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Abstract: Land cover maps with high accuracy are essential for environmental protection and climate
change research. The 30-meter-resolution maps, with their better resolution and longer historical
records, are extensively utilized to assess changes in land cover and their effects on carbon storage,
land–atmosphere energy balance, and water cycle processes. However, current data products use
different classification methods, resulting in significant classification inconsistency and triggering
serious disagreements among related studies. Here, we compared four mainstream land cover
products in China, namely GLC_FCS30, CLCD, Globeland30, and CNLUCC. The result shows that
only 50.34% of the classification results were consistent across the four datasets. The differences
between pairs of datasets ranged from 21.10% to 37.53%. Importantly, most inconsistency occurs in
transitional zones among land cover types sensitive to climate change and human activities. Based
on the accuracy evaluation, CLCD is the most accurate land cover product, with an overall accuracy
reaching 86.98 ± 0.76%, followed by CNLUCC (81.38 ± 0.87%) and GLC_FCS30 (77.83 ± 0.80%).
Globeland30 had the lowest accuracy (75.24 ± 0.91%), primarily due to misclassification between
croplands and forests. Misclassification diagnoses revealed that vegetation-related spectral confusion
among land cover types contributed significantly to misclassifications, followed by slope, cloud cover,
and landscape fragmentation, which affected satellite observation angles, data availability, and mixed
pixels. Automated classification methods using the random forest algorithm can perform better
than those that depend on traditional human–machine interactive interpretation or object-based
approaches. However, their classification accuracy depends more on selecting training samples and
feature variables.

Keywords: land cover maps; inconsistency evaluation; accuracy assessment; misclassification diagnosis

1. Introduction

Due to the influence of climate change and human activities, land cover has changed
significantly in the past decades, e.g., deforestation, urbanization, desertification, and agri-
cultural inversion [1,2]. Land cover changes significantly impact environmental processes,
altering the water cycle through interception and evapotranspiration and affecting biodiver-
sity conservation by modifying ecosystem landscape patterns [3,4]. In addition, land cover
change determines land–atmosphere energy balance, controlling surface albedo, moisture
regimes, and carbon fluxes; thus, it has an unignorable feedback to climate change [5–7].
For instance, deforestation reduces evapotranspiration and carbon storage, intensifying
local and global warming [8,9]. Land cover products are vital for tracking these changes
and predicting long-term trends [10,11]. Additionally, these products serve as crucial model

Remote Sens. 2024, 16, 4330. https://doi.org/10.3390/rs16224330 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16224330
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-0657-7970
https://doi.org/10.3390/rs16224330
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16224330?type=check_update&version=1


Remote Sens. 2024, 16, 4330 2 of 27

inputs in capturing the effects of land cover changes on climate prediction, hydrology, and
ecosystems, supporting strategic planning for climate adaptation and mitigation [12–14].
However, observing large-scale and detailed land cover changes has always presented a
formidable challenge, significantly limiting related research.

The development of satellite remote sensing technology has facilitated earth surface
observation, allowing for high-resolution land cover mapping [15]. With the advancement
in spatial resolution, satellite transits offer a narrower field of view, leading to revisiting
periods to specific locations longer and reduced temporal resolution in remote sensing
observations [16,17]. Among the range of resolutions available, the 30-m (30 m) remote
sensing image is the ideal balance between temporal and spatial resolution [18]. The
Landsat satellite series has consistently provided accessible 30 m-resolution images since
the 1980s, enabling historical comparisons and long-term trend analysis of land cover
changes [19–21]. Although the advent of the Sentinel-2 satellite has increased the resolution
of remote sensing imagery to 10 m, the data released from its imagery for land cover
products such as FROM_GLC10 and Esri series have been published since 2017 [22,23].
At the same time, the 2.5 m-resolution SPOT1-5 and 3 m-resolution Planet satellite have
not been widely used in land cover mapping. Consequently, 30 m land cover maps have
emerged as the predominant fine-resolution products worldwide.

Then, accurate classification based on remote sensing images is essential in produc-
ing reliable land cover maps. Initially, land cover classification relied on labor-intensive
and man–machine interactive interpretation [24]. Technological advances shifted the fo-
cus to automated classification systems using statistical techniques such as maximum
likelihood classifiers and decision trees, improving land cover classification efficiency
and accuracy [25]. Recently, machine learning, mainly supervised learning methods like
Support Vector Machines (SVMs) and random forest algorithms (RFs), has become a fre-
quently used approach due to its robustness against overfitting and ability to handle
high-dimensional data [26–28]. Deep learning, especially convolutional neural networks
(CNNs), has significantly improved classification efficiency and accuracy by automating
feature extraction and learning complex data patterns, reducing the need for manual feature
design [29–31]. Using the classification methods mentioned above, several institutions
have developed and released global or regional land cover products at a 30 m resolution,
including GLC-FCS30, Globeland30, CNLUCC, etc. [32–34]. Notably, the Google Earth
Engine (GEE) cloud-based platform offers a vast, multi-petabyte catalog of analysis-ready
data and a high-performance, inherently parallel computation service, which has led to the
development of many large-scale and high-resolution land cover products, such as China
Land Cover Database (CLCD), FROM_GLC30 [35–37]. For most land cover products, the
2020 land cover data are the latest versions, using the most advanced classification technol-
ogy and up-to-date remote sensing images as input, resulting in their higher classification
accuracy than products from other periods [21].

However, the classification of land cover products differs significantly due to the
differences in data sources, algorithms, and workflow designs. Previous studies have
demonstrated that most land cover products achieve an overall accuracy of over 70%, with
first-level classification accuracy reaching up to 90% [33,38,39]. However, less than 50%
of areas show a consistent classification across existing land cover products, far larger
than the area of land cover changes caused by climate change and human activities [40].
Consequently, these discrepancies limited their practical value and caused more signifi-
cant uncertainty in related studies [41,42]. Before releasing land cover products, creators
assess their consistency and reliability through comparative analyses with existing prod-
ucts [32,43]. Many studies have evaluated the classification accuracy of existing land cover
products [44,45]. However, significant discrepancies in evaluation results among those
studies pose a challenge for researchers when selecting suitable land cover products for
their research [46,47].

One of the alternative reasons for disagreement among accuracy assessments is dif-
ferences in the validation dataset used, which led to significant disputes in the accuracy
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assessment of land cover products [48]. Currently, there are three primary sources of valida-
tion data: (1) Field surveys are the primary approach to building validation data early and
the most reliable one. However, it is labor-intensive and thus has a limited sampling size,
making it difficult to evaluate the accuracy of land cover products at a large scale. (2) Public
validation datasets, such as Geo-Wiki or GLCVSS, are a widely used third-party data source
for the validation of land cover products [46,49]. Nevertheless, they suffer from outdated
and non-random samples, e.g., most samples were created before 2012 and less located in
sparsely populated areas (see Figure S1). (3) Construct validation datasets based on existing
land cover products are also used, rapidly generating numerous validation points through
random sampling. Their reliability is constrained by the chosen land cover products, none
of which obtained widely recognized classification accuracy. Apart from the limitation
in the validation dataset, most studies focus primarily on consistency comparison and
accuracy assessment without further exploring the underlying causes of inconsistencies
and biases.

