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Abstract: Digital elevation models (DEM) are widely used in many hydrologic applications, providing
key information about the topography, which is a major driver of water flow in a landscape. Several
open access DEMs with near-global coverage are currently available, however, they represent the
elevation of the earth’s surface including all its elements, such as vegetation cover and buildings.
These features introduce a positive elevation bias that can skew the water flow paths, impacting the
extraction of hydrological features and the accuracy of hydrodynamic models. Many attempts have
been made to reduce the effects of this bias over the years, leading to the generation of improved
datasets based on the original global DEMs, such as MERIT DEM and, more recently, FABDEM.
However, even after these corrections, the remaining bias still affects flow path delineation in a
significant way. Aiming to improve on this aspect, a new vegetation bias correction method is
proposed in this work. The method consists of subtracting from the Copernicus DEM elevations their
respective forest height but adjusted by correction factors to compensate for the partial penetration
of the SAR pulses into the vegetation cover during the Copernicus DEM acquisition process. These
factors were calculated by a new approach where the slope around the pixels at the borders of each
vegetation patch were analyzed. The forest height was obtained from a global dataset developed
for the year 2019. Moreover, to avoid temporal vegetation cover mismatch between the DEM and
the forest height dataset, we introduced a process where the latter is automatically adjusted to
best match the Copernicus acquisition year. The correction method was applied for regions with
different forest cover percentages and topographic characteristics, and the result was compared to
the original Copernicus DEM and FABDEM, which was used as a benchmark for vegetation bias
correction. The comparison method was hydrology-based, using drainage networks obtained from
topographic maps as reference. The new corrected DEM showed significant improvements over both
the Copernicus DEM and FABDEM in all tested scenarios. Moreover, a qualitative comparison of
these DEMs was also performed through exhaustive visual analysis, corroborating these findings.
These results suggest that the use of this new vegetation bias correction method has the potential to
improve DEM-based hydrological applications worldwide.

Keywords: Copernicus; digital elevation model; vegetation bias; correction; bare-earth; flow path;
delineation

1. Introduction

Digital elevation models (DEMs) have been an important source of information for a
variety of hydrologic applications, given that topography has a major influence on how the
water flows through the landscape [1–3]. The emergence of open access quasi-global DEMs
(GDEMs), like Shuttle Radar Topographic Mission (SRTM) [4], facilitated study cases and
uses involving larger contiguous areas, and increased the interest of researchers in this data
source [5], despite their spatial resolutions (no better than 30 m) and uncertainties being
limiting factors for some applications [2,6,7].
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After the release of SRTM in 2003, other open-access GDEMs have become available,
such as the Spaceborne Thermal Emission and Reflection Radiometer (ASTER) GDEM [8],
Advance Land Observing Satellite (ALOS) World 3D (AW3D30) DEM [9], NASADEM [10],
TanDEM-X [11], and more recently Copernicus DEM [12]. However, all these DEMs share
the drawback of being subject to a positive elevation bias in vegetated areas, because
the sensors used in their data acquisition process are unable to fully penetrate the forest
cover [13,14]. This bias is especially detrimental to hydrologic applications because the
elevated vegetated areas act as dams, blocking the flow paths [15]. This can cause, for
example, distortions in hydrological features extracted from the DEM, such as drainage
networks [16,17], and hinder the accuracy of hydrodynamic models [18].

Throughout the years researchers have attempted to mitigate this problem by estimat-
ing the vegetation bias and removing it from a target DEM. In general terms, the correction
methods differ on how the bias estimation is achieved and what input datasets are used.
Earlier studies estimated the bias by interpolating elevation differences sampled at the
borders of the forested areas [16,19–21] or considered it equal to a percentage of the forest
height, obtained from a preexisting dataset [18,22]. Later on, the studies focused on the
application of regression-based methods to model the bias as a function of variables such as
vegetation cover, density, and height, that were obtained from the datasets available at the
time, and used airborne and/or orbital LiDAR measurements as reference, because they
can penetrate the tree cover and retrieve ground elevations [23–28]. This approach evolved
towards the use of more complex machine learning methods, such as random forest [15,29],
gradient tree boost [30], artificial neural networks [31–33] and ensemble methods combin-
ing different algorithms of this type [34,35]. Some recent studies did not follow this trend
and estimated the vegetation bias by interpolating ICESat-2 forest height data points [36]
or adjusting preexisting forest height maps to match with a target DEM [37]. Among these
studies, only a few resulted in the distribution of quasi-global corrected DEMs. O’Loughlin
et al. [25] developed the first global “bare-earth” DEM correcting the 3 arc second SRTM,
Yamazaki et al. [26] combined the 3 arc second SRTM and AW3D30 to produce the Multi-
Error-Removed Improved-Terrain DEM (MERIT DEM), Zhao et al. [27] corrected the 1-arc
second SRTM resulting in the first worldwide product with this resolution, and Hawker
et al. [15] reduced the bias from vegetation and buildings on the Copernicus DEM, resulting
in the FABDEM product.

Aside from the baseline DEM, the main input datasets used on all methods mentioned
above are airborne LiDAR surveys, vegetation cover products, forest height maps, and
orbital LiDAR data, which also received improvements over time along with the correction
methods. Products such as Vegetation Continuous Fields (VCF) derived from MODIS [38],
Landsat [39] and Global Forest Change data [40] provide information on the vegetation
extent and canopy density (as the percentage of tree cover per pixel), and were used by
most authors. The potential use of higher resolution land use/land cover datasets to
characterize vegetation extent, such as the currently available 10 m ESA World Cover [41]
and ESRI Land Cover [42], was not properly explored yet. The global forest height map
developed by Simard et al. [43], with spatial resolution of 1 km, was used in the majority of
the studies up to 2018, and recently a new dataset, with 30 m resolution, was developed
for the year 2019 [44], and used in newer correction methods [15,35,37]. Forest height
maps, with higher spatial resolutions, have been released already [45,46], however studies
employing them for vegetation bias correction are still lacking. Regarding orbital LiDAR
measurements, ICESat-1/GLAS data were used in the studies until 2020 and then replaced
by ICESat-2/ATLAS and Global Ecosystem Dynamics Investigation (GEDI) observations.
Moreover, the area covered by airborne LiDAR surveys increased throughout the years as
they became more accessible, enabling researchers to use reference elevation data from a
greater variety of regions.

