
Citation: Huang, J.; Wang, B.; Cai, X.;

Yan, B.; Li, G.; Li, W.; Zhao, C.; Yang,

L.; Zheng, S.; Cui, L. Coastal

Reclamation Embankment

Deformation: Dynamic Monitoring

and Future Trend Prediction Using

Multi-Temporal InSAR Technology in

Funing Bay, China. Remote Sens. 2024,

16, 4320. https://doi.org/10.3390/

rs16224320

Academic Editor: Antonio Miguel

Ruiz Armenteros

Received: 23 September 2024

Revised: 29 October 2024

Accepted: 17 November 2024

Published: 19 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Coastal Reclamation Embankment Deformation: Dynamic
Monitoring and Future Trend Prediction Using Multi-Temporal
InSAR Technology in Funing Bay, China
Jinhua Huang 1, Baohang Wang 1,2, Xiaohe Cai 1,2,*, Bojie Yan 1, Guangrong Li 3, Wenhong Li 4, Chaoying Zhao 3 ,
Liye Yang 5, Shouzhu Zheng 1 and Linjie Cui 1

1 School of Geography and Oceanography, Minjiang University, Fuzhou 350108, China;
huangjinhua103@163.com (J.H.); wangbaohang@mju.edu.cn (B.W.); bnunercita@163.com (B.Y.);
szzheng0304@mju.edu.cn (S.Z.); clj12211234@163.com (L.C.)

2 Technology Innovation Center for Monitoring and Restoration Engineering of Ecological Fragile Zone
in Southeast China, Ministry of Natural Resources, Fuzhou 350001, China

3 School of Geological Engineering and Geomatics, Chang’an University, Xi’an 710054, China;
2020226022@chd.edu.cn (G.L.); cyzhao@chd.edu.cn (C.Z.)

4 Xi’an Center of Geological Survey, China Geological Survey, Xi’an 710054, China;
liwenhong01@mail.cgs.gov.cn

5 College of Civil Engineering, Xiangtan University, Xiangtan 411105, China; yangliye@chd.edu.cn
* Correspondence: caixiaohe@mju.edu.cn

Abstract: Reclamation is an effective strategy for alleviating land scarcity in coastal areas, thereby
providing additional arable land and opportunities for marine ranching. Monitoring the safety
of artificial reclamation embankments is crucial for protecting these reclaimed areas. This study
employed synthetic aperture radar interferometry (InSAR) using 224 Sentinel-1A data, spanning
from 9 January 2016 to 8 April 2024, to investigate the deformation characteristics of the coastal
reclamation embankment in Funing Bay, China. We optimized the phase-unwrapping network by
employing ambiguity-detection and redundant-observation methods to facilitate the multitemporal
InSAR phase-unwrapping process. The deformation results indicated that the maximum observed
land subsidence rate exceeded 50 mm per year. The Funing Bay embankment exhibited a higher
level of internal deformation than areas closer to the sea. Time-series analysis revealed a gradual
deceleration in the deformation rate. Furthermore, a geotechnical model was utilized to predict
future deformation trends. Understanding the spatial dynamics of deformation characteristics in
the Funing Bay reclamation embankment will be beneficial for ensuring the safe operation of future
coastal reclamation projects.

Keywords: InSAR; Funing Bay; reclamation embankments; future trends

1. Introduction

With rapid economic development and population growth in coastal areas, intensive
infrastructure and industrial facilities are occupying a substantial amount of land, leading
to significant challenges for land resources. Ocean reclamation has emerged as a strategy
for various countries to provide substantial land resources in the short term [1]. This
process of land reclamation has yielded significant social and economic benefits, including
an increased food supply through the creation of new agricultural land, the attraction of
more investment through new industrial development sites, and the provision of additional
space for urban expansion [2]. However, factors such as additional loads from engineering
construction, along with natural soil consolidation and compaction, can easily result in
localized settlement, thereby jeopardizing the infrastructure in the vicinity. Most areas
undergoing land reclamation and deformation will initially experience rapid deformation,
followed by a phase of slower deformation, which can be characterized as a two-phase
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process [3]. Large-scale dynamic monitoring of deformation in land reclamation areas
holds significant value and importance.