China is one of the regions with the most significant inconsistencies in land cover
classification [40]. An insufficient validation dataset makes accuracy assessment and
misclassification diagnosis more difficult in China [50]. China’s complex climate and terrain
contribute to various land cover types and extensive landscape fragmentation [51,52].
Meanwhile, rapid economic growth and population expansion have made China one of the
regions with the world’s largest and fastest land cover change in the last century [53,54].
Due to extensive development, China experienced much deforestation, overgrazing, and
thus severe land desertification. However, since 2000, China has been actively focusing
on ecological protection and implementing projects such as returning cropland to forests
and afforestation in deserts [55]. As a result, China has been recognized as one of the
fastest-growing regions in the world based on satellite observations by NASA [56]. These
changes have significantly impacted hydrological processes and ecosystems, emphasizing
the critical need for selecting reliable land cover products to explore their response and
feedback to climate change and ecosystem balance [57–59].

To meet the above needs, we evaluated the consistency and classification accuracy
of four popular land cover products in China in 2020 based on the validation database.
Furthermore, we diagnosed key factors for inconsistencies among land cover products. In
order to quantify the accuracy of each land cover product, we randomly selected about
ten thousand sampling points in China. Based on Google Earth’s high-resolution images,
photos, and street view data, we accurately identified the land cover types of these points
and thus constructed a more reliable and representative validation dataset. Through
accuracy assessment and analysis, we identified vegetation coverage, terrain complexity,
and other related variables as fundamental factors affecting products quality. Our study
offers a guide for improving China’s classification accuracy of land cover products and
helps select suitable products for research requirements.

2. Dataset and Methods
2.1. Dataset
2.1.1. Land Cover Products

Here, we have chosen four main land cover products in China, namely GLC_FSC30,
CLCD, Globeland30, and CNLUCC. All of these products have a spatial resolution of
30 m. They are mainly derived from Landsat images and utilize hyperspectral and higher-
resolution images to improve land cover classification. These products have a long time
series, with most having sequences from the 1980s to the present (except for Globeland30,
which starts in 2000). These products are the most commonly used to explore land cover
changes in China. They also serve as input data for regional climate simulations and
common land models. Therefore, they play a crucial role in studies about land cover
changes in China. More detailed information on the above land cover products is provided
in Table 1.
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Table 1. Basic information of four datasets.

Datasets Research Institution Remote Sensing
Imagery

Classification
Methods Data Source

GLC_FCS30

Aerospace Information
Research Institute,
Chinese Academy

of Sciences

Landsat
TM/ETM+/OLI Random forest http://data.casearth.cn, accessed on

30 June 2023

CLCD Wuhan University Landsat Random forest https://zenodo.org/records/8176941,
accessed on 30 June 2023

Globeland30 National Geomatics
Center of China

Landsat TM/ETM+,
HJ-1, GF-1

Pixel–Object–
Knowledge

https://cloudcenter.tianditu.gov.cn/,
accessed on 30 June 2023

CNLUCC
Institute of Geographic
Sciences and Natural
Resources Research

Landsat TM/ETM/8
Human–machine

interactive
interpretation

https://www.resdc.cn/, accessed on
30 June 2023

However, these products have notable differences, primarily observed in three points:
(1) Spatial extent: Globeland30 and GLC_FCS30 offer global coverage, while CLCD and
CNLUCC are limited to China. (2) Classification methods: GLC_FCS30 and CLCD utilize
the random forest algorithm, while Globeland30 and CNLUCC use the integration of pixel-
and object-based methods with knowledge (POK-based) method and human–computer
interactive interpretation, respectively. Even with the same methods, differences in training
samples and feature variables lead to significant classification differences. (3) Classification
systems: CLCD and Globeland30 are relatively simple, classifying into 9 and 10 categories,
whereas GLC_FCS30 classifies into 29 categories and CNLUCC into 6 primary categories
and 25 secondary categories. Therefore, we must reconstruct a unified classification system
based on the same standards to facilitate comparison (see Table S1).

According to the classification system adopted in each dataset, combined with the
classification standard of land use status in China () and the classification standard pro-
posed by the Food and Agriculture Organization of the United Nations (FAO), seven land
cover types were determined, namely cropland, forest, grassland, wetland, impervious
surface, bareland, and glacier, and their correspondence with the four datasets is shown
in Table S1. Compared to the commonly used nine categories, we have merged shrubs
into forests and water bodies into wetlands. The proportion of shrubland is small, and it is
hard to distinguish between shrubland and forest using high-resolution imagery, which
could reduce the reliability of our validation samples. Additionally, seasonal transitions
between water bodies and other wetlands may lead to misclassification. By merging these
categories, we can focus on the impact of approaches on the classification accuracy of land
cover products.

2.1.2. Ancillary Datasets

Through preliminary analysis, we have identified the main factors affecting the classi-
fication accuracy of land cover products, which include vegetation conditions, topographic
features, landscape fragmentation, and the accessibility of remote sensing imagery. These
factors can be quantified using ancillary datasets on vegetation index, digital elevation,
cloud cover, and their derived indices.

(1) Vegetation Index

The vegetation index is a critical feature variable in land cover classification, deployed
to discern vegetation’s spatial and temporal dynamics. However, certain land cover types,
including croplands and grasslands, exhibit a higher similarity in vegetation index, increas-
ing the risk of misclassifications. Here, we utilized Landsat 8 imagery data to compute
the Normalized Difference Vegetation Index (NDVI) from 2019 to 2021. Subsequently, we
extracted the maximum NDVI value for each year and calculated the three-year average as
the vegetation index for validation points. This derived vegetation index was employed to
assess the correlation between classification accuracy and vegetation indices [60].

http://data.casearth.cn
https://zenodo.org/records/8176941
https://cloudcenter.tianditu.gov.cn/
https://www.resdc.cn/
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(2) Digital Elevation

Variations in topography, such as slope and aspect, can affect the satellite image quality
due to differences in illumination and viewing angles, which can introduce shadows or
distortions. These factors may lead to inconsistencies in the spectral signatures for classi-
fying different land cover types, potentially resulting in decreased classification accuracy,
especially in rugged or hilly regions. We used SRTM 30m-resolution digital elevation data
to represent the elevation and undulation of China’s topography and calculated main topo-
graphic indexes based on the Google Earth Engine cloud computing platform, including
topographic relief, slope, aspect, and hill shade. The calculation methods for slope and
aspect have been explained in previous studies [61,62].

