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Abstract: We introduce a new model for non-linear endmember extraction and spectral unmixing of
hyperspectral imagery called Generative Simplex Mapping (GSM). The model represents endmember
mixing using a latent space of points sampled within a (n − 1)-simplex corresponding to n unique
sources. Barycentric coordinates within this simplex are naturally interpreted as relative endmember
abundances satisfying both the abundance sum-to-one and abundance non-negativity constraints.
Points in this latent space are mapped to reflectance spectra via a flexible function combining linear
and non-linear mixing. Due to the probabilistic formulation of the GSM, spectral variability is also
estimated by a precision parameter describing the distribution of observed spectra. Model parameters
are determined using a generalized expectation-maximization algorithm, which guarantees non-
negativity for extracted endmembers. We first compare the GSM against three varieties of non-
negative matrix factorization (NMF) on a synthetic data set of linearly mixed spectra from the USGS
spectral database. Here, the GSM performed favorably for both endmember accuracy and abundance
estimation with all non-linear contributions driven to zero by the fitting procedure. In a second
experiment, we apply the GTM to model non-linear mixing in real hyperspectral imagery captured
over a pond in North Texas. The model accurately identified spectral signatures corresponding
to near-shore algae, water, and rhodamine tracer dye introduced into the pond to simulate water
contamination by a localized source. Abundance maps generated using the GSM accurately track the
evolution of the dye plume as it mixes into the surrounding water.

Keywords: endmember extraction; spectral unmixing; hyperspectral imaging; unsupervised machine
learning; source apportionment

1. Introduction

Hyperspectral imaging has emerged as a keystone technology in remote sensing,
where the ability to discern variations between high-resolution spectra supports a plethora
of critical applications such as environmental monitoring, biodiversity conservation, sus-
tainable agriculture, and more. In recent years, many remote sensing platforms have
been deployed with hyperspectral imaging payloads such as the Italian PRISMA mission
launched in 2019, the German EnMAP launched in 2022, and recently, NASA’s PACE satel-
lite launched in 2024 [1–3]. Many future missions also plan to incorporate hyperspectral
imaging capabilities, such as the European Space Agency’s CHIME, which will include
over 200 bands spanning visible, near-infrared (NIR), and short-wave infrared (SWIR)
wavelengths [4]. The continued development of hyperspectral imaging technology has also
led to a considerable reduction in size that enables its inclusion in the payloads of small
unmanned aerial vehicles (UAVs) [5,6]. Despite the proliferation of hyperspectral imag-
ing data sources, the considerable increase in data volume associated with hyperspectral
images (HSIs) poses significant challenges to real-time analysis at scale.

Many approaches have been developed to make sense of the HSI data. For example,
spectral indices such as the popular normalized difference vegetation index (NDVI) can
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be computed by taking ratios of spectral bands tailored to track specific reflectance char-
acteristics [7,8]. These indices have the advantage of being easy to compute, but suffer
from significant variability between instruments while ignoring most of the information
captured in HSI spectra [9]. An alternative approach is to pair HSI data with in situ mea-
surements to enable supervised models that map spectra directly to parameters of interest.
However, this approach relies on serendipitous satellite overpasses above sensing sites to
generate sufficient quantities of aligned data for model training and evaluation. For exam-
ple, Aurin et al. combined data from over 30 years of oceanographic field campaigns with
paired satellite imagery to develop robust models for the inversion of key water quality
indicators such as colored dissolved organic matter [10]. This approach can be accelerated
by combining UAV-based hyperspectral imaging with rapid in situ data collection using
autonomous boats [11,12]. However, these supervised methods rely on a priori knowledge
of expected sources to identify appropriate reference sensors for data collection. In light
of these limitations, unsupervised methods are needed that can reliably extract source
signatures from high-dimensional HSIs.

The spatial resolution of hyperspectral images generally results in pixels with mixed
signals from multiple sources, called endmembers. The task of unsupervised source
identification using HSI data therefore involves two steps: endmember extraction and
abundance estimation. Techniques such as vertex component analysis (VCA), the pixel
purity index (PPI), and N-FINDR solve this first task by identifying HSI endmember spectra
assuming the presence of some pure (unmixed) pixels [13–15]. By further assuming a linear
mixing model (LMM) in which observed spectra are described by a linear combination
of endmembers with non-negative abundances, HSIs can be unmixed using a variety of
techniques such as constrained least squares and multi-objective optimization [16–18].
Among these methods, non-negative matrix factorization (NMF) is a widely used approach
that extracts endmember spectra and unmixes abundances simultaneously via matrix
factorization [19,20]. The update equations for NMF can be formulated as multiplicative
updates, which guarantee the non-negativity of endmember spectra and their associated
abundances [21]. For this reason, the continued development of new NMF varieties remains
an active area of research.