Regarding the base DEM, most studies apply vegetation bias correction to SRTM.
However, recent research indicates that, among the uncorrected GDEMs, Copernicus
DEM provides the best representation of the terrain [47–49] and depicts more detailed
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topography [14]. Additionally, Moges et al. [50] evaluated the impact of DEM selection on
hydrological modeling and pointed out that Copernicus DEM and AW3D30 were the ones
that delivered a better performance overall. However, from all studies mentioned above,
only two targeted the Copernicus DEM [15,30], hence its use as baseline DEM still needs
further exploration. Moreover, both studies employed machine learning algorithms to
correct the bias in large areas, and while these non-parametric methods can model complex
relationships between the variables better than the parametric ones, they are still highly
dependent on the quality and size of the training data, as well as being susceptible to
overfitting [51]. As orbital LiDAR measurements are sparse, representing only a small
portion of the area they cover, and airborne LiDAR availability is limited, especially in
developing countries, compiling enough training data to represent a wide variety of areas,
with different topographic characteristics and vegetation types, becomes challenging.

With this obstacle in mind, a new deterministic method to correct the vegetation bias
in the Copernicus DEM is proposed in this study, which is independent of training data,
requires only two input datasets, no feature engineering, and at the same time is adaptive
to regional characteristics. The method showed improvement over Copernicus DEM and
FABDEM on the hydrology-based evaluation we performed. In the remainder of this
article, we introduce the targeted study areas, describe the input datasets, the correction
and evaluation methods (Section 2), present the obtained results (Section 3), discuss the
advantages and limitations of the method (Section 4), and convey our concluding remarks
(Section 5). After a few enhancements, we expect to be able to gradually apply this method
to each continent, generating a new open access quasi-global “bare-earth” DEM.

2. Materials and Methods

This section describes the study areas and input datasets used in this work, as well as
the methods used to perform the vegetation bias correction on Copernicus DEM and to
compare the obtained results with the original and benchmark DEMs. The main innovative
aspects of the correction method are the use of local adjustment factors to compensate for
errors in the subtraction between the DEM elevations and the forest height data, and also
the automatic adjustment of this dataset to match the DEM acquisition year in a target
area. The focus of the comparison method was on hydrology, assessing the proximity of
the stream flow paths delineated from these DEMs to a reference dataset. All processes
described in this study were performed by custom scripts (python version 3.12), and all
input and output datasets are available in the Supplementary Materials.

2.1. Study Areas

Since the goal was to develop a correction method that could be applied worldwide,
we had to evaluate its performance in different conditions of forest cover and topographical
relief. To achieve this, one study area was selected to represent each of the following
scenarios: (1) high forest cover and flatter terrain, (2) low forest cover and flatter terrain,
(3) high forest cover and rougher terrain, and (4) low forest cover and rougher terrain.
These study areas were selected within Brazilian territory, due to the availability of an
extensive high-quality drainage network reference dataset, which enabled the selection of
study areas that better represented the described scenarios. As shown in Figure 1, areas 1
and 2 are located in the north region of the country, 3 in the southeast region, and 4 in
the south.

The differences in forest cover and overall relief between the study areas can be
observed in Figure 2, which presents their natural color Sentinel-2 mean composite for
the year 2020, and a color representation of the 1 arc second Copernicus DEM elevations.
Moreover, the minimum, maximum, and average elevation, forest cover percentage, and
average forest height of each study area are presented in Table 1. The forest cover percentage
and the average forest height were calculated using the canopy height map produced by
Potapov et al. [44], which is detailed in Section 2.2.2.



Remote Sens. 2024, 16, 4332 4 of 24Remote Sens. 2024, 16, x FOR PEER REVIEW 4 of 25 
 

 

 
Figure 1. Position of study areas overlayed to a natural color Sentinel-2 cloud free composite of the 
year 2020 of South America. 

The differences in forest cover and overall relief between the study areas can be ob-
served in Figure 2, which presents their natural color Sentinel-2 mean composite for the 
year 2020, and a color representation of the 1 arc second Copernicus DEM elevations. 
Moreover, the minimum, maximum, and average elevation, forest cover percentage, and 
average forest height of each study area are presented in Table 1. The forest cover percent-
age and the average forest height were calculated using the canopy height map produced 
by Potapov et al. [44], which is detailed in Section 2.2.2. 

 

Figure 1. Position of study areas overlayed to a natural color Sentinel-2 cloud free composite of the
year 2020 of South America.

Remote Sens. 2024, 16, x FOR PEER REVIEW 4 of 25 
 

 

 
Figure 1. Position of study areas overlayed to a natural color Sentinel-2 cloud free composite of the 
year 2020 of South America. 

The differences in forest cover and overall relief between the study areas can be ob-
served in Figure 2, which presents their natural color Sentinel-2 mean composite for the 
year 2020, and a color representation of the 1 arc second Copernicus DEM elevations. 
Moreover, the minimum, maximum, and average elevation, forest cover percentage, and 
average forest height of each study area are presented in Table 1. The forest cover percent-
age and the average forest height were calculated using the canopy height map produced 
by Potapov et al. [44], which is detailed in Section 2.2.2. 

 
Figure 2. Sentinel-2 cloud free composite of the year 2020 and color representation of Copernicus
DEM elevations of the study areas. The numbers in the top left corner of each panel refer to the study
area depicted on it.



Remote Sens. 2024, 16, 4332 5 of 24

Table 1. Study areas characteristics.

Study
Area

Min Elevation
(m)

Max Elevation
(m)

Avg. Elevation
(m)

Forest Cover
(%)

Avg. Forest
Height (m)

1 43.28 296.58 76.95 91.08 23.98
2 67.80 141.34 96.06 16.37 13.78
3 0 222.51 79.68 70.93 13.08
4 43.50 477.39 111.94 18.54 11.06

2.2. Input Datasets

The datasets used in the vegetation bias correction method were Copernicus DEM [12],
the forest height map elaborated by Potapov et al. [44], and forest loss per year from Global
Forest Change [40]. Drainage networks obtained from the Brazilian official topographic
maps and FABDEM [15] were used during product evaluation.