(3) Cloud Cover

Cloud cover can significantly impact land cover classification accuracy by masking the
Earth’s surface, resulting in incomplete or distorted images [63]. This degradation in data
quality compromises the reliability of spectral signatures crucial for distinguishing various
land cover types. Consequently, regions characterized by frequent or dense cloud cover
are prone to higher misclassification rates in land cover products. We extracted the cloud
mask from the Landsat 8 images from 2018 to 2022, including cloud cover and shadow [64].
Then, we calculated the annual mean cloud mask for each validation point.

(4) Land cover fragmentation and changes

Urbanization and agricultural expansion have resulted in severe fragmentation of
land cover in regions subject to human activities [65]. Land cover fragmentation can
significantly influence land cover classification accuracy from remote sensing images.
Firstly, fragmentation increases the number and complexity of boundaries between land
cover types, increasing mixed pixels. Secondly, with higher fragmentation, the likelihood
of misclassification increases, as manual interpreters or automated classification algorithms
struggle to correctly assign land cover types to tiny patches.

We first set up a 10 * 10 window around each validation point, and the landscape
fragmentation is calculated as follows:

LCF = PN/TN (1)

where LCF is the land cover fragmentation of the particular window; PN and TN are the
number of patches and pixels within this window, respectively. Eight-cell connectivity
was used to build patches. We calculated land cover fragmentation based on the four land
cover products mentioned above and used their mean as the land cover fragmentation of
validation points. The land cover change ratio was estimated using a similar approach,
based on the average proportion of land area that has changed land cover types within the
sliding window of four land cover products between 2000 and 2020. This process ensured
that the calculation of these two factors did not rely on a specific product alone but rather
on the average of the four products to obtain the most reasonable result.

2.2. Methodology
2.2.1. Sampling Designs

In this study, we have implemented two sampling designs to assess overall accuracy
and class-specific accuracy, respectively (see Figure S2). The first is balanced random
sampling, which can generate unbiased estimators of the population of interest. Another is
stratified random sampling, which increases the sample size from rare land cover types
and assesses classification accuracy on a class-specific scale [66].

(1) Balanced random sampling

The CEOS-LPV report on global land cover map validation established recommended
standards for accuracy assessment [67]. Simple random sampling is a fundamental method
for accurately assessing land cover products. It randomly chooses sample points from the
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study area without systematic biases. Importantly, simple random sampling is cost-efficient,
and the validation result is insensitive to changes in sample sizes [68]. However, compared
to systemic sampling, simple random sampling may cause an uneven spatial distribution of
samples, reducing their representativeness. Hence, we used a balanced random sampling
approach by setting a threshold to keep a minimum distance between any two sample
points [69]. Thus, the sample points can be distributed evenly within the study area and
have a better spatial balance [70].

As shown in Figure S3a, with the distance increases, the density of the sample in
grids has better spatial balance. Therefore, we set 5 km as the minimum distance between
samples to compromise the spatial balance and probability of the sampling design. We used
ArcGIS to select 10,000 random sample points. Figure S3b shows the number of sample
points in the 1◦ × 1◦ grids. We find that the number of samples in each grid is consistent
except for those in edges being smaller due to incomplete area, indicating that the density
of samples has an even spatial consistency with a normal distribution (see Figure S3c).
We examined the correlation between site density and spatial variables based on grid
points. Our analysis found no significant correlation, indicating no spatial autocorrelation
in our sample point selection (see Figure S3d). In total, 2049 croplands, 2566 forests,
2718 grasslands, 225 wetlands, 339 impervious surfaces, 2016 barelands, and 123 glaciers
were selected to validate the accuracy of four land cover products. The proportion of
land cover types matches well with the area proportion of land cover products, indicating
reliable representativeness in spatial patterns and land cover types for the validation dataset
(see Figure 1b,c).
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(2) Stratified random sampling

Stratified sampling designs are used to increase the sample size of rare land cover
types [42]. For instance, glaciers, impervious surfaces, and wetlands have a smaller area
proportion but play a vital role in regional climates and ecosystems and are more sensitive
to climate change. By increasing their sample size, stratified random sampling can reduce
the standard errors of accuracy assessments for rare land cover types. Due to the irregular
shape of many land cover patches, designing sample points using systematic sampling
in specific classes is challenging. Hence, we selected sample units within each stratum
using a simple random protocol, which is the preferred method because it allows for easy
adjustments to the sample size within strata.

We cannot use existing land cover products to determine the spatial extent of each
land cover type to ensure the selection of sampling sites is independent of them. As a result,
acquiring samples for rare and dispersed land cover types is challenging. We initially
pinpointed areas where specific land cover types could be present based on factors such
as latitude, altitude, and vegetation index to boost sampling efficiency. We then gathered
random samples from these areas and employed visual interpretation to recognize sample
points of specific classes. We determine sample size by a common-use formula based on
the user’s accuracy for stratified random sampling as follows [66]:

n = z2 p(1 − p)/d2 (2)

where z = 1.96 for a 95% confidence interval and d = 0.05 for the desired half-width of the
95% confidence interval. We set the p to 0.54, the minimum user’s accuracy of every land
cover type calculated from balance random sampling. Finally, the sample size formula
yields n = 382. In the subsequent uncertainty analysis, we need to randomly extract 80%
of samples for accuracy assessment. Therefore, we set the number of samples for each
land cover type to 500 (see Figure 1d), which can meet the sample size requirements of the
accuracy assessment.

(3) Response design

The response design is crucial to our methodology, ensuring the agreement between
land cover products and reference validation datasets. It controls accuracy assessment
by defining the spatial unit, choosing reference data sources, and establishing labeling
protocols [48]. For reproducibility, we provide a detailed description of the response design,
which includes the spatial assessment unit, classes, sources of reference data, specific
information collected, rules for assigning reference class labels, and how to define the
agreement between the map and reference classifications [66]. This thorough approach,
including using a 30 m × 30 m grid as the spatial unit and alignment of reference data
labeling with the classification system, ensures the reliability of our research.

In our study, three experts and six interpreters were divided into three groups, each
consisting of one expert and two interpreters. The experts have extensive experience in
satellite-based land cover analysis and remote sensing image interpretation. They are
responsible for training interpreters and ensuring quality control of classification results.
Each group independently classified the land cover type of sample pixels. When the
classification results of the three groups differed, the three experts discussed and analyzed
the pixels with more auxiliary data, significantly reducing subjective errors and effectively
improving identification accuracy.

