of microphysical processes.

Self-Named Titles Original Titles Microphysical Process

qg_gcc QCLcg Graupel collecting cloud water.
qr_gml QMLgr Graupel melting into rain.
qg_iim QIMgi Ice multiplication from rime-splinters.
qg_rcg QCLgr Rain collecting graupel.
qg_vvd QVDvg Deposition/sublimation of graupel.
qg_gci QCLig Graupel collecting ice.
qh_gcn QCNgh Graupel converting to hail.
qg_scn QCNsg Snow converting to graupel.
qg_icf Dirg*(QCLir+QCLri) 3-comp.freezing into graupel.
qg_gcf Dgrg*(QCLgr+QCLrg) 3-comp.freezing into graupel.
qg_scf Dsrg*(QCLsr+QCLrs) 3-comp.freezing into graupel.
qh_gcf Dgrh*(QCLgr+QCLrg) 3-comp.freezing into hail.
qh_scf Dsrh*(QCLsr+QCLrs) 3-comp.freezing into hail.
qh_icf Dirh*(QCLir+QCLri) 3-comp.freezing into hail.

qh_vvd QVDvh Deposition/sublimation of hail.
qr_hml QMLhr Hail melting into rain.
qh_hcr QCLrh Hail collecting rain.
qh_rfz QFZrh Rain freezing into hail.
qh_hcs QCLsh Hail collecting snow.
qh_hci QCLih Hail collecting ice.
qh_hcc QCLch Hail collecting cloud water.
qr_sml QMLsr Snow melting into rain.
qr_gml QMLgr Graupel melting into rain.
qr_rci QCLri Rain collecting ice.
qr_icr QCLir Ice collecting rain.
qr_rcs QCLrs Rain collecting snow.
qr_scr QCLsr Snow collecting rain.
qr_rcg QCLrg Rain collecting graupel.
qr_gcr QCLgr Graupel collecting rain.
qr_rcc RCACCR Rain collecting cloud water.
qr_cau RCAUTR Autoconversion.
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Table A2. Cont.

Self-Named Titles Original Titles Microphysical Process

qr_rev QREVP Rain evaporation.
qr_iml QMLir Ice melting into rain.
qr_rch QCLrh Rain collecting hail.
qh_rfz QFZrh Freezing water drops into hail.

*: multiplication sign; 3-comp.: three types of hydrometeors are involved.

Appendix B

For the raindrop breakup process, the coalescence-breakup efficiency in THOM was
defined based on the formula proposed by Verlinde & Cotton [61]:

EC = 2 − exp
[
2.3 × 106 × (Dm − Db)

]
, Dm > 0.05 mm (A1)

where EC represents the rain coalescence-breakup efficiency, and Db (mm) is the threshold
diameter for initiating breakup. In THOM, the default value for Db is set at 1.95 mm.

For the raindrop evaporation process, the THOM model follows the Formula (16) from
Srivastava & Coen [62], where the evaporation efficiency is given by:

EE = 2π(S − 1) f
(

N0 f (λ) f (ρ) f
(

Vf all

))
CP92, (A2)

where S represents the air supersaturation, f (X) denotes the relationship between EE and
X, ρ is the air density, Vfall is a parameter for the raindrop fall velocity, and CP92 refers to
certain thermodynamic and nucleation dynamics parameters.
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