2.2.1. Digital Elevation Model

The 1 arc second Copernicus DEM (GLO-30) is a freely available global product
derived from data acquired during the TanDEM-X mission, from December 2010 to January
2015. This mission was a partnership between German Aerospace Centre (DLR) and
Airbus, which employed two twin X-band SAR sensors (TerraSAR-X and TanDEM-X),
flying in tandem orbit, to enable the generation of global DEMs by the means of SAR
interferometry. The first product of this mission was the commercial DSM WorldDEMTM,
with the spatial resolution of 0.4 arc second (~12 m). This dataset was edited to correct
coast/shorelines, special terrain features (e.g., airports), and implausible terrain formations,
and also to include consistent river flows and flatten the water bodies [12]. Posteriorly,
the WorldDEMTM was resampled to generate the Copernicus DEM, with the 1 arc second
version being made publicly available in 2020. This product may benefit from the editing
processes performed on its predecessor; however, the authors stated that the hydrological
consistency cannot be guaranteed after the resampling process.

The validation of the Copernicus DEM was performed by the data producers using
ICESat/GLAS reference points and achieved an absolute vertical accuracy lower than 4 m.
Independent studies found similar values [47,49] and, as mentioned before, pointed out
that, among the freely available 1 arc second global DSMs, Copernicus DEM provides the
best representation of the terrain. Moreover, it contains updated data when compared to
the other free global DEMs, due to its more recent acquisition period, and it uses the EGM
2008 geoid model [52], which was shown to be superior to the EGM1996 [53] used by the
other previously mentioned DEMs [54]. Besides the elevation data, the Copernicus DEM
has 6 auxiliary quality layers, including a water bodies mask that is also used in the method
proposed in this study.

2.2.2. Forest Height Data

The 2019 global forest canopy height map, with 30 m spatial resolution, developed by
Potapov et al. [44], was generated by extrapolating LiDAR forest height measurements from
the Global Ecosystem Dynamics Investigation (GEDI) instrument, using multitemporal
metrics derived from analysis-ready Landsat data [55] and a regression tree model. The
coverage is limited by the availability of GEDI measurements, which were collected between
51.6◦N and 51.6◦S.

The product was validated using independent GEDI observations (RMSE = 6.6 m,
MAE = 4.45 m) and airborne LiDAR data (RMSE = 9.07 m, MAE = 6.36 m), separately.
The validation results indicated underestimation of the forest height for both test datasets,
especially for shorter (<7 m) and taller forests (>30 m). However, Hawker et al. [15] also
reported overestimation in areas of complex topography, caused by issues in the original
GEDI data. It is also important to mention that this dataset only maps vegetation with
heights of 3 m or above.
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Despite these limitations, the boundaries of forest mask derived from these data
(forest height > 0) showed a better agreement with the sharp increases in elevation at
the forest/non-forest transitions present in Copernicus DEM, when compared to a more
recent forest height map, developed by Lang et al. [45]. This dataset was derived from
Sentinel-2 images of the year 2020 and GEDI data using a deep learning approach. The
above-mentioned match between the forest mask and the DEM is critical for the proposed
correction method, as detailed in Section 2.3, hence the dataset elaborated by Potapov
et al. [44] was selected. Another promising option was the 1 m global canopy height
developed by Tolan et al. [46]. This product was derived from the combination of high-
resolution optical imagery (<1 m), acquired between the years 2017 and 2020, and LiDAR
forest height measurements from both airborne instruments and GEDI. However, this
product was not used because data gaps were identified throughout all study areas. Figure 3
illustrates the differences between these three forest height datasets in a region within Area
1, where it can be observed that our selection has better agreement with the sudden
elevation changes present in the DEM.
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Figure 3. Comparison between the forest height datasets. The figure presents a natural color
Sentinel-2 cloud free composite of the year 2020 of the entire Area 1, with the subset area marked
by the red rectangle (top left); the Sentinel-2 image of the subset area (top center); a grayscale
representation of Copernicus DEM elevations on the subset area (top right); the Sentinel-2 composite
overlayed by a color representation of Potapov et al. [44] (bottom left), Lang et al. [45] (bottom center)
and Tolan et al. [46] (bottom right) forest height datasets, where heights equal to zero are transparent.

2.2.3. Global Forest Change Data

The Global Forest Change (GFC) dataset is the product originated from the study
performed by Hansen et al. [40], which used metrics derived from Landsat time-series
and a decision tree model to characterize the forest extent, loss, and gain globally. The
authors considered a forest as having only trees with a height of at least 5 m. The data
originally covered the period of 2000 to 2012 but has received annual updates since its
release, currently covering up to the year 2023. The main layers of this dataset are the
global tree cover for the year 2000 (encoded as a percentage of the canopy cover on the
pixel), the forest loss per year (from 2001 to 2023), and the forest gain between 2000 and
2012. In the present study, we used only the forest loss per year (lossyear). These data are
encoded with pixel values ranging from 1 to 23, referring to the year the forest loss was
observed in the region covered by each pixel (e.g., 5 = 2005), and 0 where no forest loss
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was detected. This information was used to better adjust the forest height dataset to the
Copernicus DEM, as further explained in Section 2.3. The forest gain information was not
used for the referred adjustment because it is not discriminated per year and it does not
cover the entire data acquisition period of the Copernicus DEM (2010–2015).

2.2.4. Reference Drainage Networks

The reference drainage networks were extracted from the official topographic maps
produced by the Brazilian Army Geographic Service (DSG). We selected the most ac-
curate and recent maps available covering the study areas. The cartographic scale and
acquisition dates of the topographic maps used for each area are shown in Table 2. The
drainage networks on these maps were manually acquired by photogrammetric restitu-
tion and vectorization processes, using aerial or orbital images with sub-metric spatial
resolutions. In Area 1, instead of photogrammetric restitution, a 5 m spatial resolution
DTM, obtained by a p-band SAR interferometry system, capable to penetrate the forest
and retrieve ground elevations [56], was used to perform a semi-automatic acquisition
process [57]. The drainage networks were in all shapefile format and, according to their
official data acquisition specification [58], their lines were traced following the water flow
direction (up to downstream) and segmented at every intersection between lines. This
feature facilitated the implementation of the comparison method presented in Section 2.4.

Table 2. Scale and acquisition year of the Brazilian official topographic maps used per study area.