Classifying sample pixels is as follows: All sample pixels are categorized into pure or
mixed pixels. Pure pixels contain a single land cover type, which makes them relatively
easy to identify. We created a KML file based on the boundary of pixels and imported them
into Google Earth Pro and Gaode Maps (Version 14.02), a popular navigation software in
China that has a lot of street view data (see Figure 2). High-resolution images, field photos,
and street views from 2020 can help interpret the land cover type of sample pixels. To
increase the reliability of the identification, we also used a time series of NDVI derived
from MODIS, Landsat, and Proba-V data for plant phenology, which helps distinguish
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cropland from forest. Moreover, when NDVI profiles show no significant change in pixels,
they indicate stability in land cover type. Therefore, historical high-resolution images or
field photos of nearby years can be used in interpretation.
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Figure 2. The difference in four typical points between the identification in the Globeland30 and
the high-resolution images and the high-definition real picture from Google Earth Pro. (a–d) The
land cover map of Globeland30; (e–h) the high-resolution images from Google Earth Pro; (i–l) the
high-definition real pictures from Google Earth Pro and street view from Gaode Maps (Version 14.02).

For mixed pixels, based on the spectral features of land cover types provided by pure
pixels above, we trained an automated image segmentation model to divide the mixed
pixels into polygons of several land cover types (see Figure 3). Then, subpixels with land
cover type with the most significant proportion of area were labeled accordingly and
counted for all land cover types. The land cover type with the highest number of subpixels
was used as the label for the pixel. If there were two equally abundant land cover types,
we prioritized wetland, city, glacier, forest, farmland, grassland, and bareland in that order.
Following these rules, we assigned a classification to each sample pixel.

(4) Uncertain estimation of sampling

Although we have employed various methods to enhance the randomness and spatial
balance of sampling, estimators still have biases due to the uneven distribution of land cover
types. In statistics, mathematics, and various fields, Monte Carlo simulation deals with
uncertainty and variability by performing repeated random sampling to obtain numerical
results. It can be a valuable tool in assessing the accuracy of land cover products with
uncertainty in the sampling process. Here, we implemented a robust random sampling
method with replacement, which involved selecting 80% of the total sample for accuracy
assessment and repeating the process 1000 times. The 95% confidence level of accuracy
assessment is reliably estimated based on the distribution characteristics of the results from
all repetitions (Figure S2).
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Figure 3. Examples of manual visual interpretation are shown here. (a,d) High-resolution images
from Google Earth Pro; (b,e) land use types regardless of pixel; (c,f) the box represents the footprint
of an interpretation unit and includes 36 grid cells. We divided the box into polygons based on land
cover classification, identified grid cell type by area of polygons, and assigned the land cover type
with the most grid cells as the box’s land cover type. When the two types of land cover have the
largest and the same number of grid cells, we set the land cover type of the box according to the
priority order of glacier, wetland, impervious surface, cropland, forest, grassland, and bareland.

2.2.2. Inconsistency Analysis

We compared each pixel across the products to check for classification consistency
among different products. Pixels classified in the same land cover types in all products were
labeled “consistent”, while those with differing classification results were categorized as
“inconsistent”. Then, we analyzed spatial patterns to see if inconsistencies are clustered in
certain areas or randomly distributed. Using confusion matrices, we identified the leading
causes and critical regions of inconsistent classification among land cover products.

We use balanced random sampling and stratified [71] random sampling approaches
to create confusion matrices between land cover products. Considerable research has
been conducted on land cover changes, predominantly centered on alterations in area,
such as the estimation of land carbon storage. Therefore, the balanced random sampling
method is the preferred approach for evaluating the influence of inconsistencies on the
divergence of research outcomes derived from various land cover products. However, this
method overlooks the contribution of land cover types with the smaller areas but essential
ecological or hydrological functions, such as wetlands. The utilization of the confusion
matrix derived from stratified random sampling allows for a more precise representation
of the influence of various classification techniques on the disparity between land cover
products. This method meticulously considers the proportion of pixels with inconsistent
classification in the total number of pixels for every land cover type, which are expressed
as follows:

Pi,j = XiYj/Xi ∗ 100% (3)
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where Pi,j is the pixel ratio of inconsistency between land cover products; XiYj is the number
of pixels classified as class i in product X and class j in product Y; and Xi is the total number
of pixels classified as class I in dataset X.

2.2.3. Accuracy Assessment

The accuracy of land cover products was evaluated using confusion matrices of land
cover products with validation dataset, which included the producer’s accuracy (PA), user’s
accuracy (UA), overall accuracy (OA), and the F1 score [48,72]. The F1 score represents the
balance between PA and UA and is calculated as follows:

F1 = 2(PA × UA)/(PA + UA)× 100% (4)

These metrics comprehensively assess land cover products’ classification accuracy
and reliability.

2.2.4. Inconsistency Diagnosis

Numerous studies have concentrated on assessing the consistency and accuracy but
have not delved into the reasons for the differences among land cover products. This
oversight hinders the improvement of land cover classification methods. To address this
gap, our study investigated the causes of differences in classification accuracy by examining
the spatiotemporal patterns of land cover products. We specifically looked into how various
factors, such as vegetation indices, topographic variables, and landscape fragmentation,
affected the variations in classification accuracy.

(1) Gradient analysis

To investigate the impact of related factors on classification accuracy, we encountered
two main notable challenges. Firstly, validation points must be more evenly distributed
across variable intervals. For example, when studying slope’s impact on accuracy, most
samples are in lower slope ranges, reducing the representation of higher slopes and thus
underestimating the effect of slope on classification accuracy. To tackle these issues, we
used gradient analysis, which divided environmental factors into intervals and calculated
classification accuracy within each. It then examines accuracy changes with increasing
gradients of environmental factors, counteracting uneven sample distribution. Additionally,
it smooths data by adjusting interval sizes, reducing background noise and abnormal values
interference, and aiding in identifying accurate responses to variable changes.

Gradient analysis can be divided into two steps: firstly, set a sliding window of target
factor with a width that allows for no less than 100 samples in each window and calculate
the classification accuracy of samples in each window. Consequently, each value of the
target factor is assigned with a classification accuracy. Then, we set gradients to compromise
the sample size and the noise distribution from other factors and calculated the mean and
percentage of classification accuracy in each gradient interval. The effect of the target factor
on classification accuracy was analyzed based on differences in classification accuracy
with respect to interval value of a specific target factor. For instance, the slope range is
approximately 0–40 degrees. We divided this interval into gradients every 4 degrees and
computed each gradient’s mean and percentiles of classification accuracy. Based on the
variation in the classification accuracy’s mean and percentile values with the gradients, we
assessed the influence of slope on classification accuracy and the stability of this influence.