Numerous countries around the world engage in land reclamation [4]. According
to incomplete statistics, from 1991 to 2015, China’s cumulative land reclamation area
from the sea exceeded 6418.9 km2 [5,6]. Synthetic aperture radar interferometry (InSAR)
technology can detect minor surface deformations and offers several advantages, including
extensive spatial coverage, cost-effectiveness, high precision, and continuous monitoring.
InSAR has been utilized to monitor various airports located on reclaimed land areas,
such as Hong Kong Airport [7], Xiamen Airport [8,9], Dalian Airport [10], and Shanghai
Airport [11]. Additionally, many coastal regions have undergone reclamation to support
urban expansion. InSAR technology is employed to analyze deformation characteristics
in various locations, including Mokpo, South Korea [12]; Urayasu, Japan [13]; Istanbul
and Rize, Turkey [14]; Brest, France [15]; Macao, China [16]; Penny’s Bay Reclamation in
Hong Kong, China [17]; Shenzhen, China, [18]; Tianjin, China [19]; Singapore [20]; and
Shanghai, China [21,22]. The dynamic monitoring of the stability of reclamation areas holds
significant value [23,24].

Several multitemporal InSAR techniques have been proposed, including persistent
scatterer InSAR (PS-InSAR) [25], point-target analysis (IPTA) [26], the Stanford method
for persistent scatterers (StaMPSs) [27], and permanent scatterer pairs (PSPs) [28]. Ad-
ditionally, small baseline subset (SBAS)-InSAR [29] and spatiotemporal-filtering-based
distributed scatterer InSAR (DS-InSAR) techniques analyze ground displacements of dis-
tributed scatterer (DS) targets, including SqueeSAR [30], phase link (PL) [31], and other
advanced multitemporal InSAR techniques [32–37]. These advanced multitemporal InSAR
techniques have been comprehensively reviewed in references [38–41]. Continuous SAR
observation data, such as those from Sentinel-1A, which has a revisit interval of 12 days, are
expected to increase exponentially. Additionally, onboard commercial satellites, including
Radarsat-2, ALOS-2, TerraSAR-X/TanDEM-X/PAZ, and NASA-ISRO SAR (NISAR), will
further enrich the SAR data pool. The emerging SAR data have the potential to support
real-time online services, early warning systems, and various engineering applications [42].
InSAR technology is an indispensable tool for Earth observation and has been utilized to
assess various infrastructures [43], including railways [44,45], bridges [46,47] and reservoir
dams [48,49]. Several InSAR dynamic deformation monitoring technologies have been
developed to obtain deformation parameters in near real-time [50–54].

In addition, predicting ground subsidence can help identify abnormal geological
phenomena in advance, which is crucial for preventing subsidence-related disasters and
implementing timely preventive measures. This is particularly important in reclaimed
areas, where the underlying soil exhibits high compressibility and requires an extended
period to compact and solidify. The methods for predicting settlement using InSAR de-
formation time series in land reclamation include theoretical estimations based on soil
consolidation theory [9,55], curve-fitting mathematical models [56–58], and deep learning
techniques [59,60].

Unlike reservoir dams, this research employed multitemporal InSAR technology to dy-
namically assess the spatiotemporal deformation characteristics of the coastal reclamation
embankment located in Funing Bay, China, which resembles a bridge spanning the sea area.
The reclamation embankment undergoes both settlement due to soil consolidation and
erosion caused by water on either side of the structure. This study incorporated network
optimization techniques to facilitate high-precision phase unwrapping, thereby enhancing
the reliability of dynamic deformation monitoring. Subsequently, sequential least squares
were utilized to continuously update the deformation parameters of the reclamation em-
bankment. Ultimately, we analyzed the deformation characteristics of the reclamation
embankment and predicted its future trends.
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2. Study Area SAR Dataset

The reclamation project in Funing Bay is crucial for facilitating the rapid construction
and implementation of modern agricultural practices, including the establishment of sea
grain warehouses, in Fujian Province, China. Additionally, it supports the expansion of
urban space while safeguarding Xiapu, China, from the devastating effects of typhoons.
The Funing Bay reclamation area is situated within Ningde City, China, and was developed
between 2007 and 2012. The total area of the reclaimed land spans 34,100 acres. The primary
objective of the project was the construction of reclamation embankment. The reclamation
embankment is approximately 5434 m in length and 85 m in width, with an elevation of
about 9.6 m [61].