Study Area Cartographic Scale Acquisition Year

1 1:50,000 2010
2 1:50,000 2021
3 1:25,000 2019
4 1:25,000 2016

2.2.5. FABDEM

The Forest and Building removed DEM (FABDEM) was developed to correct the
building and vegetation bias in the Copernicus DEM. The dataset has 1 arc second (~30 m)
of spatial resolution and it is available between 60◦S and 80◦N. According to the authors,
the method reduced the mean absolute vertical error by 30% in built-up areas and 44%
in vegetated ones [15]. Moreover, independent validations of this dataset found similar
results [49,54,59], pointing out that this product is the best free global DEM currently available.

To perform the correction, separate random forest regressor models were trained for
the vegetated and built-in areas. The predictor variables used for the forest model were
extracted from the 2019 global forest canopy height map [44]; ICESat-2 land and vegetation
height data [60], for the areas not covered by the forest height map; and Copernicus Global
Land Service canopy cover percentage [61]. For the built-in areas model, several predictor
datasets were used, such as night-time lights [62] and urban building footprints [63]. The
reference elevation data used to train the model were a set of airborne LiDAR DEMs,
selected from 12 different countries to increase the robustness of the product. The latest
version of this dataset (FABDEM V1-2), released on January 2023 [64], was used in the
current work.

2.3. Vegetation Bias Correction Method

The current method was developed while attempting to correct the canopy effect of
the Copernicus DEM by subtracting from its elevations the estimated forest height from
the dataset developed by Potapov et al. [44]. It was expected that the sudden increases
in elevation, observed on the borders of the forest patches, caused by the presence of
vegetation bias, would be reduced, resulting in smoother transitions. However, after the
correction, the majority of the vegetated areas became depressions and the sharp increases
in elevation on vegetation borders were replaced by abrupt descents, making them easily
distinguishable from their surroundings. This was an indicative that, in these areas, the
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forest height was overestimated and/or the canopy elevation was underestimated in the
DEM. Overestimation of the forest height can be caused by the inaccuracies of the source
dataset mentioned in Section 2.2.2, and the underestimation of canopy elevations can be
caused by the penetration of the SAR pulses into the vegetation during the data acquisition
step of DEM generation, even when shorter wavelengths, such as the X-band, are used in
the process [65]. Figure 4 depicts how both of these effects can affect the estimated ground
elevation on the corrected DEM, where ∆h1 is the forest height overestimation and ∆h2 is
the canopy elevation underestimation.
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To improve the correction process, the influence of the above-mentioned effects was
mitigated by the application of an adjustment factor (k) to reduce the estimated forest
height, making the resulting estimated ground elevations better match the actual ones.
However, this factor needed to be tuned locally, and the exact k could only be calculated
where the actual ground elevation were known, so it was necessary to estimate it. The
strategy devised to do this consisted of finding the values of k that minimizes the elevation
spikes around the pixels located at the borders of the forest patches. The local slope was
used to quantify this. The optimal k values found at the border pixels of each forest patch
were averaged, and the resulting adjustment factor was used for all pixels in that patch.
The corrected DEM was obtained by applying this process to all forest patches of a given
region and subtracting from the original DEM elevations the forest height adjusted by
k value of each patch.

However, since the data acquisition periods of the forest height dataset (2019) and
the Copernicus DEM (2010 to 2015) are different, mismatches in the forest cover can occur,
mainly due to forest loss, causing errors in the correction process. So, the forest cover
loss information from Global Forest Change was used to adjust the forest height to the
Copernicus DEM acquisition period. One adjusted forest height dataset was created for
each possible acquisition year, and its respective corrected DEMs were obtained. Among
these DEMs, the one that resulted in overall smoother transitions between forest and non-
forest areas was selected. This was measured by the average slope of the DEMs, since
higher slope values appear wherever the transition was not properly corrected. Posteriorly,
the final product was obtained by performing post-processing steps, such as adaptive
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smoothing, to improve this selected DEM. Figure 5 presents the general workflow of the
entire process.
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The details of each step of the vegetation bias correction method presented in Figure 5
are described in the remainder of this section.

Forest Height Adjustment: The forest height dataset was adjusted to each year from
2010 to 2015 as mentioned above. This was performed by adding to the forest height dataset
the forested areas that were lost between the target year and 2020. The extent of these added
areas was obtained from the lossyear layer of the GFC dataset (lossyear ≥ target year), and
their canopy height was estimated pixel by pixel using the average of the 128 nearest pixels
of the original forest height dataset. For this estimation, only pixels where the lossyear was
zero and the forest height was greater than zero were considered. The original forest height
was substituted for the new one in the pixels where the added areas overlapped the forest
height dataset. The reference years the forest height dataset was automatically adjusted
and were 2012, 2013, 2010, and 2013 for study areas 1 to 4, respectively.

Location of Slope Maxima Around Border Pixels: The vegetation height dataset was
converted to a binary forest mask (forest height > 0), and, for each pixel at the borders
of the forest patches, the position of the local slope maxima was found, considering a
3 × 3 neighborhood. This approach was used because eventual mismatches between the
forest mask and the vegetation in the DEM may occur, and, in this case, the border pixel
itself may not represent the elevation spike (slope maxima), caused by the vegetation bias,
correspondent to the transition between forest and non-forest areas.

Maxima Pixels Optimal k Value Determination: For each slope maxima pixel, the
k value that results in the minimum average slope, for a 3 × 3 neighborhood around it, was
identified. To do this, a set of corrected DEMs was created using global adjustment factors,
i.e., the same k value was applied to all forest patches. The selected k values varied from 0 to
1 in steps of 0.05. Then, the slopes of these DEMs were extracted, the average slope within
the neighborhood of each maxima pixel was calculated, and the k value correspondent to
the minimum result was selected. If there was more than one k value corresponding to
the minimum result, the lowest one was selected. Prior to this step, the forest height was
smoothed using a 5 × 5 mean filter, to reduce errors caused by minor mismatches between
the forest mask and the vegetation represented in the DEM. If an adjustment factor equal
to zero was found, that slope maxima pixel was disregarded, because this suggests that
its position does not correspond to a transition between forest and non-forest areas in the
original DEM. Additionally, if a maxima pixel was located within or touched any object of
the DEM water bodies mask, the pixel was also disregarded, because the elevations of such
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water bodies are artificially set to values lower than the surrounding areas, and this could
introduce errors in the correction process.