(2) Attribution analysis

Using the gradient analysis mentioned earlier, we can determine the classification
accuracy within different impact factor intervals. Further analysis through correlation and
regression helps us thoroughly evaluate the relationship and sensitivity of classification
accuracy to these factors. When the classification accuracy exhibits a linear change with
the gradient of the impact factor, we used the linear regression method to assess the
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correlation and sensitivity of classification accuracy to impact factors. The regression of
spatial variation of classification accuracy with impact factors can be expressed as follows:

CA = Sen ∗ IF + ε (5)

where CA is the classification accuracy, and IF is the related impact factor. Sen is the
sensitivity of classification accuracy to IF, and ε is the contant.

We conducted a Pearson correlation analysis to assess the relationship between land
cover classification accuracy and the impact factors. We identified the influential factors
significantly associated with classification accuracy based on correlation analysis. Further,
we investigated the synergistic effects among these factors and the difference in sensitivity
of classification accuracy to these factors across land cover types. The variation of classifica-
tion may be related to several impact factors, and there are likely significant correlations
among impact factors. Hence, partial correlation analysis was taken into account only to
analyze the correlation between classification accuracy and one influence factor, excluding
the impact of the other [51]. The partial correlation coefficient was calculated as follows:

PRxy,z(t) = (Rxy(t)− Rxz(t)Rzy(t))/
√
(1 − R2

xz(t))
(

1 − R2
yz(t)

)
(6)

where x is land cover classification accuracy, y is one influence factor, and z represents
all influence factors apart from y. PRxy,z(t) is the partial correlation coefficient between
variables x and y after controlling the effect from z.

3. Results
3.1. Consistency Analysis

Figure 4 shows the spatial pattern of inconsistent pixels among four 30m-resolution
land cover products in China for 2020. The consistency index across the four products is
50.34%. Notably, regions with high consistency often feature a singular landscape, such
as barren lands in northwest deserts, grasslands in Inner Mongolia, agricultural zones
in the North China Plain, and forests in the Southwest and Northeast (see Figure 4g).
Figure 4a–f illustrate spatial inconsistency between any two datasets, ranging from a
minimum consistency index of 21.10% between CNLUCC and CLCD datasets (Figure 4d)
to a maximum of 37.53% between GLC_FCS30 and Globeland30 (Figure 4b). Inconsistent
classification primarily occurs in (1) land cover transitional zones, like agriculture–pasture
transition belts in Northwest China and forest–grassland transition zones in Northeast
China; (2) regions with significant topographical variations, primarily in mountainous
areas of Southwest China; (3) landscapes with severe fragmentation, including terraced
fields in mountainous areas interspersed with forests and grasslands and suburban areas
around cities with intermingled cropland and buildings; and (4) areas experiencing rapid
land cover changes, both interannual and intra-annual, such as some bareland prone to be
misclassified as glacier due to seasonal snow cover interference. Fluctuating water levels
can cause misclassifications of wetlands, grasslands, and barelands.

As shown in Figure S4, the land cover types with the highest consistent areas are forest
land, bareland, grassland, and cropland, China’s main land cover types, accounting for
93.7% of the total area. Meanwhile, the misclassification among these land cover types
is also the main reason for the divergence of land cover products. The top eight types of
misclassifications in terms of area are related to them, such as grassland and bareland, forest
land and cropland, grassland and forest, etc. Additionally, compared to other land cover
products, Globeland30 is prone to classifying bareland as grassland or forest as cropland
(see Figure S4a–c); GLC-FCS30 is prone to classifying grasslands as forest or bareland (see
Figure S4b,e,f). These inconsistencies often occur between land cover types with similar
vegetation coverage, such as cropland and forest.
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(a–f) The inconsistent pixels between each two land cover products; (g) the consistent pixels of four
land cover products.

The pixel ratio-based consistency analysis eliminates the impact of variations in land
cover proportions, demonstrating classification consistency across different land cover
types. Figure 5g indicates that forest, wetland, and bareland exhibit high classification
consistency among land cover products. These land cover types possess distinct spectral
characteristics and minimal spectral confusion with other land cover types. The inconsis-
tency types with higher pixel ratios include cropland and forest, grassland and glaciers,
and cropland and impervious surfaces (see Figure 5a–f). Apart from similar vegetation
indices, there are two other apparent features for inconsistent regions: firstly, areas with
intensive human activity, like cropland and impervious areas, exhibit severe landscape
fragmentation and rapid land cover changes; secondly, areas with complex terrains, such
as the mountainous regions of the Tibetan Plateau, pose challenges in identifying glaciers
or bareland.
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Figure 5. Pixel ratio-based confusion matrix of land cover types between land cover products (a–f).
(g) Proportion of the consistent land cover for four land cover products; (h) proportion of land
cover inconsistencies between four land cover products. Proportions in (g,h) are calculated based on
average area of land cover type or land cover combination area in four products. CL: cropland, FL:
forest, GL: grassland, WL: wetland, IS: impervious, BL: bareland, GS: glaciers.

Our comparative analysis revealed significant classification inconsistency in the exist-
ing 30m-resolution land cover products, consistent with previous studies [45,73]. Notably,
the proportion of areas with inconsistent classifications far exceeds the estimated land cover
changes caused by climate change or human activities based on these products. Addition-
ally, these inconsistent pixels were mainly concentrated in transitional zones among land
cover types and regions with fast urbanization or deforestation/afforestation, which are
most sensitive to climate change and human activities. Consequently, these disparities will
inevitably lead to significant variations in land cover change and attribution analysis based
on different product evaluations, significantly undermining the trustworthiness of relevant
research. Therefore, establishing an accurate validation dataset, assessing its precision,
and delving into the underlying causes of classification disparities lay the groundwork
for comprehending the credibility of land cover products and the uncertainty of related
research outcomes.

3.2. Accuracy Assessment

According to the validation dataset from balanced random sampling, CLCD achieved
the highest overall classification accuracy at 86.98 ± 0.76%, followed by CNLUCC at
81.38 ± 0.87%. GLC_FCS30 and Globeland30 showed lower accuracy at 77.83 ± 0.80%
and 75.24 ± 0.91%, respectively (see Tables 2 and S2). None of the options consistently
outperforms the others across all land cover types. Therefore, it is crucial to carefully



Remote Sens. 2024, 16, 4330 14 of 27

evaluate the strengths and weaknesses of each land cover dataset across various land
cover types. As shown in Figure 6, the misclassification between grassland and bareland
has the highest proportion, primarily concentrated in the northern regions of the Inner
Mongolia Plateau, the Tibetan Plateau hinterland, and the Tarim Basin periphery within
China. Subsequently, the forest was misclassified as cropland, particularly in GLC_FCS30,
consistent with the significant divergence of GLC_FCS30 with other land cover products in
cropland and forest.

Table 2. Comparison of mapping accuracy based on the balanced random sampling for GLC_FCS30,
CLCD, Globeland30, and CNLUCC.