Figure 1 presents optical images, a synthetic aperture radar (SAR) intensity image,
and on-site photographs of the reclamation embankment. Panels (A), (B), and (C) were
captured in 2005, 2010, and 2020, respectively, using Google Earth. Panel (D) displays the
Sentinel-1A SAR intensity image within a coordinate system defined by range and azimuth.
The heading angle of the Sentinel-1A SAR satellite was -12.5 degrees. The P point in Panel
(C) illustrates the soil composition and its compression characteristics.
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Figure 1. The optical images from Google Earth, captured in 2005 (A), 2010 (B), and 2020 (C), are
presented here. Panel (D) displays the average intensity image from Sentinel-1A SAR, with the
rectangular area highlighting the reclamation embankment of Funing Bay, China.
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We collected 224 Sentinel-1A SAR data from 6 January 2016 to 8 April 2024, to monitor
the deformation characteristics of the reclamation embankment in Funing Bay. Additionally,
we generated 860 small baseline (SB) interferograms at full resolution, as illustrated in
Figure 2. The red small circles represent the 224 SAR data, and the blue line indicates
interferograms.
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3. Methodology

Figure 3 illustrates the workflow for dynamic monitoring and future trend prediction
of coastal reclamation embankments using InSAR technology. Initially, we utilized external
Shuttle Radar Topography Mission (SRTM) digital elevation model data, precise orbital
data, and Sentinel-1A data to generate SB interferograms [29]. Next, we applied the
Goldstein filtering method to each interferogram [62,63]. These operations were performed
using the Gamma SAR processor and interferometry 2015 software. Subsequently, we
utilized MATLAB R2022 software to process the InSAR phase unwrapping and extract
deformation parameters. A temporal coherence threshold was implemented to select
high-quality pixels [64]. Following this, we optimized the phase-unwrapping network
using K-nearest neighbors (KNNs), ambiguity-detection methods, and the number of
redundant observations. After phase unwrapping with the Edgelist algorithm and error
phase estimation, we dynamically updated the InSAR deformation parameters using
sequential least squares. Finally, we predicted deformation using a geotechnical model and
conducted a comprehensive analysis.
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coastal reclamation embankments.
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3.1. Network-Optimization-Assisted InSAR Phase Unwrapping

In InSAR phase unwrapping, the minimum cost flow (MCF) method utilizes the
Delaunay network; however, this network is not optimal. Network-optimization tech-
niques can identify the optimal path to enhance the reliability of phase unwrapping [65–67].
First, we implemented the K-nearest neighbors (KNNs) algorithm to generate redundant
candidate spatial phase-unwrapping networks, replacing the traditional Delaunay trian-
gulation networks. Subsequently, we employed an ambiguity-detection method [68] to
establish a reliable network, thereby improving the performance of the L1 norm spatial
phase unwrapping, as demonstrated in Equation (1):

AM×N∆θ
p,q
N×1 = ∆φ

p,q
M×1

∆φ
p,q
M×1 − Ap,q

M×N(A
T
M×NAM×N)

−1
AT

M×N∆φ
p,q
M×1 = ∆p,q

(1)

where the AM×N , ∆φ
p,q
M×1, and ∆θ

p,q
N×1 are the design matrix, double-difference phase in

M interferograms, and N wrapped phase time-series between pixels p and q, respectively.
We utilized the least-squares phase residual time series in arcs ∆p,q with a predetermined
threshold max|∆p,q| < Tresidual to select reliable arcs.