Labeling: Each vegetation patch of the forest height dataset received a unique label. A
dilation process was applied to this labeled mask, in order to match its extents with the
smoothed forest height used to generate the DEMs corrected with the global adjustment
factors, while maintaining the original labels. If the labeling was applied directly to
the binarized smoothed forest height, areas that were separated in the original mask
could be merged together because of the dilation effect of the smooth filter, receiving the
same adjustment factor as a result. This was potentially detrimental to the correction
process, because averaging the k value over larger areas could fail to address the individual
variability and behavior of the forest patches present in the original mask.

Maxima Pixels Label Matching: A matching process was performed to identify which
slope maxima pixels should be considered in the calculation of the k value of each forest
patch. Each maxima pixel received the label of the nearest forest patch of the mask that
resulted from the labeling process mentioned above. If a specific mask object had zero
correspondent maxima pixels, the label of each pixel of the object was substituted with the
label of the nearest forest patch that had correspondent maxima pixels.

Label k Value Calculation: The adjustment factor of each forest patch of the labeled
mask, resultant from the last step, was calculated by averaging the k values of all max-
ima slope pixels that received its label. And the combination of the resulting averaged
adjustment factors of all forest patches originated a k value map.

DEM Correction with Label k Values: The k value map was multiplied by the smoothed
forest height and then subtracted from the original DEM elevations, resulting in the raw
corrected DEM, which was then refined as described hereon.

Adaptive Smoothing: Although the last step resulted in a DEM with smoother transi-
tions between forest and non-forest areas, the regions where the correction was performed
still presented a texture that was visually rougher than the unmodified ones. Therefore, an
edge-preserving smooth filter was applied to the modified areas to further smooth these
transitions and achieve a better blending while preserving the local topographic features.

The bilateral filter [66] was selected for this purpose. This filter replaces the intensity
of each pixel with a nonlinear combination of the intensities of the nearby pixels. However,
this combination is based on both the spatial distances and the intensity differences (range)
between the central and neighboring pixels. Higher weights are assigned to closer and more
similar pixels, following gaussian distributions for both the distance and range components.
This allows sharp edges to be preserved, because pixels with large intensity differences will
have relatively small contributions to each other [67]. Due to this property, this filter was
also used as a post-processing step in the methodology used to generate the FABDEM [15],
that was used in our study as the benchmark for vegetation bias correction.

The smoothing was performed using the Whitebox Tools [68] python package (version
2.3.5) implementation of the bilateral filter, where the spatial distance parameter (σdist) con-
trols the extent of the neighborhood considered in the process, while the range parameter
(σint) controls how much the intensity differences influences it. These parameters were
manually tuned to preserve the sharp edges throughout all study areas, resulting in σdist = 3
and σint = 5.

Water Bodies Elevation Restoration: As a result of all steps performed up to this point,
the elevations of some pixels belonging to the water bodies present in the original DEM
were modified. In these cases, the original water body elevations were restored, and the
final corrected DEM was obtained.

2.4. Stream Flow Paths Delineation Comparison

This section describes how the original Copernicus DEM, our product, and FABDEM
were compared quantitatively regarding how close stream flow paths derived from them
were to those obtained from the reference drainage network. Figure 6 presents the general
workflow of this method.
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The comparison among DEMs was specifically designed to not depend on the selection
of arbitrary accumulation area thresholds to extract the flow paths from the DEMs, because
that would limit the scope of the analysis. Moreover, it is important to mention that, prior
to all steps described here, some inconsistencies found in the reference drainage networks
were manually corrected. All comparison method steps presented on Figure 6 are detailed
in the remainder of this section.

Reference Flow Paths Set Generation: In this step, we generated a set of non-overlapping
reference flow paths by repeating the process of selecting one random vertex from the
vector lines in the topographic map drainage network and tracing its flow path, following
the downstream direction, until the distance between the start and end points was equal
to a predetermined radius. New flow paths that intersected with previous ones were
discarded. This process was repeated until we failed 500 consecutive times to add a new
flow path to the set. As a result, a set of flow paths evenly distributed throughout the
drainage network is generated. We used three different radii (1000, 2000, and 3000 m),
which were selected in order to yield a set size greater than 50 flow paths each. Larger radii,
such as 4000 m, were not able to fulfill this prerequisite, since the set size decreases as the
radius increases.

Flow Directions Extraction: Parallel to the previous step, the DEMs were hydrologi-
cally conditioned to resolve the flat areas and remove the pits. The goal of this process is
to obtain a DEM that, on every pixel, there is at least one neighbor with a lower elevation,
allowing the flow directions to be extracted properly. To achieve this, first the flat areas were
carved in a “v” shape, the pits that can be filled without creating other new pits were filled,
and the remaining pits were removed by using the Priority First Search (PFS) algorithm [69]
to carve a path to an outlet cell. Finally, the flow directions were extracted from the con-
ditioned DEM using the D8 method [70]. All these processes were performed following
the methods presented by Jardim [71] and are implement in the software Terrahidro [17]
version 5.2.0. It is important to emphasize that these hydrologically conditioned DEMs
were exclusively used for the purpose of extracting the flow directions.

DEM Flow Paths Delineation: For each initial point of the reference flow paths we
obtained, the flow path of each DEM was delineated following its own D8 flow directions,
until the distance between its starting and ending points was equal to the same radius that
was used to determine the respective reference flow path.

Displacement Areas Calculation: Figure 7 illustrates the process used to calculate the
displacement area of each flow path. The displacement area is defined here as the sum of
the regions formed between each DEM flow path and its respective reference flow path. The
figure shows the drainage network overlayed by an initial point from where the reference
and DEM-extracted flow paths are traced, until they reach the circle with radius, r, forming
the displacement area between them. In this step, the displacement area of all flow paths
derived from each DEM are calculated, resulting in three separated sets of this metric.

Displacement Areas Comparison: Since the lower the displacement areas, the closer
the flow path is to the reference, this metric can be used to evaluate the performance of
candidate DEMs regarding flow path delineation. This was achieved using the Wilcoxon
signed-rank test [72]. This non-parametric test evaluates whether the differences between
paired observations of two variables can have a median equal to zero. In the context of
the present work, the test was applied to displacement area observations of two different
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DEMs, paired by their respective reference flow path. When the test was significant, it
indicated that one of the DEMs produced displacement areas that were significantly larger
than the other, making it less suitable for flow path delineation.