Validation Dataset

Cropland Forest Grassland Wetland Impervious Bareland Glacier OA (%)

GLC_FCS30

PA (%) 82.72 72.37 84.49 77.40 83.07 75.97 64.71

77.83UA (%) 57.25 92.48 72.37 73.52 62.24 90.74 76.74

F1 (%) 67.67 81.20 77.96 75.41 71.16 82.70 70.21

CLCD

PA (%) 87.63 91.02 82.97 78.31 79.15 87.53 88.73

86.98UA (%) 84.72 93.22 85.87 69.41 71.68 87.88 73.26

F1 (%) 86.15 92.11 84.40 66.74 75.23 87.71 80.25

Globeland30

PA (%) 79.44 82.47 69.56 63.98 69.35 74.18 83.05

75.24UA (%) 72.23 77.16 71.89 76.26 66.08 83.88 56.98

F1 (%) 75.66 79.73 70.71 69.58 67.67 78.73 67.59

CNLUCC

PA (%) 82.17 87.97 76.50 70.20 76.73 83.25 53.45

81.38UA (%) 84.14 80.36 78.11 78.54 71.98 86.63 72.09

F1 (%) 83.14 83.99 77.30 74.14 74.28 84.91 61.39

Based on stratified random sampling, there are substantial differences in identification
accuracy across different products (see Table 3). CLCD holds a distinct advantage in
identifying cropland, forests, grasslands, and impervious surfaces, though its performance
in wetlands is much weaker than other products (see Figure 7b,e). CNLUCC shows good
accuracy in recognizing impervious layers and cropland, and it outperforms other land
cover products in wetland identification. However, its accuracy in forests is lower than
that of other products, and it is prone to misclassifying forests as grassland or cropland.
The GLC_FCS30 accurately identifies bareland and glaciers, outperforming other land
cover products. However, its accuracy in identifying cropland and impervious surfaces
could be improved, as many forests are misclassified as cropland or grassland. Although
Globeland30 excels in wetland identification, it exhibits lower accuracy in other land
cover types, particularly glaciers, where its accuracy is significantly below that of different
products (see Figure 7c,e).

By comparison, misclassification samples have mainly distributed in inconsistent
regions among land cover products (see Figures 4 and 6). Hence, it is reasonable to expect
that the causes of misclassification are consistent with those of inconsistencies among land
cover products. More misclassification in vegetation transitional zones means that the
vegetation index plays a crucial role in classification accuracy. The lower classification
accuracy in mountainous areas and humid regions indicated it may be sensitive to terrain
relief and cloud cover, owing to their effect on the spectral reflection and available images.
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Figure 6. (a,c,e,g) The spatial pattern of the misclassification sample of land cover products; (b,d,f,h)
the number of samples ranked in descending order of quantity. The legends only show the top
12 types of misclassification in terms of sample size.

Table 3. Comparison of mapping accuracy based on the stratified random sampling for GLC_FCS30,
CLCD, Globeland30, and CNLUCC.

Validation Dataset

Cropland Forest Grassland Wetland Impervious Bareland Glacier OA (%)

GLC_FCS30

PA (%) 73.89 63.17 77.23 90.32 94.77 78.02 88.69

75.70UA (%) 57.30 92.45 72.31 73.52 62.24 90.65 76.74

F1 (%) 88.10 88.38 90.73 97.15 94.72 93.40 98.93

CLCD

PA (%) 78.85 87.93 73.83 96.42 90.94 86.69 97.39

83.79UA (%) 84.62 93.16 85.83 69.41 71.68 87.88 73.26

F1 (%) 92.80 96.29 91.57 97.25 95.45 95.16 99.07
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Table 3. Cont.

Validation Dataset

Cropland Forest Grassland Wetland Impervious Bareland Glacier OA (%)

Globeland30

PA (%) 70.55 77.81 61.86 87.63 90.03 74.18 95.59

74.33UA (%) 72.23 76.98 71.91 76.26 66.08 83.92 56.98

F1 (%) 89.05 91.49 86.31 97.14 94.71 91.44 98.52

CNLUCC

PA (%) 73.89 63.17 77.23 90.32 94.77 78.02 88.69

80.34UA (%) 57.30 92.45 72.31 73.52 62.24 90.65 76.74

F1 (%) 88.10 88.38 90.73 97.15 94.72 93.40 98.93
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Figure 7. (a–d) The confusion proportions, a key factor in understanding the classification accuracy,
for each of the land cover types in the validation dataset; (e) classification accuracy of land cover
types in products. CL: cropland, FL: forest, GL: grassland, WL: wetland, IS: impervious, BL: bareland,
GS: glaciers.

3.3. Misclassification Diagnosis

It is worth nothing that China’s main land cover types are all related to vegetation.
Vegetation index plays a crucial role in accurately distinguishing them. In Figure 8a–d,
we observe a significant non-linear relationship between the classification accuracy and
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the Normalized Difference Vegetation Index (NDVI), especially in GLC_FCS30. As NDVI
increases, the classification accuracy initially decreases before rising again. The point of
particular interest is the lowest accuracy around an NDVI value of 0.5. According to the
probability density distribution (PDF), the overlap ratio of NDVI for cropland, grassland,
forest, and impervious surfaces reaches the highest values around NDVI = 0.5. This
overlap makes it challenging to accurately differentiate between these land cover types
based on vegetation indicators, which may explain the lower classification accuracy in this
NDVI interval.
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Figure 8. (a–d) The relationship between classification accuracy and NDVI; (e–i) the probability
density distribution of NDVI for land cover types in each land cover product and validation dataset.

The land cover types in Globeland30 and GLC-FCS30 show significant differences in
the PDF of NDVI compared to the validation dataset (see Figure 8e–i). In areas with high
NDVI values, there is a broader overlap in PDF between cropland and forest. On the other
hand, in regions with low NDVI values, the overlap interval of NDVI between bareland and
grassland is significantly broader than that in the validation dataset. The higher overlap
rate between land cover types indicates more significant spectral confusion, leading to
more misclassification among related land cover types. This phenomenon elucidates the
lower classification accuracy of vegetation-related land cover types such as grassland and
forest in Globeland30 and GLC-FCS30.

As depicted in Figure 9, there is a clear negative correlation between classification
accuracy and terrain relief. Among the terrain factors, the slope has the most significant
impact on classification accuracy, with all products showing a noticeable decrease in accu-
racy as the slope increases. Specifically, classification accuracy decreases by approximately
1.1% to 2.6% for each degree increase in slope. Hill shade has a negative relationship with
the classification accuracy of CLCD but no apparent effect on other products. Additionally,
there is no significant difference in classification accuracy across eight aspects.
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** (α < 0.05), *** (α < 0.01).