In realistic scenes, multiple scattering and surface variability can easily challenge the
assumption of linear mixing [22]. Water-based HSIs specifically are prone to non-linear
mixing effects due to absorption features of dissolved and suspended substances, fluorescence
of organic matter, and particulate scattering in turbid waters [23–25]. With the growing
popularity of deep learning approaches in remote sensing, a variety of models based on
autoencoder architectures have been introduced for unmixing HSI data [26–29]. However, the
complexity introduced by these models significantly impacts training time and decreases the
interpretability of the resulting model. An ideal approach should enable both endmember
extraction and non-linear unmixing while accounting for spectral variability.

The self-organizing map (SOM) is an unsupervised machine learning method that
maps high-dimensional data to a low-dimensional grid while preserving the topological
relationships between data points [30]. This low-dimensional representation provides a
convenient way to visualize HSI data, while the weight vectors for each SOM node can
be interpreted as representative spectra [31–33]. If labeled reference spectra are available,
the SOM can be used to enable semi-supervised labeling of HSI pixels [34]. The SOM has
also been shown to be effective for the compression of HSIs acquired by a CubeSat [35].
Despite these capabilities, the SOM does not offer a probabilistic interpretation and relies
on a heuristic training procedure with hyperparameters that can be challenging to tune. To
address these shortcomings, Bishop et al. introduced Generative Topographic Mapping
(GTM), which is a probabilistic latent-variable model inspired by the SOM [36]. When
choosing a two-dimensional latent space, the GTM can be used to visualize the distribution
of HSI spectra, while the non-linear mapping from latent space nodes to the HSI data space
provides endmembers [37]. Unfortunately, the rectangular latent space grid employed by
the GTM does not directly translate into endmember abundances, and the expectation-
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maximization (EM) algorithm used to train the GTM does not guarantee non-negativity of
GTM node spectra.

In this paper, we introduce a new variant of the GTM, dubbed Generative Simplex
Mapping (GSM), which can extract endmember spectra and unmix non-linear mixtures.
By replacing the rectangular latent space of the GTM with a gridded (n − 1)-simplex, the
vertices of the GSM can be immediately interpreted as endmembers corresponding to
n unique spectral signatures. The mapping from the latent space to the HSI data space
accounts for linear and non-linear spectral mixing while barycentric coordinates for the
latent space simplex represent relative endmember abundances. Additionally, by taking
inspiration from the multiplicative updates of NMF, the GSM algorithm maintains the
non-negativity of resulting endmember spectra. If only linear mixing is present, the GSM
algorithm drives non-linear contributions to 0. Prior distributions included for GSM
model weights yield hyperparameters, which can be tuned to control the smoothness of
the resulting spectra and the degree of non-linear mixing applied. In summary, the key
innovations introduced by the GSM are as follows:

• The GSM can model linear and non-linear spectral mixing;
• The GSM does not assume the presence of pure pixels in the data set;
• The probabilistic formulation of the GSM accounts for spectral variability;
• The simplex used for the latent space structure of the GSM is directly interpretable

and forces abundances to satisfy both the abundance sum-to-one and abundance
non-negativity constraints;

• The fitting procedure introduced for the GSM maintains non-negativity of endmember spectra.

The remainder of this paper is structured as follows. Section 2 describes the proposed
method. Sections 3 and 4 describe experiments using simulated and real HSI data to evaluate
the GSM model. Section 5 discusses additional applications and extensions of the GSM to be
explored in future work. Finally, Section 6 finishes the paper with some closing remarks.

2. Generative Simplex Mapping

In the original GTM formulation, the data vectors x (reflectance spectra of length D)
are described by latent variables z mapped into the data space by a non-linear function ψ.
The data space distribution is taken to be normal with a precision parameter β to account
for measurement noise and spectral variability. The GSM uses same structure, that is

p(x | z, W, β) =

(
β

2π

)D/2
exp

(
− β

2
∥ψ(z; W)− x∥2

)
(1)

where z = (z1, z2, ..., zNv) corresponding to Nv-many sources and W is a D × M matrix of
model weights that parameterize the mapping ψ. As Equation (1) indicates, the precision
parameter corresponds to a standard deviation of

√
β−1.

Assuming data are uniformly sampled from an embedded manifold in the data space,
the GTM models the latent space using a rectangular grid with K-many nodes of equal
prior probability. To adapt the GTM to describe endmember mixing, the GSM makes two
key changes. The first is to replace the rectangular GTM grid with a gridded simplex with
Nv vertices. Barycentric coordinates for each node then describe the relative abundance
of each endmember with simplex vertices corresponding to pure sources. The second
change is to augment the equal prior probabilities of the GTM latent space with adaptive
mixing coefficients πk to allow for nonuniform sampling across the abundance simplex.
This addition allows the GSM to flexibly address many possible mixing scenarios without
an a priori assumption for a specific mixing distribution. Together, these changes result in a
prior distribution for the latent space given by

p(z) =
K

∑
k

πk δ(z − zk) where
K

∑
k

πk = 1. (2)
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where δ(·) is the Dirac delta function and zk are the positions of each node within the simplex.
For a data set containing N-many records, these definitions yield a log likelihood

function given by

L =
N

∑
n

ln

(
K

∑
k

πk p(xn | zk, W, β)

)
(3)

which can be maximized to obtain optimal values for model weights W, mixing coefficients
πk, and precision β. Rather than optimizing Equation (3) directly, we instead choose a
particular form for ψ to allow fitting the GSM via an EM algorithm.

