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Abstract: The integrated multi-satellite retrievals for the global precipitation measurement (IMERG)
data, which is the latest generation of multi-satellite fusion inversion precipitation product provided
by the Global Precipitation Measurement (GPM) mission, has been widely applied in hydrological
research and applications. However, the quality of IMERG data needs to be validated, as this
technology is essentially an indirect way to obtain precipitation information. This study evaluated the
performance of IMERG final run (version 6.0) products from 2001 to 2020, using three sets of gauge-
derived precipitation data obtained from the Integrated Surface Database, China Meteorological
Administration, and U.S. Climate Reference Network. The results showed a basic consistency in
the spatial pattern of annual precipitation total between IMERG data and gauge observations. The
highest and lowest correlations between IMERG data and gauge observations were obtained in North
Asia (0.373, p < 0.05) and Europe (0.308, p < 0.05), respectively. IMERG data could capture the bimodal
structure of diurnal precipitation in South Asia but overestimates a small variation in North Asia. The
disparity was attributed to the frequency overestimation but intensity underestimation in satellite
inversion, since small raindrops may evaporate before arriving at the ground but can be identified by
remote sensors. IMERG data also showed similar patterns of interannual precipitation variability
to gauge observation, while overestimating the proportion of annual precipitation hours by 2.5% in
North America, and 2.0% in North Asia. These findings deepen our understanding of the capabilities
of the IMERG product to estimate precipitation at the hourly scale, and can be further applied to
improve satellite precipitation retrieval.

Keywords: IMERG; spatial pattern; error analysis; diurnal variation; interannual variability

1. Introduction

Precipitation is a key variable in regional hydrology research, and is quite susceptible
to climate change. Therefore, precipitation data with high quality is greatly important for
hydrological research and applications, which mainly come from satellite inversion for the
spatiotemporal continuity. Along with the development and application of remote sens-
ing technology, the inversion of satellite-derived precipitation data plays an increasingly
important role in fields such as meteorological monitoring, water resource management,
and environmental protection [1–5]. Satellite products can provide precipitation estimates
with high spatiotemporal resolution owing to their advanced algorithms and plentiful
sensors and have broad application prospects [6–8]. However, there are still some concerns
in regard to the accuracy and reliability of precipitation data derived from satellites, as this
technology is essentially an indirect way to obtain precipitation information [1,9,10]. There-
fore, many satellite products have been subjected to comprehensive and detailed quality
assessments to verify their accuracy in estimating different precipitation indicators [11–14].

Considering that precipitation data obtained from meteorological stations are regarded
as the most representative of reality, validation based on station-derived observations has
become one of the key methods for evaluating the performance of satellite products [9,11,15].
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The accuracy of satellite data at different temporal and spatial scales can be directly verified
via comparisons with observations obtained from meteorological stations [12,15–17]. Existing
research has shown that daily satellite-derived data are quite consistent with daily precipitation
observations at the regional scale [18–20]. However, satellite products may not provide reliable
estimates in areas with complex terrain, such as mountains and plateaus [5,21,22]. For example,
assessments conducted based on station-derived observations in high-altitude regions of
Asia have shown that the precipitation from satellite products was closer to observations
than reanalysis products, but the former technology still had difficulties in capturing solid
precipitation in winter [23].

Due to the various sensors installed on different satellites and the remote sensing
inversion algorithms used, this technology widely varies in terms of its capability to
characterize precipitation in different regions [24–26]. Previous studies have found that the
performance of precipitation products varies greatly at different temporal and spatial scales,
with the assessments of different products in the same region possibly showing significantly
different results [27,28]. Accuracy tests evaluating inversion in multiple products have
revealed that almost all of them had poor inversion capabilities under weak and extremely
strong precipitation in warm regions [29]. When estimating precipitation on different
surfaces or at different frequencies, the systematic deviation of satellite products on land is
much smaller than that over the ocean. These products are more likely to produce positive
deviations under low rainfall intensity and negative deviations under high rainfall intensity
on land, while generally producing negative deviations for all precipitation intensities over
the ocean [26].

Current assessments of satellite precipitation products mainly consider daily time
scales. The seasonal accuracy of satellite-derived precipitation estimates for tropical rain-
fall measuring mission has been evaluated relative to ground precipitation data using
statistical methods [30]. Precipitation data obtained from six satellite products with a high
spatiotemporal resolution were evaluated in the sub-Saharan region at three time scales (i.e.,
daily, monthly, and yearly) as well as at two spatial scales (i.e., pixel and watershed) using
different quantitative and qualitative statistical indicators. The results showed that satellite
products could provide precipitation estimates that were close to station observations at all
three temporal scales, potentially making them a valuable alternative to rain gauges [31].
An evaluation of light rainfall data obtained from satellite products at the daily scale in
the Chinese mainland also demonstrated the successful detection of the spatial pattern of
light rainfall, although the detection ability for small rainfall events (less than 5 mm/d)
was limited. In areas characterized by more complex winter precipitation types, satellite
products generally perform poorly, showing a relatively large deviation in the estimation
of light rainfall [32].