The observations we used in the tests were obtained from the set of displacement areas
of the DEMs. Eventually, due to problems in the original DEM, none of the products could
be adequate when compared to the reference. In this case, differences in the displacement
areas would be irrelevant to indicate the best product. Therefore, it was decided to select a
subset of 50 reference flow paths in order to prioritize those that indicated that at least one
of the evaluated products would be better than the others. For this selection, the flow paths
were ordered according to their best performance (lowest displacement area among the
3 evaluated DEMs). Since it was expected that the differences between the products would
occur over the vegetation areas, it was decided to stratify the selection of the 50 flow paths
in predominantly vegetated and non-vegetated ones, according to their location relative to
the adjusted forest mask, using the proportion observed in the flow paths set. Thereby, the
flow paths with the best performance were selected for each stratum. Figure 8 illustrates
this process by showing the reference drainage network for Area 1, the set of flow paths
extracted from it using a 2000 m radius, and the flow paths selected from the latter.
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3. Results

The correction and comparison methods described in the sections above were applied
to all study areas, and the p-values obtained by performing the Wilcoxon signed-rank test
to the DEM pairs were compiled in Table 3.

Table 3. Resultant p-values obtained for each study area and radius when performing the Wilcoxon
signed-rank test featuring the new corrected DEM against Copernicus DEM and FABDEM and
also FABDEM against Copernicus DEM. Significant differences at 5% are highlighted in gray. The
letter indicates which product was significantly better in each test: C—original Copernicus DEM,
F—FABDEM, and N—New corrected DEM.

Area Radius (m) New x Copernicus New x FABDEM FABDEM x Copernicus

1
1000 0.3115 0.0036 (N) 0.1433
2000 0.0129 (N) 0.0186 (N) 0.3438
3000 0.0186 (N) 0.0048 (N) 0.4962

2
1000 0.0029 (N) 0.0417 (N) 0.0013 (F)
2000 0.0004 (N) 0.4695 ∼=0 (F)
3000 0.0004 (N) 0.3474 ∼=0 (F)

3
1000 0.2408 0.0103 (N) 0.0076 (C)
2000 0.1327 0.0009 (N) 0.0001 (C)
3000 0.1306 0.2543 0.4429

4
1000 0.2358 0.3976 0.3039
2000 0.0016 (N) 0.0703 0.0231 (F)
3000 0.0001 (N) 0.0032 (N) 0.0181 (F)

The results point out that our product was significantly better than Copernicus DEM
and FABDEM in the majority of the tests we performed. On the other hand, the compar-
ison between Copernicus DEM and FABDEM showed mixed results, with the latter not
being significantly superior in most cases, including two where it was outperformed by
Copernicus (Area 3, r = 1000 and 2000 m).

Analyzing the results per study area, we found that in Area 1 our product was superior
to Copernicus DEM in all but one of the tested radii (r = 1000 m), and outperformed
FABDEM in all of them, whereas these two DEMs were tied in all cases. In Area 2, our
method produced similar results to FABDEM, both showing improvement over Copernicus
DEM in all radii, but in the direct comparison our product was better when the radius
was 1000 m, presenting a p-value slightly below the significance level (0.0417). In Area 3,
Copernicus DEM and our product yielded comparable results, being tied for all radii, and
also being superior to FABDEM when the radius was 1000 or 2000 m. In Area 4, FABDEM
and the new corrected DEM had similar results, both being better than Copernicus DEM in
all radii except 1000 m, but our product outperformed FABDEM for the 3000 m radius.

These results suggest that, in areas with lower vegetation cover (such as 2 and 4), aside
from the slight advantage our product presented over FABDEM, both correction methods
have comparable results in improving the original DEM, regardless of the local topography.
This outcome can be explained because the limited vegetation present in these areas tends
to be mostly located along water courses, which were the main focus of the comparison
we performed. Consequently, the benefits of the correction methods in enhancing the
Copernicus DEM were emphasized. However, due to the limited extent of the vegetation
cover, differences between the correction methods were not as pronounced.

In areas where the vegetation cover is high (1 and 3), the overall relief has a greater
influence, since the new correction method only showed improvement over Copernicus
DEM in flatter terrain (Area 1). This can be explained because in rougher terrain, where
elevation gradients are much greater than the average forest height, they tend to dominate
the variations in Copernicus DEM elevation, and the influence of the vegetation cover
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becomes less important. So, the application of the correction methods in these areas
yields little to no improvement or can actually introduce errors that will lead to lower
performances, as we observed in the comparison between FABDEM and Copernicus DEM
in Area 3.

In order to better comprehend the results of the quantitative comparison, a qual-
itative analysis was also carried on. We performed visual interpretation of the DEMs,
manual inspection of elevation profiles, and analysis of drainage networks. Among the
inspected profiles, four were selected to represent the results obtained in each study area,
and the drainage networks derived from the DEMs were compared to the reference one.
As mentioned before, the comparison based on drainage networks generated with ar-
bitrary accumulation area thresholds is of limited scope; however, as a complementary
qualitative analysis tool, it can still provide further insight about the DEMs suitability for
hydrological applications.

Figure 9 presents Copernicus DEM, FABDEM, and the new corrected DEM elevations
in Area 1, accompanied with the selected profile lines overlaying a Sentinel-2 cloud free
composition for the year 2020 of the same region, and charts containing the observed
elevations along them. The background of the charts are highlighted in a gray color
where vegetation is present, according to the adjusted forest height data obtained for each
study area.
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Figure 9. Comparison between DEMs and vertical profiles in Area 1. The figure presents color
representations of Copernicus, FABDEM, and the new corrected DEM elevation data over the study
area (top); its natural color Sentinel-2 cloud-free composite of the year 2020, overlayed by the
elevation profile lines identified by their respective numbers (bottom left); and charts showing the
observed DEM elevations along the profile lines, with the background colored gray in areas covered
by vegetation, according to the adjusted forest height obtained for the area (bottom right).