In the standard LMM model, the mapping ψ is given by ψ(z; W) = Wz where the
columns of W correspond to endmember spectra. To model non-linear mixing, z is re-
placed by the output of M-many activation functions such that ψ(z; W) = Wϕ(z). The
activations applied to each GSM node can then be collected to form a matrix with elements
Φkm = ϕm(zk). For m ≤ Nv, we take Φkm = [zk]m to model linear mixing. The remaining
M − Nv activations are computed using radial basis functions (RBFs) with centers µm
distributed throughout the simplex (but not at the vertices) with

Φkm =


s − ∥zk − µm∥

s
; ∥zk − µm∥ ≤ s

0; ∥zk − µm∥ > s
(4)

where s is the spacing between RBF centers. A visual representation of the non-linear
activation functions in Equation (4) is shown below in Figure 1 for a 2-component GSM.

Figure 1. Illustration of the non-linear activation functions for a 2-component GSM. The simplex
vertices are shown as green dots (µ1 and µ2) and three RBF centers are shown in red (µ1, µ2, and
µ3). With no RBF centers at the vertices, we guarantee no non-linear contributions occur for pure
endmember spectra.

In this form, the first Nv columns of W correspond to endmember spectra, while the
remaining columns account for additional non-linear effects. Equation (4) is specifically chosen
so that no non-linear contributions are possible for pure spectra at the vertices of the simplex.
At all other points, the output of ψ involves both linear and non-linear contributions. If only
linear mixing is present, the GSM training algorithm should therefore drive Wdm to 0 for
m ≥ Nv. A visualization of the GSM model for three sources is shown in Figure 2.

To further constrain the model, we introduce prior distributions on the weights W. For
m ≤ Nv we take Wdm ∼ N (0, λ−1

e ), corresponding to a zero-mean Gaussian with variance

λ−1
e . For m > Nv we use a zero-mean Laplace distribution, Wdm ∼ λw

2
exp(−λw|Wdm|),

with scale parameter λ−1
w . Under these choices, λe corresponds to L2 regularization on

endmember spectra while λw corresponds to L1 regularization on the non-linear activa-
tions. In other words, λe governs the smoothness of the resulting endmembers, while λw
encourages sparsity for the non-linear contributions.
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Figure 2. Illustration of the GSM. The latent space consists of a grid of K-many points (green dots)
distributed throughout a simplex with Nv vertices. Barycentric coordinates of each node in the
simplex correspond to the relative abundance of Nv-many unique sources. Here, Nv = 3 has been
chosen for illustrative purposes. Nodes are mapped into the data space via the map ψ(z) utilizing
M-many radially symmetric basis functions (red). Spectral variability is estimated via the precision
parameter, β, shown here in the data space as a light blue band around the spectrum given by ψ(z).

An EM algorithm for the GSM model can now be formulated as follows. Suppose that
we have current estimates for the model weights W, mixing coefficients πk, and precision
parameter β. During the expectation step we compute the posterior probabilities, that is,
the responsibility of each GSM node for each spectrum in the data set:

Rkn = p(zk | xn, W, β) =
πk p(xn | zk, W, β)

K
∑
k′

πk′ p(xn | zk′ , W, β)

. (5)

For the maximization step, we consider the expectation of the penalized complete-data
log likelihood given by

Q =
N

∑
n

K

∑
k

Rkn

ln πk +
D
2

ln
(

β

2π

)
− β

2

D

∑
d

(
M

∑
m

WdmΦkm − Xnd

)2


+
NvD

2
ln
(

λe

2π

)
− λe

2

D

∑
d

Nv

∑
m=1

W2
dm

+ (M − Nv)D ln
(

λw

2

)
− λw

D

∑
d

M

∑
m=Nv+1

Wdm

(6)

where Xnd is the d-th component of the n-th spectrum in the data set. Equation (6) is then
maximized with respect to πk, β, and W to obtain new parameter values. For a detailed
overview of the EM procedure, the reader is directed to ref. [38].

For πk, optimization can be performed using Lagrange multipliers to maintain the
condition that ∑k πk = 1. Doing so yields

πnew
k =

1
N ∑

n
Rkn (7)

Optimization of Equation (6) with respect to W leads to a linear system that can be
solved using standard numerical methods. However, in this form, we cannot guarantee the
non-negativity of W required to describe reflectance spectra. Therefore, we take inspiration
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from the multiplicative updates for NMF introduced by Lee and Seung [19]. A standard
gradient-based update for W would normally take the form

Wnew = W + η
∂Q
∂W

(8)

for some learning rate η. Therefore, we differentiate to obtain

∂Q
∂W

= −βWΦTGΦ − Λ + βXTRTΦ (9)

where G is a diagonal matrix with Gkk = ∑n Rkn and Λ is given by

Λdm =

{
λeWdm; m ≤ Nv

λw; m > Nv
(10)

If we allow individual learning rates ηdm for each element of W, then choosing

ηdm =
Wdm

(βWΦTGΦ)dm + Λdm
(11)

results in a multiplicative update rule given by

Wnew
dm = Wdm ·

(
βXTRTΦ

)
dm

(βWΦTGΦ)dm + Λdm
(12)

From Equation (12), it is clear that we are multiplying Wdm by strictly non-negative
values, and therefore, non-negative Wdm will remain so during each update. This update
can also be repeated multiple times during each M-step to accelerate convergence.