Next, we employed a strategy involving redundant observations [67] to optimize
phase unwrapping networks and control the reliability of the network structure with
PixelNRO

i < TNRO, where the PixelNRO
i and TNRO are the number of redundant obser-

vations for each pixel and a predetermined threshold, respectively. Finally, we applied
the Edgelist algorithm [65–67,69] to execute spatial phase unwrapping, as demonstrated
in Equation (2):

min( f+1×DK+
D×1 − f−1×DK−

D×1)

s.t.
[

CD×P −CD×P ID×D ID×D
]

L+
P×1

L−
P×1

K+
D×1

K−
D×1

 = ∆φm
D×1

with L+, L−, K+, K− ∈ N0

(2)

where C coefficient matrix with elements of −1, 0, and 1 corresponding to optimized
network arcs. The P and D are the number of the selected pixels and optimized arcs,
respectively. I is the unit matrix. K+

D×1 and K−
D×1 show the ambiguities of optimized

arcs. L+
P×1 and L−

P×1 show pixel ambiguities to obtain unwrapped interferogram by
θm

P×1 = L+
P×1 − L−

P×1.
Next, we used the temporal coherence (γLS) of the residual phase to assess the reliabil-

ity of phase unwrapping [70], as shown in Equation (3):

γLS = 1
M

∣∣∣∣∣ M
∑

i=1
exp

{
j(θM×1 − AM×NθN×1)

}∣∣∣∣∣
θN×1 = (AT

M×NAM×N)
−1

AT
M×NθM×1

(3)

where AM×N , θM×1, and θN×1 are the design matrix, unwrapped phases, and the estimated
unwrapped-phase time-series, respectively.

3.2. Dynamic Estimation of InSAR Deformation Time-Series

After obtaining reliable unwrapped-phase and correcting-phase errors, we employed
least squares to estimate the deformation time series X1 and its cofactor matrix QX1

. Fol-
lowing the acquisition of new SAR data and their corresponding unwrapped interfero-
gram L2, we utilized sequential least squares to update the deformation time series using
Equation (4) [50]:
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[
X2
Y

]
=

[
X1 + Jx(L2 − A2X1 − BY)

(BTQJ
−1B)

−1
BTQJ

−1(L2 − A2X1)

]

Q
[

X2
Y

]

=

[
QX1

− JxA2QX1
+ JxBQYBTJT

x −JxBQY

(−JxBQY)
T (BTQJ

−1B)
−1

]
(4)

in which Jx = QX1
A2

TQJ
−1 and QJ = P−1

2 +A2QX1
A2

T are the gain matrix and its updated
cofactor matrixes, respectively. The A2 and B correspond to archived and newly designed
matrices of unwrapped SB interferograms [50]. X2 and Y are updated InSAR archived
deformation time series and the latest cumulative deformation time series, respectively.

3.3. Reclamation Embankment Deformation Prediction with Geotechnical Model

In reclamation areas, soil consolidation deformation processes are categorized into
empirical models and geotechnical models. The hyperbolic model can accurately predict
deformation processes that exhibit deceleration trends, effectively capturing nonlinear
changes. This method can be rapidly applied to determine the parameters of the curve
function, making it particularly well-suited for forecasting ground subsidence in reclaimed
land [56–58,71], as demonstrated in Equation (5):

Wt = W0 +
t − t0

a + b(t − t0)
(5)

where W(t) is the subsidence deformation at time t with respect to the reference time t0 and
deformation W0. The a and b are the shape parameters of the curve model, respectively.

A geotechnical model was utilized to predict the future evolution of ground subsidence
at Xiamen Airport in China [9]. Unlike mathematical curve fitting, this article employed a
geological model with physical significance to predict the future deformation trends of the
Funing Bay reclamation embankment [9,72], as demonstrated in Equation (6):

Wt = S
tλ

Kλ + tλ
(6)

where W(t) is the subsidence deformation at time t with respect to the reference time
t0. The S is the possible maximum subsidence. k and λ are the shape parameters of the
curve model. This empirical model is quite rigorous in selecting initial values, as the
inappropriate selection of initial parameter values can significantly affect the performance
of the deformation model [9,72]. The parameters of the curve function in this model are
exponential and difficult to converge, requiring numerous iterations to determine suitable
initial values.