It can be observed that the apparent abrupt depressions visible in the Copernicus
DEM, caused by the presence of deforestation in the east side of the study area, became less
distinguishable in our product, due to the reduction in the elevation of the surrounding
vegetated areas. In FABDEM, however, the correction process introduced elevation artifacts
in the areas that were deforested after the acquisition period of the Copernicus DEM
(2010–2015). Since the forest height dataset used by the authors was acquired in 2019 [15],
in the areas where forest loss took place between the acquisition periods, no vegetation
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bias reduction was performed, and as a result, they appear as regions of higher elevation,
because the elevations of the surrounding, not deforested, areas were reduced. This effect
certainly contributed to FABDEM not being significantly better than Copernicus DEM
in this area in the quantitative analyses we performed. Our method solved this issue by
automatically adjusting the forest heigh dataset to a reference year that best fitted the
original DEM, as exposed in Section 2.3. Analyzing the elevation profiles, we can identify
in excerpts 1, 2, and 4 areas that are vegetated in the DEM, according to the adjusted forest
height data (year 2012), but were not corrected by FABDEM, due to the above-mentioned
acquisition period mismatch. In areas where this problem was not observed, the correction
performed by both methods were similar, although our product generally resulted in
greater elevation reduction than FABDEM.

Additionally, a blurring effect was observed in vegetated areas of both corrected DEMs,
which degraded the finer topographic features that, despite the forest cover, were visible in
the original DEM. This was caused by the post-processing steps of the correction methods,
where the DEMs were smoothed by filters to reduce the noise in the final product. In
our method, a single bilateral filter was applied, whereas in FABDEM a series of filtering
steps were performed [15]. As a result, the blur in FABDEM was greater than the one
observed in the new corrected DEM. Figure 10 shows the blurring effect in a region of Area
1, where topographic features related to the local drainage network were lost in FABDEM
but remained preserved in our product. This problem may also have negatively contributed
to its performance in Area 1.
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of the elevations of Copernicus DEM (top right), FABDEM (bottom left) and the new corrected DEM
(bottom right), showing the different level of degradation of the finer topographic features visible in
the original DEM.

Figure 11 presents the results obtained for Area 2, where it can be observed that the
bias, caused by the riparian vegetation existing along the main rivers, was reduced by both
methods, but its remnants are more evident in FABDEM than they are in the new corrected
DEM. This can be observed in profiles 1, 2, and 3, where the bias appears as plateaus
centered around the river, which are not perceptible in our product. However, in areas
where the terrain is more rugged, river valleys are narrower and the riparian vegetation
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less prominent, such as the one represented by profile 4, this effect is less noticeable, and
we could not identify which method performed better bias reduction, based only on the
information provided by their elevation profiles. It can also be noticed that our method
resulted in a pronounced reduction in the elevation of the valley bottom located in this
profile, but this kind of effect does not affect the delineation of flow paths. Moreover, no
blurring effect was detected in this area, due to its reduced forest cover in comparison
to Area 1.
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Figure 11. Comparison between DEMs and vertical profiles in Area 2. The figure presents color
representations of Copernicus, FABDEM, and the new corrected DEM elevation data over the study
area (top); its natural color Sentinel-2 cloud-free composite of the year 2020, overlayed by the
elevation profile lines identified by their respective numbers (bottom left); and charts showing the
observed DEM elevations along the profile lines, with the background colored gray in areas covered
by vegetation, according to the adjusted forest height obtained for the area (bottom right).

Figure 12 presents the results obtained for Area 3. In this area, because of its rougher
terrain and relatively greater elevation gradients, compared to other study areas and to the
local average forest height, the topography is the main factor contributing to the variations
in Copernicus DEM elevation throughout the region. As a result, the difference among all
DEMs, in terms of vegetation bias presence, is hardly noticeable by visual interpretation.
The elevation profile analysis showed that, except for few regions where the characteristic
plateau shape was identified in the original data and FABDEM (represented by profile 2),
the result of both correction methods was also similar, not providing enough indication of
which one had a better performance.

The results of the visual analysis are not supported by the findings of the statistical
comparison in this area, since they pointed out that both our product and Copernicus DEM
were significantly better than FABDEM, when the radius was 1000 and 2000 m. However, it
can be seen in Figure 13 that a blurring effect was also detected in the vegetated regions of
Area 3, which was more intense in FABDEM than in the new corrected DEM. Since, aside
from this effect, the DEMs are visually similar in this area, and this is indicative that the
increased blurring present in FABDEM contributed to its lower performance in this area.
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Figure 12. Comparison between DEMs and vertical profiles in Area 3. The figure presents color
representations of Copernicus, FABDEM, and the new corrected DEM elevation data over the study
area (top); its natural color Sentinel-2 cloud-free composite of the year 2020, overlayed by the
elevation profile lines identified by their respective numbers (bottom left); and charts showing the
observed DEM elevations along the profile lines, with the background colored gray in areas covered
by vegetation, according to the adjusted forest height obtained for the area (bottom right).
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Figure 13. Example of a region within Area 3 where the blurring effect was identified. The figure
presents a natural color Sentinel-2 cloud-free composite of the year 2020 of the study area, overlayed
by red rectangle highlighting the region featured in the other panels (top left); a color representation
of the elevations of Copernicus DEM (top right), FABDEM (bottom left) and the new corrected DEM
(bottom right), showing the different level of degradation of the finer topographic features visible in
the original DEM.
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Figure 14 presents the results for Area 4, and similarly to Area 2 the bias caused by the
riparian vegetation surrounding the main rivers was reduced by both methods, but our
corrected DEM presented smoother forest/non-forest transitions than FABDEM, especially
in the valley of the main river that crosses the area from west to east. Profiles 1 to 3 are
placed along this region and show that the plateau-shaped elevation increases caused
by the vegetation bias was further reduced by our corrected DEM. Area 4 also contains
regions with rougher terrain, where just as in Area 3, the local topography variations mask
the vegetation bias, making it difficult to perceive the effect of its correction by visual
interpretation alone. Profile 4 represents one of such regions, where the bias correction
result of each method was similar. Moreover, no blurring effect was detected in Area 4 as
well, because it also has a reduced forest cover compared to Areas 1 and 3.
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rived from all DEMs, or only on those extracted from Copernicus DEM and/or FABDEM. 
We did not find cases where the drainage lines obtained from the new corrected DEM did 
not match the reference when the ones from any of the other DEMs matched it. Figure 15 
illustrates the differences between the drainage networks, where it can be observed that 
the new corrected DEM was superior to Copernicus DEM in Areas 2 and 4, and superior 
to FABDEM in Areas 1, 2, and 4. In Area 3, the result of all DEMs was similar to the refer-
ence. 