Optimizing Equation (6) with respect to β yields the final update equation:

1
βnew =

1
ND

N

∑
n

K

∑
k

Rkn∥ψ(zk; W)− xn∥2. (13)

To train a GSM model, weights W are randomly initialized to positive values. The
mixing coefficients are initially set to πk = 1/K. Finally, the precision parameter β is
initialized to the variance of the (Nv + 1)-th principal component. The matrix Φ is pre-
computed and stored for reuse during each EM cycle together with the data matrix X.
After initialization, the expectation and maximization steps are repeated in turn until Q
converges to a predetermined tolerance level. For large Nv, we note that generating a
regular grid within the simplex becomes cumbersome as the number of grid nodes scales
as (k+Nv−2

Nv−1 ) for k nodes per edge leading to a large responsibility matrix. An alternative
approach is to randomly sample points within the simplex to obtain a total of K nodes. A
Dirichlet distribution

p(z) =
Γ(∑Nv

i αi)

∏Nv
i Γ(αi)

Nv

∏
i
[z]αi−1

i (14)

with all αi = 1 can be used to uniformly sample within the simplex. Since the mixing
coefficients πk are adaptive, variability in node separation should not significantly impact
the resulting GSM.

The probabilistic form of the GSM means that a variety of information criteria can
be used to evaluate the model fits. In this paper we consider two metrics, the Bayesian
Information Criterion (BIC),

BIC = P ln(N)− 2L, (15)
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and the Akaike Information Criterion (AIC),

AIC = 2P − 2L (16)

where P is the total number of model parameters and L is the log likelihood from Equation (3).
The map ψ provides the representation of each node zk in the data space. Importantly,

applying ψ to each vertex extracts endmember spectra from the GSM. Slices R[:,n] of the
matrix R define the responsibility of each latent node zk for the n-th spectrum xn in the
data set. Therefore, once the GSM has been trained, R can be used to unmix endmember
abundances by representing each record in the latent space via the mean:

ẑn =
K

∑
k

Rknzk. (17)

A freely available implementation of the GSM is provided in [39]. The code is written in
the Julia programming language and follows the Machine Learning in Julia (MLJ) common
interface [40,41].

3. Experiments
3.1. Linear Mixing: Comparison to NMF

To illustrate the effectiveness of the GSM, we first demonstrate its ability to model
linear mixing. This serves as an important limiting case, since linearly mixed spectra should
not lead to the spurious introduction of non-linear contributions by the GSM. The goal of
this first test is therefore to demonstrate that the GSM drives non-linear weights to zero for
linearly mixed data while providing a fair test to compare the GSM to a well-established
linear mixing model. This ability clearly distinguishes the GSM from other non-nonlinear
unmixing approaches such as autoencoders, which, by their design, include non-linear
mixing even when it is not present in the underlying data. To this end, a synthetic data
set comprising linear mixtures of three sample spectra from the U.S. Geological Survey
digital spectral library was generated by sampling 1000 abundance vectors from a Dirichlet
distribution with α1 = α2 = α3 = 1/3 [42]. These source spectra and abundances are
visualized in Figure 3.

Zero-mean Gaussian noise was added to the data to yield 9 data sets with signal-to-
noise ratios (SNRs) ranging from 0 to ∞ to examine the impact of random noise on GSM
performance. For each of these data sets, a GSM was trained using 25 nodes per edge with
λe set to the default value of 0.01 and λw fixed to 100. The large value of λw was chosen to
encourage the GSM to prefer models with limited non-linear mixing.

For comparison, three NMF models were also trained on each data set, as this method
is both highly popular and does not include the pure pixel assumption common to other
techniques like VCA and PPI. Countless variations on the original NMF method have been
introduced into the literature, with one review identifying more than 100 distinct NMF
varieties [20]. For the purpose of comparing to the GSM, we considered the standard ℓ2
and KL-divergence formulations introduced by Lee and Seung [21]. We also included the
robust ℓ2,1 NMF as described by Kong et al. [43]. We note that the goal of this test is not to
prove the GSM is superior to other models for linear mixing, but rather to demonstrate that
the GSM can model linearly mixed data without introducing unnecessary complexity.