To comprehensively assess the impact of mixed pixels and image availability, we
carefully analyzed three key indices: landscape fragmentation, land cover change, and
cloud mask (incorporating cloud cover and shadow). The presence of mixed pixels due
to landscape fragmentation poses a challenge in accurately identifying land cover types.
However, it is essential to note that the change in landscape fragmentation predominantly
affects GLC_FCS30 (see Figure 10a), which may explain the higher misclassification of crop-
land and the impervious surface in GLC_FCS30 (see Figure 7e). Notably, the classification
accuracy of all products is significantly affected by the land cover change, mainly showing
a substantial decrease with an increased proportion of the land cover change in adjacent
years. In particular, the sensitivity of CLCD and CNLUCC to land cover change surpasses
that of GLC_FCS30 and Globeland30. Furthermore, cloud coverage significantly impacts
Globeland30 and CNLUCC, with an increase in cloud cover notably decreasing the classi-
fication accuracy of these categories. However, cloud cover less affects the classification
accuracy of GLC_FCS30 and CLCD.
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Figure 10. The relationship of classification accuracy with land cover fragmentation (LULC Frag-
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The partial correlation analysis examined the relationship between each variable and
the classification accuracy of different land cover types. As shown in Figure 11, increasing
NDVI increases the classification accuracy of forests but reduces those of bareland and
impervious surfaces, resulting in the nonlinear relationship between NDVI and classifi-
cation accuracy in Figure 8a–d. The slope reduces classification accuracy for all products,
especially for land cover types distributed in mountainous areas. The wetland in CLCD is
most sensitive to the effect of hill shade, which explains why the classification accuracy of
wetlands in CLCD is considerably lower than that of other land cover products. Cropland
and impervious surfaces, greatly affected by human activities, are more sensitive to land
fragmentation in GLC_FCS30. Glaciers, cropland, and impervious layers are more sensitive
to recent land cover changes and cloud impacts than other types. These types can change
quickly due to human activities or climate change, so the data availability and timeliness
requirements for classification are higher than other types.
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4. Discussion
4.1. Accuracy Assessment Difference with Existing Studies

Compared to existing studies, our classification accuracy assessment generally aligns
with previous assessments (see Table S3). However, there are still notable distinctions. The
overall accuracy estimated in our study is slightly higher than that reported in previous
studies. The classification accuracy of specific land cover types, such as cropland and
impervious surfaces, is somewhat lower than those evaluated by existing studies. Those
differences can be attributed to the following three main reasons.

Firstly, as mentioned earlier, to reduce the impact of possible biases in validation
samples, we merge shrubs (except for sparse shrubland in GLC_FCS30) in forests and water
bodies in wetlands, thereby reducing the effect of the misclassification among them on
overall accuracy, which may explain why our evaluation results were better than previous
studies (see Tables 2 and S3). Secondly, we evaluated the products from 2020, which
have undergone more optimization in their classification methods compared to products
from other periods, resulting in better performance. The variety and number of remote
sensing images and auxiliary data available for land cover classification are also more
abundant, making the classification accuracy in 2020 significantly better than in other
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periods, consistent with previous results [21]. Additionally, with quasi-real-time high-
resolution images, field photos, and street view data, we can more accurately determine the
land cover type of the validation samples. We set more validation samples than previous
studies in remote mountainous areas, such as the Tibetan Plateau, to give our validation
dataset a better spatial representation.

4.2. Underlying Mechanism for Inconsistency and Misclassification
4.2.1. Spatial Extent

As mentioned earlier, Globeland30 and GLC_FCS30 are global classification products,
whereas CLCD and CNLUCC are specific to China. Generally, global products have a
larger spectral confusion among land cover types than those on a regional scale [71]. The
optimal classification schemes for global datasets may not be as effective when applied
to specific regions like China. In contrast, land cover products tailored for China can
account for the region’s notable heterogeneity and produce more accurate classifications.
Secondly, regional products are specifically designed for China, leveraging local expertise
and knowledge about the region’s characteristics. This localized focus ensures that the
classification models are fine-tuned to the specific conditions and variations within China’s
diverse landscapes. Land cover products in China often integrate various data sources,
including satellite imagery, aerial photography, and ground surveys [33]. This multi-source
integration provides a more comprehensive and accurate representation of land cover,
leading to better classification performance.

Compared to Globeland30, GLC_FCS30 used local adaptive classification modeling
to conduct the local classifier. They divided the globe into approximately 948 5◦ × 5◦

geographical tiles (equivalent to about 3 × 3 Landsat scenes) [32]. For every tile, they
conducted a local classifier and employed it to create a corresponding regional land cover
map and finally merge them into a global map [36]. This method alleviates the spectral
confusion between land cover types caused by the increase in spatial extent, which may
partly explain the better classification accuracy of GLC_FCS30 than Globeland30.

4.2.2. Classification Method

CNLUCC employs a human–machine interactive interpretation for its land cover
classification. Visual interpretation is more effective for land cover types with complex
spectral features and high internal heterogeneity, such as wetlands [74]. This method
performs better in identifying land cover types with regular shapes, consistent with its
better performance in cropland and impervious surfaces [75]. Additionally, this approach
can classify mixed pixels depending on the importance of land cover types rather than their
area proportion. For example, many rivers are discontinuous in other products because
narrow parts of rivers may be identified as other land cover types. CNLUCC can maintain
the continuity of rivers well, thereby improving their effectiveness and availability in
hydrological process analysis and model simulation (see Figure S5). However, visual
interpretation also has significant shortcomings, such as using remote sensing images at a
certain time rather than fusing multi-source data and limited spectral information available.
Therefore, it is susceptible to data availability, possibly due to its sensitivity to cloud cover
and land cover change. In addition, manual visual interpretation requires a lot of labor and
subjective judgment from interpreters, making it challenging to apply to large-scale land
cover classification.

Globeland30 employs the POK (Pixel–Object–Knowledge) classification method to
achieve broader coverage and higher efficiency [76]. This approach effectively integrates
the advantages of pixel scale, object scale, and prior knowledge, significantly enhancing
the accuracy of automated classification and thereby considerably improving the efficiency
and accuracy [34]. Our results indicate that Globeland30 accurately identifies land cover
types with relatively regular shapes, such as cropland. Additionally, the object-based classi-
fication method used by Globeland30 effectively reduces the salt-and-pepper phenomenon
commonly seen in pixel-based methods [36,77]. However, this method also has certain
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limitations. For instance, in many regions of China, artificial forests with regular shapes are
often misclassified as cropland (see Figure S6). Additionally, Globeland30’s classification of
vegetation-related types relies solely on vegetation indices, resulting in lower classification
accuracy. The accuracy of Globeland30 is also heavily dependent on prior knowledge. For
objects with greater internal heterogeneity, such as wetlands, the classification accuracy of
Globeland30 is noticeably lower.