Figure 14. Comparison between DEMs and vertical profiles in Area 4. The figure presents color
representations of Copernicus, FABDEM and our corrected DEM elevation data over the study
area (top); its natural color Sentinel-2 cloud-free composite of the year 2020, overlayed by the
elevation profile lines identified by their respective numbers (bottom left); and charts showing the
observed DEM elevations along the profile lines, with the background colored gray in areas covered
by vegetation, according to the adjusted forest height obtained for the area (bottom right).

The drainage line visual evaluation was performed on drainage networks extracted
from the DEMs using arbitrary accumulation area thresholds that resulted in a drainage
density on par with the reference drainage networks. For areas 1 and 2, which were obtained
from topographic maps at the scale of 1:50,000, the selected threshold was equivalent to
the area of 1000 pixels, and for areas 3 and 4, obtained from 1:25,000 maps, the selected
threshold was equivalent to 100 pixels, considering the spatial resolution of 1 arc second.
During the visual inspection of the drainage networks, minor deviations from the reference,
in terms of line tracing, were not considered; however, other errors were found. The errors
detected in a particular location were present either on the drainage lines derived from
all DEMs, or only on those extracted from Copernicus DEM and/or FABDEM. We did
not find cases where the drainage lines obtained from the new corrected DEM did not
match the reference when the ones from any of the other DEMs matched it. Figure 15
illustrates the differences between the drainage networks, where it can be observed that
the new corrected DEM was superior to Copernicus DEM in Areas 2 and 4, and superior to
FABDEM in Areas 1, 2, and 4. In Area 3, the result of all DEMs was similar to the reference.
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Figure 15. Comparison of drainage networks extracted from the DEMs. The figure is composed of
the natural color Sentinel-2 cloud-free composite of the year 2020 of the study areas overlayed by a
red rectangle/highlighting the regions featured in the panels below (first row); Sentinel-2 composite
of the highlighted regions, overlayed by the reference drainage lines and the ones extracted from
Copernicus DEM, FABDEM, and the new corrected DEM, all in yellow color and placed side by side,
organized in rows per study area.

4. Discussion

The results presented above show that our product outperformed FABDEM, currently
the best global DEM available at 1 arc second resolution [49,54,59], at stream flow path
delineation on the targeted study areas. However, even though the method was tested in
areas presenting different characteristics, only the forest cover percentage and the overall
topography of the region were considered in their selection. Further testing considering
the influence of different vegetation and landform types can be performed to complement
the results presented in this work. Additionally, the evaluation of our product using other
DEM comparison methods, not specific to stream flow path delineation, can be performed
to assess if the results translate to other applications.
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Regarding limitations, the method can be affected by the errors and inaccuracies
present on the forest height dataset, described in Section 2.2.2, although their effects can
be mitigated by the adaptive way the adjustment factors are calculated. Even though the
automatic adjustment of the forest height data to a reference year is an advantage our
method has over FABDEM, especially on areas were the deforestation was more dynamic
in the last decade, the process can also be affected by omission and commission errors in
the GFC forest loss data.

Another characteristic of our method that can become a limitation in certain cases is the
use of a single adjustment factor per forested area to perform the bias correction. Although
this was not observed in the selected study areas, we need to assume that distinct regions
within a single vegetated area can require different adjustment factors to be successfully
corrected. However, since our method calculates it based only on the borders of a given
forested area, the result may not be adequate for all regions inside of it, introducing errors
in the correction process. However, the application of a single k value per area also has
the advantage of better preserving the local topographic features that are visible, despite
the forest cover, in areas where the vegetation is homogeneous. Conversely, if multiple
adjustment factors would be applied to a single area, these features could be distorted or
even lost. So, this matter is more a design choice than a flaw in the method.

While these limitations need to be taken into consideration when correcting Coperni-
cus DEM to perform stream flow path delineation of specific areas, they were outweighed
by the advantages our method provided in the target study areas, as indicated by the results
presented in this work. Additionally, the limitations can also be mitigated by replacing the
input datasets (such as base DEM, forest height, and loss data) with more accurate ones as
they become available.

5. Conclusions

This study presented a new method to correct the vegetation bias on Copernicus DEM,
which depending on regional characteristics, can restrict the use of these data for certain
applications. The method is deterministic, not requiring training data collection, presenting
an important advantage over the recent trend of vegetation bias correction solutions based
on machine learning. These solutions are highly dependent on the quality and size of the
training data, a factor that can be limiting, since compiling enough samples to represent a
wide variety of areas is challenging, especially on continental or global scales. Moreover,
the new method requires only two input datasets, no feature engineering, and at the same
time is regionally adaptive.

The bias was corrected by subtracting from the DEM elevations the forest height,
obtained from an independent dataset, modified by adjustment factors, which were locally
determined through slope analysis of the borders of every vegetation patch. Moreover, the
forest height dataset was automatically adjusted to match the Copernicus DEM acquisition
year in each study area, to prevent vegetation cover temporal mismatch.

The resulting product was compared to FABDEM, which is the best free global DEM
currently available. The comparison focus was on hydrology, more specifically in DEM-
based stream flow path delineation. In this application, the presence of vegetation bias
prevents proper estimation of downstream paths, because the spurious elevations on
vegetated areas can block the flow. The results pointed out that our product showed
significant improvement in stream flow path delineation over FABDEM and Copernicus
DEM in the majority of the cases tested, and it was not significantly inferior to them in any
of the tests. A visual analysis was performed corroborating the results and showing that
our method prevented the creation of elevation artifacts caused by the mismatch between
the acquisition periods of Copernicus DEM and the forest height dataset. Additionally,
this analysis also indicated that our method resulted in lower degradation of the finer
topographic features on forested areas caused by noise-reducing steps during the vegetation
bias correction processes.
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The results presented in this work suggest that the use of this new vegetation bias
correction method has the potential to improve DEM-based hydrological applications
worldwide. The findings can be complemented by testing the method in more study areas,
to evaluate the influence of different vegetation and landform types in the product, and
different comparison methods can be employed to assess if the results translate to other
applications besides stream flow path delineation. Regarding data distribution, our next
goal is to use the method to generate a new open access corrected DEM for the South
American continent and later for the entire globe.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs16224332/s1, Table S1: Correction method input and output files;
Table S2: Databases generated from the displacement areas of all study areas; Table S3: Geopackage
files containing the flow paths set for each radius and their respective displacement areas for each
DEM; Table S4: Geopackage files containing the selected samples from the flow paths set for each
radius and their respective displacement areas for each DEM.
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