Four metrics were used to compare model performance. For endmember extraction, the
mean spectral angle and mean RMSE between true endmembers ρi and extracted endmembers
ρ̂i were computed where the spectral angle for the i-th endmember is defined as

θ(ρi, ρ̂i) = arccos
(

⟨ρi, ρ̂i⟩
∥ρi∥ · ∥ρ̂i∥

)
(18)
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and the RMSE for the i-th endmember is

RMSE(ρi, ρ̂i) =

√√√√ 1
D − 1

D

∑
d
(ρi(λd)− ρ̂i(λd))

2. (19)

(a) (b)

Figure 3. Synthetic data set formed from USGS spectra. (a) Spectra from the USGS spectral database
used as the ground truth endmembers. These spectra were selected following the example in ref. [13].
(b) The abundance distribution sampled for in the data set. Samples were generated from a Dirichlet
distribution with α1 = α2 = α3 = 1/3.

Abundance estimation was similarly evaluated using the mean RMSE between true
abundance and estimated abundance values for each endmember. Finally, the reconstruc-
tion RMSE, that is, the RMSE computed between the original data set and its reconstruction
via the extracted endmembers and abundances, was computed. This provides a model-
agnostic criterion to guarantee that each model sufficiently converged during training.

3.2. Non-Linear Mixing: Water Contaminant Identification

To assess the ability of the GSM to unmix realistic scenes likely to involve non-linear
mixing effects, we consider a data set of real HSI collected in Montague, North Texas on
9 December 2020. A Freefly Alta-X autonomous quadcopter was used as a UAV platform
and equipped with a Resonon Pika XC2 visible+near-infrared (VNIR) hyperspectral imager
to acquire multiple HSIs. Each HSI pixel included 462 wavelength bins ranging from
391 to 1011 nm. To evaluate the ability of GSM to identify potential contaminant sources,
rhodamine dye, a commonly used tracer in hydrological studies, was released into the
pond. Two UAV flights spaced 15 min apart were used to capture the evolution of the
plume as it dispersed into the surrounding water.

The hyperspectral imager is in a pushbroom configuration so that each HSI was
captured one scan line at a time. Data from an embedded GPS/INS unit enable direct
georectification of captured imagery using the method described in [44]. Additionally,
an upward-facing Ocean Optics UV-Vis NIR spectrometer with a cosine corrector was
included on the top of the UAV to measure incident solar irradiance. The configuration of
the UAV together with a sample HSI are shown in Figure 4. For a more detailed description
of the system, the reader is directed to references [11,12].

Raw HSIs were converted to reflectance using the downwelling irradiance spectrum
captured simultaneously with each HSI. Given the UAV flies with the imager oriented to
nadir, the reflectance is then given by

ρ(λ) = π L(λ)/Ed(λ) (20)

where L is the spectral radiance, Ed is the downwelling irradiance, and a factor of π is
included resulting from the assumption of diffuse upwelling radiance [45]. The UAV flights
were performed near solar noon to maximize the amount of sunlight illuminating the water.
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For this pond in North Texas, this corresponded to an average solar zenith angle of 56.7◦,
resulting in HSIs with negligible sunglint effects.

(a)

(b)

(c)

Rhodamine Plume

Figure 4. Real HSI data set. (a) The UAV used to collect hyperspectral images. (b) The Resonon
Pika XC2 hyperspectral imager used to acquire HSI. (c) A sample hyperspectral data cube. Spectra
are plotted for each pixel at their geographic position. The log10-reflectance is colored along the z
axis, and a pseudocolor image is shown on top of the data cube. The signature of the rhodamine dye
plume is clearly identifiable in the water.

From the collected HSIs, a water-only pixel mask was generated by identifying all
pixel spectra with a normalized difference water index (NDWI) greater than 0.25 as defined
in ref. [46]. Of these water pixels, a combined data set of 15,000 spectra was sampled for
GSM training. As a final processing step, reflectance spectra were limited to λ ≤ 900 nm,
as wavelengths above this threshold showed significant noise.

In order to justify values for the appropriate number of endmembers, the final data
set was decomposed using principal component analysis (PCA). A plot of the explained
variance organized for each PCA component is shown in Figure 5.

The PCA decomposition of the data suggests that at least 3 endmembers should
be used for a mixing model, and beyond 6 there is little added benefit. Based on these
observations, multiple GSM models were trained with Nv ranging from 3 to 6, λe ranging
from 0.001 to 1.0, and λw ranging from 1 to 1000 in order to explore the GSM parameter
space. From these, a final model was identified using the BIC, AIC, and reconstruction
RMSE. The resulting GSM was then explored to examine extracted endmembers and map
the evolution of the rhodamine plume by using the abundances given by the latent space
representation of each pixel in the HSIs.

Figure 5. Explained variance of PCA components for the real HSI data set. A red horizontal line is
superimposed on the graph, marking an explained variance of 1%. All components past the fourth
explain less than 1% of the observed variance.
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4. Results
4.1. Linear Mixing

The results of GSM training on the synthetic linear mixing data set described in
Section 3 are illustrated in Figure 6. Three versions of NMF were trained corresponding to
Euclidean (ℓ2), KL-Divergence, and ℓ2,1 cost functions. GSM models using both a regular
simplex grid and a grid of points sampled using a uniform Dirichlet distribution (referred
to as a big GSM model) were trained to compare performance in linear mixing tasks.