4. Results
4.1. Deformation Results

First, we utilized the temporal coherence of the wrapped phase to select candidate
pixels [64]. Next, we generated redundant phase-unwrapping networks using K-nearest
neighbors (KNNs) with a threshold of 1000 from these candidate pixels and selected reliable
networks through ambiguity-detection methods. In order to balance the network structure
and improve the efficiency of phase unwrapping, we optimized the structure of these
reliable networks using a strategy based on redundant observations. Subsequently, we
applied L1 norm phase unwrapping with the Edgelist algorithm, utilizing the optimized
networks for phase unwrapping. The deformation rate was estimated using all unwrapped
SB interferograms, as illustrated in Figure 4, where points P1–P5 will demonstrate the
deformation time series. The deformation characteristics of the reclamation embankment
in Funing Bay are quite pronounced.
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Figure 4. The deformation rate, where the blue pentagram serves as the reference point for phase
unwrapping.

The wrapped interferograms provide a direct visualization of the deformation char-
acteristics of the Funing Bay reclamation embankment. We utilized the most recent SAR
data from 8 April 2024, as a reference image to generate single-master interferograms.
Figure 5 presents eight interferograms with a time interval of 120 days, corresponding to
ten SAR data sets. Panels (A–H) represent time periods of 984, 828, 672, 552, 420, 300, 180,
and 60 days, respectively. They clearly demonstrate the deformation characteristics of the
Funing Bay embankment in the wrapped phase.
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Figure 5. Panels (A–H) represent eight interferograms corresponding to time periods of 984, 828, 672,
552, 420, 300, 180, and 60 days, respectively.

In addition, we plotted the deformation time series at the locations indicated by
arrows P1–P5 in Figure 4, as illustrated in Figure 6. Figure 6A illustrates the reclamation
embankment, with particular emphasis on the black rectangular area. The deformation time
series for points P1 to P5 is depicted in Figure 6B–F. The blue dots represent the deformation
time series, while the red lines indicate the fitted linear deformation rates. Overall, the
characteristics of the deformation rates appeared to be slow, which was generally consistent
with the deformation patterns observed in land reclamation areas. Regions with high
deformation rates, such as P4 and P5, had experienced a total settlement of 400 mm from
9 January 2016 to 8 April 2024.
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Figure 6. (A) is reclamation embankment, where P1–P5 correspond to the deformation time se-
ries (B–F), respectively.

To illustrate the deformation characteristics of the Funing Bay reclamation embank-
ment, we present a locally enlarged deformation rate, as shown in Figure 7A. Arrow P1
indicates the longitudinal deformation rate profile of the reclamation embankment, as
depicted in Figure 7B. The entire reclamation embankment had experienced subsidence;
however, the spatial distribution of this subsidence was uneven. Panel (C) displays the
acceleration of the deformation time series recorded on 8 April 2024. The results indicate
that the deformation acceleration at positions P2, P5, and P6 was relatively high, while
positions P3 and P4 exhibit lower deformation rates. Positions P2 to P6 represent the trans-
verse deformation rate profile, illustrated in Figure 8. It is evident that the deformation rate
of the reclamation dam on the left side was greater than that on the outer side.
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4.2. InSAR Deformation Reliability Analysis

To assess the reliability of InSAR deformation parameters, we demonstrated the tem-
poral coherence of phase unwrapping, as illustrated in Figure 9A. The temporal coherence
consistently exceeded 0.7, particularly on the embankment, thereby confirming the reli-
ability of the phase-unwrapping process. Additionally, to further assess the reliability
of the deformation time series, we calculated the standard deviation of the deformation
time series for each pixel after correcting for DEM errors, as shown in Figure 9B. The
standard deviation of the deformation time series was primarily concentrated within 3 mm
on the embankment.
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4.3. Deformation Model