Both CLCD and GLC_FCS30 employ the random forest algorithm in classification,
which is highly efficient and can reflect more spatial details of land cover types. By
effectively utilizing available remote sensing images, it significantly reduces sensitivity
to the availability of a single data source. As a result, it is less affected by factors such
as cloud cover and can produce products with higher temporal resolution. For instance,
CLCD publishes annual land cover products. Moreover, the random forest algorithm is
less influenced by prior knowledge and subjective errors, providing a more uniform time
series of land cover products. This consistency supports the trend analysis in land cover
changes. However, the random forest algorithm highly depends on training samples and
feature variables. Consequently, there is a significant difference in classification accuracy
between CLCD and GLC_FCS30. The higher classification accuracy of CLCD can be
attributed to the greater number of training samples in China and the use of more vegetation
indices as feature variables, which significantly improves the accuracy of vegetation type
identification.

GLC_FCS30 primarily used a pixel-based random forest classification, which may re-
sult in numerous misclassified pixels, known as the “salt-and-pepper effect” (see Figure S7).
CLCD used a spatial–temporal post-processing method to enhance classification accuracy.
This approach uses a filter and logical reasoning to refine mapping results by suppressing
illogical land cover conversions caused by misclassifications [21]. Hence, it can effectively
utilize classification results from adjacent years and prior knowledge to correct misclassifica-
tions, improving accuracy and reducing the “salt-and-pepper phenomenon” in pixel-based
classifiers [78].

4.2.3. Training Samples

For supervised large-scale land cover (LC) mapping, the accuracy and adequacy of
training and validation samples are crucial [79]. Generally, the strategies for collecting
training samples for large-scale mapping tasks include (1) visually interpreted samples and
(2) samples automatically derived from existing land cover products [80–82]. The visual
interpretation method yields high-quality samples but requires significant human labor.
Conversely, automatic sample extraction using existing land cover products can generate
many randomly distributed samples, although the quality depends on the products used.

The training samples of Globeland30 and CNLUCC involve the participation of multi-
ple experts based on the spectral features of satellite images. With field surveys, creators
refer to relevant geographical maps and analyze land cover types’ shape, color, texture, and
spatial distribution, establishing a harmonious interpretation marker library [76]. Owing to
the above object-based features, the land cover types with regular shapes or unique textures,
such as cropland and impervious surfaces, are more accurately classified in CNLUCC and
Globeland30 [83]. However, in some exceptional cases, object-based features may lead
to misclassification of land cover types, such as the large number of artificial forests dis-
tributed in China, which have regular shapes and are easily misclassified as cropland. Due
to terrain limitations, many croplands present irregular shapes and are easily misclassified
as forests in mountainous areas. Additionally, land cover types are classified by qualitative
features rather than quantitatively defined thresholds; some transitional areas among land
cover types, such as sparse grassland, are prone to misclassification due to the subjective
differences between workers (see Figures 4 and 6).

Both CLCD and GLC_FCS30 employ the random forest algorithm, but the overall
accuracy of the former is notably higher than the latter. This difference underscores the
crucial role of training samples in enhancing classification accuracy. CLCD and GLC_FCS30
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are built on training samples derived from CNLUCC and CCI_LC, respectively, with
the reliability of these samples verified using MODIS products like MODIS NDVI and
EVI [21,32]. In contrast to CNLUCC and Globeland30, the spatial distribution of training
samples in CLCD and GLC_FCS30 is more random, allowing for stratified sampling based
on different land cover types. This approach ensures the representativeness of land cover
types in the training samples, leading to superior classification accuracy in remote areas,
such as the Tibetan Plateau.

Additionally, CLCD’s training samples are derived from CNLUCC with a resolution
of 30 m, significantly higher than the 300m resolution of CCI_LC [84]. Furthermore, CLCD
has refined and optimized its training samples further using high-resolution imagery and
field photos in Google Earth, which is likely one of the reasons for its superior classification
accuracy compared to GLC_FCS30. Moreover, CLCD employs more vegetation indices
as feature vectors, significantly enhancing its accuracy in identifying vegetation types,
particularly in distinguishing between cropland and forest, and in the classification accuracy
of bareland and grassland, which is markedly superior to that of GLC_FCS30. The extensive
use of spectral classification can lead to significant inaccuracies in CLCD due to factors
such as mountain shadows affecting surface reflection characteristics. Figure S5 shows that
the bareland and glaciers under mountain shadows are misclassified as wetlands in CLCD,
which may explain the poor accuracy of wetlands.

5. Conclusions

The information on land surfaces is crucial for understanding environmental changes,
ensuring food security, and coordinating global change mitigation efforts. Accurate and
reliable 30m-resolution land cover products are essential for studying land cover change.
However, there are significant discrepancies among available products. According to our
comparison, the consistent area across the products accounts for 50.34% of the total area.
The inconsistent regions between each pair of products range from 21.10% to 37.53%. This
substantial inconsistency has introduced significant uncertainties in related studies about
land cover changes.

Overall, we analyzed the main types of inconsistencies and spatial patterns by compar-
ing four existing 30m-resolution land cover products in China in 2020. We evaluated their
classification accuracy using more accurate validation samples derived from multi-source
datasets. CLCD had the highest overall accuracy (86.98 ± 0.76%), followed by CNLUCC
and GLC_FCS30, with overall accuracies of 81.38 ± 0.87% and 77.83 ± 0.80%, respectively.
However, no product showed superior detection accuracy across all land cover types.
CLCD had higher classification accuracy for vegetation types, but its recognition accuracy
for wetlands was lower than that of other products. Globeland30 had the lowest overall
accuracy, but its classification accuracy for glaciers, barelands, and forests was higher
than other products. Therefore, selecting land cover products should be based on the
research subject.

Importantly, we analyzed the relationship between classification accuracy and related
factors and explored the underlying causes of inconsistency and misclassification among
land cover products. Spectral confusion due to similar vegetation cover significantly affects
classification accuracy. Slope, landscape fragmentation, and cloud cover also decrease
classification accuracy by altering spectral features and reducing available images. Land
fragmentation, land cover change, and cloud cover can explain the low classification
accuracy of most land use types in GLC_FCS30. CLCD accuracy is more sensitive to
variations in vegetation cover and topography. In Globeland30 and CNLUCC, the response
of land cover accuracy to each influencing factor shows no clear pattern.

Digging deeper into the mechanism behind the results, human–machine interactive
interpretation performs well in land cover types with unique textures, while automatic
classification algorithms become more efficient and accurate, especially for vegetation-
related land cover types. Object-based automatic classification and expert knowledge
verification significantly improve classification accuracy based on unique shape or texture
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features while increasing the risk of misclassification caused by texture confusion. Random
forest algorithms improve land classification efficiency and provide detailed land cover
patterns. Additionally, their accuracy is also highly sensitive to training samples.

These research results can provide theoretical support for selecting appropriate land
cover products for associated studies and optimizing existing classification algorithms in
the future.
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