(a) (b)

(c) (d)

Figure 6. Comparison of GSM against NMF on simulated linear mixing data set using USGS spectra.
(a) The mean spectral angle computed between extracted endmembers and original endmembers.
(b) The mean RMSE computed between extracted endmembers and original endmembers. (c) The
mean abundance RMSE computed between original abundance data for each endmember and extracted
abundances. (d) The reconstruction RMSE, which evaluates the quality of fit. All models realized similar
values, reflecting convergence of the models to the level of random noise introduced into the data.

The quality of endmember extraction is measured by the mean spectral angle and the
mean endmember RMSE. As Figure 6 indicates, both versions of the GSM outperformed
their NMF counterparts. Additionally, we note that for all GSM models, even including
SNR = 0, all model weights Wdm for m > Nv corresponding to non-linear mixing were
driven identically to 0.0. This confirms that, for data sets with purely linear mixing and
random noise, the GSM correctly fits a mixing model without introducing unnecessary
complexity.

The quality of the unmixing, that is, the estimation of the abundance, performed by
each model was evaluated using the mean abundance RMSE. Here, we again see that both
versions of the GSM outperformed NMF. To justify that all models were fairly trained to
convergence, the data reconstruction RMSE was also computed. This metric uses the trained
mixing model to compute the error between the original data set and the reconstructed
spectra generated using the extracted endmembers and their abundances. For all GSM
and NMF models, the data reconstruction RMSE converged to the level of random noise
introduced into the data. These results reflect a fair comparison between the NMF and
GSM models.

In Figure 7, we plot the endmembers extracted for the GSM model trained on the
synthetic data set with SNR = 20.
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Figure 7. Endmembers extracted by the GSM for the simulated linear mixing data set with SNR = 20.
The dashed lines correspond to original endmember spectra from the USGS spectral database. Solid
lines superimposed on the plot indicate the extracted endmember spectra. Colored bands are included
around each spectrum corresponding to the spectral variability estimated by the GSM precision
parameter β where the band width is 2

√
β−1 corresponding to 2 standard deviations.

The extracted endmembers clearly fit the original source spectra while capturing local
reflectance features. Furthermore, the GSM precision parameter β, which is tuned during
model training, provides an assessment of spectral variability due to random noise. In
Figure 7, this is indicated by the colored band centered around each extracted spectrum
with a width of 2

√
β−1 corresponding to 2 standard deviations. The SNR of 20 added

to this example corresponds to zero-mean Gaussian noise with a standard deviation of
σ = 0.0493. After training, the GSM found

√
β−1 = 0.0495, accurately identifying this

introduced noise. The ability to assess the spectral variability of extracted endmembers is a
key advantage resulting from the probabilistic formulation of the GSM.

4.2. Non-Linear Mixing: Rhodamine Dye Plume

For the data set of real HSI spectra described in Section 3, 80 GSM models were trained
to explore the GSM hyperparameter space. The performance of the model was compared
using the BIC, AIC, and reconstruction RMSE with the results of the top 10 performing
models shown in Table 1.

As the table indicates, a non-linear GSM with Nv = 3, λe = 0.01, and λw = 1.0
achieved minimum BIC, AIC, and reconstruction RMSE values. The lower value of λw
identified from these models reflects the presence of non-linear mixing effects in the HSI
data. Although the values of model weights Wdm for m > Nv corresponding to non-
linear mixing were 0 for the synthetic data set, here these weights obtained a small but
non-negligible median value of 0.0012.

Reflectance spectra generated by the trained GSM corresponding to the maximum
abundance values for each endmember are plotted in Figure 8. Based on their signatures,
these endmembers are identified with water, vegetation (including near shore, filamentous
blue-green algae), and the rhodamine dye plume.
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Table 1. GSM hyperparameter optimization for the real HSI data set: Multiple GSM models were
trained to explore the impact of model hyperparameters. Nv values from 3 to 6 were explored
as suggested by the PCA decomposition of the data set. λe was varied from 0.001 to 1.0 and λw

ranged from 1 to 1000. Here, we report the top 10 models ranked by increasing BIC. The AIC and
reconstruction RMSE are also included for comparison.

Nv λe λw BIC AIC Reconstruction RMSE

3 0.01 1.0 −6.195 × 107 −6.269 × 107 0.000989
3 0.001 1.0 −6.194 × 107 −6.268 × 107 0.000989
3 0.1 1.0 −6.192 × 107 −6.265 × 107 0.000991
3 1.0 1.0 −6.186 × 107 −6.260 × 107 0.001190
4 1.0 1.0 −6.181 × 107 −6.255 × 107 0.001002
4 0.1 1.0 −6.175 × 107 −6.249 × 107 0.001008
4 0.01 1.0 −6.173 × 107 −6.247 × 107 0.001009
4 0.001 1.0 −6.173 × 107 −6.247 × 107 0.001009
4 0.1 10.0 −6.171 × 107 −6.245 × 107 0.001011
3 1.0 10.0 −6.166 × 107 −6.239 × 107 0.001014

λ (nm)
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Figure 8. GSM applied to water spectra from real HSI data set: (a) Spectra generated by the trained
GSM for samples with maximum abundance for each endmember. Based on these spectral profiles,
endmembers are identified with water, near-shore vegetation, and rhodamine dye. (b) An HSI
segmented according to the relative abundance of each endmember. Each water pixel is colored by
smoothing interpolating between red, green, and blue colors using the relative abundance estimated
for rhodamine, vegetation, and water spectra. The rhodamine plume is clearly identifiable in the
western portion of the HSI.