The temporal and spatial characteristics of the deformation of the Funing Bay recla-
mation dam have been discussed above. We analyzed the standard deviation of residual
deformation after modeling for both the hyperbolic model and the geological model, as
illustrated in Figure 10. The average standard deviation of the residual deformation after
fitting the hyperbolic model was 5.1 mm, while the geological model achieved a lower
average standard deviation of 3.5 mm. Subsequently, we utilized the geological model to
predict the future deformation trend of the Funing Bay dam, as shown in Figure 11.
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Figure 11A represents the cumulative deformation derived from 224 SAR data, while
Figure 11B–D depict the predicted cumulative deformations for the next 10, 20, and 30 years,
respectively, corresponding to the dates of 8 April 2034, 8 April 2044, and 8 April 2054.
Figure 12A,B illustrate the predicted cumulative deformation time series for P1 and P2
in Figure 11D, respectively. The blue dots represent the 224 SAR data, and the red line
indicates the fitted curve. Over the next 30 years, the reclamation embankment of Fun-
ing Bay is expected to undergo significant deformation, with cumulative deformation
reaching 1000 mm.

5. Discussion

During the construction of the Funing Bay reclamation embankment, blasting and
silt-squeezing methods were utilized. The construction conditions of the Funing Bay
reclamation embankment were suboptimal, and there are no islands or reefs in the middle,
as shown in Figure 1. According to 42 years of continuous data collected from the Sansha
Ocean Observation Station, the annual average highest tide level was 3.74 m, while the
lowest tide level was −3.48 m. The highest recorded tide level was 4.4 m, resulting in a
maximum tidal range of 8.04 m [61]. Additionally, the embankment is situated in proximity
to the open sea, rendering it vulnerable to the impact of surging waves.

Figure 13 presents images from the on-site investigation of the reclamation embank-
ment. In Figure 13A, the embankment is depicted, with the reclaimed area on the left and
the ocean on the right. The water level of the seawater is higher than that of the reclaimed
area. The red arrow in Figure 13B illustrates the lateral inclination of the embankment,
while the red arrow in Figure 13C indicates that the embankment has already settled.
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The foundation of the Funing Bay reclamation embankment consists of a heteroge-
neous mixture that includes silt, mucky soil, silty clay, and gravel. This foundation is
composed of five layers, arranged from top to bottom [61]. The geological conditions of
the seawall foundation reveal that the bearing layer consists of a deep soft foundation
made up of silt and silty soil layers, with a silt thickness of approximately 20 m. Figure 14
presents the results of geotechnical exploration at point P, as illustrated in Figure 1C. The
first column displays two layers of soil: silt and silty clay. The second column indicates
the thickness of each soil layer, while the third column represents the depth at which
geotechnical exploration testing was conducted. The fourth and fifth columns provide
shear strength measurements for undisturbed and remolded soil, respectively. The sixth
column denotes sensitivity, defined as the ratio of shear strength between undisturbed and
remolded soil. The seventh column lists the depth values from the geotechnical exploration,
and the eighth column illustrates the linear relationship between the shear strength of
undisturbed silt soil and burial depth. Notably, as depth increases, the shear strength of silt
also increases. The deformation characteristics of the completed reclamation embankment
may be attributed to the compaction of cement and concrete that has accumulated on the
soil layer.
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6. Conclusions

Land reclamation is a prevalent practice in coastal regions. This study employed
multitemporal InSAR technology to dynamically monitor the embankment reclamation of
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Funing Bay, China. A reliable phase-unwrapping method was utilized to obtain precise
deformation results. The analysis of deformation rates, profiles, and on-site investigation
results indicated that the embankment reclamation exhibited significant deformation char-
acteristics. The findings of this research suggest that the deformation of the embankment
reclamation will persist over the next 30 years, with deformation levels in certain areas
likely to exceed 1000 mm. Furthermore, potential deformation levels and trends in the
embankment reclamation over the next three decades were predicted using a geotech-
nical model. These deformation characteristics present challenges to the safe operation
of the dam. The dynamic monitoring of reclaimed embankments using InSAR technol-
ogy is critically important, as it contributes to the effective management and safety of
such structures.
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