By assigning a unique color to each endmember, the spatial distribution of HSI spectra
can be visualized by using estimated abundances to smoothly interpolate between end-
member colors as shown in panel b of Figure 8. In other words, this method provides a
fuzzy semantic segmentation of HSI pixels. Alternatively, each HSI pixel could be assigned
a single class corresponding to the endmember with maximal abundance. In this way, the
GSM can be used to visualize high-dimensional HSI spectra.

To showcase the ability of the GSM to identify spatially localized contaminant sources,
abundance maps were generated for each individual end member using the trained GTM
to unmix all water pixels in the HSI. In Figure 9, these abundance maps are compared for
each endmember. The abundance map for the water endmember covers a majority of the
center of the pond and decreases near the edge of the rhodamine plume where the dye and
water mix. The vegetation in shallow water near the shore and the rhodamine dye plume
in the western half of the pond are also clearly identified by their abundance maps. Given
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an HSI pixel resolution of 0.1 × 0.1 m2, the spatial extent of vegetation is estimated to be
378.6 m2 while the plume initially extends across 255.7 m2.

(a)

(b)

(c)

Figure 9. Endmember abundance distributions: (a) The spatial distribution of abundance for the water
class. This source dominates in the center of the pond and decreases towards the shore where vegetation
begins to dominate the reflectance signal. The water endmember abundance is also observed to decrease
near the edge of the rhodamine plume reflecting dye mixing and diffusion. (b) The spatial distribution
of vegetation. This endmember includes filamentous blue-green algae observed to accumulate in
shallow waters near the shore. (c) The rhodamine dye plume extent segmented from the HSI. The
total areas for near-shore vegetation and rhodamine are estimated to be 378.6 m2 and 255.7 m2,
respectively.

Applying the trained GSM to unmix HSI from UAV flights provides an efficient way to
map the dispersion and transport of contaminant. Figure 10 demonstrates this by mapping
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the growing extent of rhodamine dye between successive UAV flights. In just 15 min, the
plume expands from an initial area of 255.7 m2 to over 571.8 m2 as the dye mixes with the
surrounding water.

(a) (b)

Figure 10. Rhodamine plume evolution: Using the trained GSM we can track the dispersion of
the rhodamine dye plume between successive drone flights. (a) The initial plume distribution after
release. Here, the dye subsumes an area of 255.7 m2. (b) The same plume imaged 15 min later now
extends across an area of 571.8 m2.

5. Discussion

The proliferation of hyperspectral imaging technologies in the remote sensing and
environmental monitoring communities underscores the need for efficient algorithms
that can make sense of high-dimensional HSIs. Of particular interest are unsupervised
algorithms, which utilize all available wavelength bins to identify unique source profiles
that present realistic scenes. The GSM introduced in this paper is a novel method that
simultaneously performs endmember extraction and spectral unmixing. Unlike popular
endmember extraction algorithms, such as VCA, PPI, and N-FINDR, GSM does not assume
the presence of pure pixels in HSIs. Furthermore, the flexible structure of the mapping
from the GSM latent space to the spectral data space allows the GSM to model non-linear
mixing effects, distinguishing it from other widely used linear models such as NMF. Being
a probabilistic model also enables the GSM to quantify the spectral variability through
the precision parameter β as indicated in Figure 7. This additional capability is critical for
analysis of realistic HSI where sensor noise, viewing geometry, and scene illumination all
introduce uncertainty into extracted endmembers.

The growing popularity of deep learning methods has led many to explore applications
of deep learning to the spectral unmixing problem. Variations in auto-encoder architectures
are a popular choice for both endmember extraction and unmixing. For example, Borsoi et
al. used a variational autoencoder to more accurately identify the spectral variability in
an LMM [28]. Similarly, Palson et al. introduced an autoencoder with convolution layers
to extend the LMM by incorporating spatial context from neighboring HSI pixels [29].
However, the increased complexity of deep neural network approaches makes interpreting
the latent space learned by encoder layers challenging and can dramatically increase
training time and data volume requirements. In contrast, the latent space of the GSM is
immediately interpretable due to the imposed simplex geometry, while the form of ψ leaves
room to explore a variety of non-linear mixing models. In this paper, ψ was constructed to
add non-linear effects as additions or perturbations to an underlying linear mixing model,
with the λw hyperparameter provided to control the degree of non-linearity considered.
In the original GTM formulation that inspired the GSM, the mapping ψ strictly uses non-
linear features generated by Gaussian RBFs. Alternatively, one could easily construct ψ
for specific non-linear models such as bilinear mixing by introducing features that depend
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on higher-order combinations of the latent space (abundance) coordinates. However, it is
important to note that the EM algorithm formulated for GSM training is made possible due
to the linear combination of activations ϕ(z) with model weights W. For mixing models
that instead depend non-linearly on weights W, an EM algorithm may require iterative
non-linear solves during each M step.

The main limitation of the GSM is the curse of dimensionality encountered when
generating a grid on the (Nv − 1)-simplex for large numbers of endmembers, Nv. This
can be mitigated by instead randomly sampling points within the interior of the simplex
using a uniform Dirichlet distribution to obtain a predetermined number of nodes across
the latent space. As the mixing coefficients πk are adapted during training, variability in
spacing between nodes should not significantly affect the performance of the model. This
was confirmed for the simulated data set as shown in Figure 6. In terms of computational
efficiency, each expectation step involves O(K × N) operations to update the entries of the
responsibility matrix, leading to extended training times for considerably large data sets.
This can be addressed by augmenting the EM procedure to use mini-batches of training
samples, as outlined by Bishop et al. for the GTM in ref. [47]. Rather than updating the
full responsibility matrix during each iteration, a subset of R corresponding to a single
batch of training data can be evaluated with all other entries kept constant. The GSM may
also be extended in other ways, for example, by replacing the precision parameter β with
a vector β of parameters to model wavelength-dependent spectral variability common to
many hyperspectral imaging platforms.

Based on the results of applying the GSM to real HSIs as illustrated in Figures 9 and 10,
one clear application of the GSM is contaminant identification and water quality assessment.
Modern UAV platforms make it possible to rapidly image bodies of water where direct
access for in situ data collection is restricted. By equipping UAVs with hyperspectral imagers,
the GSM can be used to identify abnormal spectral signatures corresponding to localized
contaminant sources. Generating semantic segmentations of collected HSIs as in panel b of
Figure 8 makes it easy to compare multiple HSIs without resorting to pseudocolor images
generated from a limited number of wavelength bands. Since the GSM models the distribution
of all HSI spectra rather than individual parameters, it may also aid in situ data collection
by suggesting sampling points that maximize the area traversed in the GSM latent space
rather than uniformly sampling across a wide spatial extent. Similar approaches have been
developed to guide autonomous data collection vehicles by casting route planning as a prize
collecting traveling salesman problem subject to resource constraints [48,49].

As a final consideration, we note that the problem of endmember extraction and
spectral unmixing for HSIs is identical to source apportionment in the context of air quality.
Here, the goal is to identify measurement profiles associated with sources of ambient
air pollution based on measurements at a receptor site. A popular model for source
apportionment studies is Positive Matrix Factorization (PMF) introduced by Paatero and
Tapper [50,51]. Just like NMF, PMF decomposes measurements into a convex combination
of source profiles and relative abundances subject to non-negativity constraints. These
linear receptor models assume that the sources are not transformed during transport to the
receptor, ignoring changes due to chemical reactions. Non-linear mixing models such as
the GSM introduced here may, therefore, prove beneficial in this additional domain.

6. Conclusions

In this paper, we introduced the GSM as a novel method for unsupervised endmember
extraction and spectral unmixing. The model was compared to three varieties of NMF on a
synthetic data set of linearly mixed spectra from the USGS spectral database. Across all
noise levels, the GSM outperformed NMF for both endmember accuracy and abundance es-
timation. When applied to real HSIs collected over a north Texas pond, the GSM accurately
models spectral mixing, including non-linear effects. Rhodamine dye was released into
the pond to simulate a localized contaminant source. Endmember abundances estimated
by the GSM corresponding to the dye accurately tracked the evolution of the plume as
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it mixed into the surrounding water. These examples illustrate the power of combining
non-linear mixing models together with UAV-based hyperspectral imaging for environmen-
tal monitoring and water quality analysis. Future work will further develop the GSM to
incorporate wavelength-dependent spectral variability. Additionally, the GSM may prove
useful for air quality studies as a non-linear source apportionment model.

7. Patents

A provisional US patent application for this work has been filed on 2024-10-10 entitled
Generative Simplex Mapping: Non-Linear Endmember Extraction And Spectral Unmixing For
Hyperspectral Imagery, application number 63/705,854.
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PRISMA Hyperspectral Precuror of the Application Mission
EnMAP Environmental Mapping and Analysis Program
PACE Plankton, Aerosol, Cloud, ocean Ecosystem
CHIME Copernicus Hyperspectral Imaging Mission for the Environment
NIR Near Infrared
SWIR Short-wave Infrared
UAV Unmanned Aerial Vehicle
HSI Hyperspectral Image
NDVI Normalized Difference Vegetation Index
VCA Vertex Component Analysis
PPI Pixel Purity Index
LMM Linear Mixing Model
NMF Non-negative Matrix Factorization
SOM Self-Organizing Map
GTM Generative Topographic Mapping
EM Expectation-Maximization
GSM Generative Simplex Mapping
RBF Radial Basis Function
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RMSE Root Mean Square Error
PCA Principal Component Analysis
PMF Positive Matrix Factorization
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