Along with the development of remote sensing technology and the advancement of
inversion algorithms, more and more precipitation products with a high spatiotemporal
resolution have been released to the public. The integrated multi-satellite retrievals for
the global precipitation measurement (GPM) product (hereafter referred to as IMERG) has
received significant attention in recent years as it represents a new generation of global
satellite precipitation products [33]. Numerous studies have evaluated the accuracy of
IMERG data in recent years [17,34–36]. IMERG has a higher spatiotemporal resolution
and provides significantly more accurate precipitation estimates compared with products
of the previous generation, and it also has broader application prospects in various re-
search fields [17,26,35,37–39]. When considering the estimation of extreme precipitation,
the performance of IMERG is relatively consistent with that of its predecessors in terms
of precipitation distribution, but the new technology has significant advantages in the
estimation of heavy precipitation [37]. IMERG has also demonstrated a greatly improved
ability to detect rainfall in the high altitude areas, such as southern region of the Tibetan
Plateau [39].

The evaluations of satellite precipitation products primarily aim to reveal their error
sources and improve the inversion algorithms. Although such observations at the monthly
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scale were used to correct IMERG and improve its ability to measure precipitation, in-
version uncertainties at higher temporal resolutions are still present due to diverse land
surfaces and climate conditions. The study of diurnal cycle also requires high temporal
precipitation data, such as hourly scale, which is a fundamental cycle in the Earth system
and related to both regional and large-scale thermodynamic processes [21,40,41]. Therefore,
quality assessments are necessary before using IMERG-derived hourly data for hydrolog-
ical and meteorological research. Currently, IMERG data are generally evaluated at the
regional or continental scale [34,42–44], but few studies have also accessed their accuracy
globally due to the sparse spatiotemporal distribution of station-derived observations
that can be used as a test bed [26]. It is found that GPM IMERG performs better than
other satellite products in reproducing spatiotemporal patterns and variability of extreme
precipitation [35]. Attributing to gauge adjustment, the systematic differences over land
in IMERG data are much smaller compared to those over ocean [26], but the precipitation
amount and frequency ratios in the IMERG data are usually overestimated [34].

This study aimed to comprehensively evaluate IMERG data using hourly gauge
observations collected from several meteorological institutions. The meteorological stations
were distributed over the main land areas including North America, Europe and Asia, and
the study period involved the latest two decades (2001–2020). Specifically, the proportion of
precipitation hours and hourly precipitation intensity were compared between IMERG data
and meteorological observations. The regional differences between the two datasets were
compared and analyzed based on several error indicators. The ability of IMERG data to
accurately reflect the diurnal cycle and interannual variability of hourly precipitation was
also evaluated. The results can contribute to our understanding of satellite precipitation
retrieval in climate change and hydrological monitoring.

2. Materials and Methods
2.1. Precipitation Data
2.1.1. Integrated Surface Database

The Integrated Surface Database (ISD) is a global dataset comprising hourly and
synoptic surface observations compiled from numerous sources. It integrates data from
more than 100 original sources and includes numerous data formats derived from many
early precipitation records. This dataset is currently one of the largest in the world in
terms of total data volume; it has also the highest station density and fastest data update
frequency, and is equipped with a quality control module to ensure data integrity and
accuracy [45].

2.1.2. Hourly Precipitation Observations from National Surface Stations in China

The surface stations distributed across China and collecting precipitation informa-
tion are one of the most important data sources for studying climate and environmental
changes in China [4,46–48]. These data, which are managed by the China Meteorological
Administration (CMA), are recorded from stations located in different geographical envi-
ronments, including cities, rural areas, mountainous areas, and plains. The observation
equipment undergoes regular calibration and maintenance to ensure the reliability and
accuracy of the collected data. Precipitation observations are collected hourly from 2420
national meteorological stations, and their accuracy is ensured through the quality control
and consistency testing [49,50].

2.1.3. U.S. Climate Reference Network

The U.S. Climate Reference Network (USCRN) is a systematic and sustained network
of climate monitoring stations distributed across the contiguous U.S., Alaska, and Hawaii.
It has provided high-quality measurements of precipitation and other climate variables at
about 225 sites since the year 2000, to monitor climate change and its impacts [51]. These
stations are distributed to ensure that all major nodes of regional climate variability are
captured while taking into account large scale regional topographic factors. Advanced
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instruments are equipped to continuously provide hourly observations with accuracy and
reliability, by improving the measurement accuracy, sensor stability, and the optimization of
data processing algorithms. These improvements enable the network to play an important
role in monitoring precipitation trends as well as providing reliable data support for
climate research, water resource management, and weather warning [51]. The USCRN
stations are widely distributed across various geographical regions, including mountainous
areas, plains, and coastal areas. Therefore, they can monitor a wide range of local climate
conditions and trends, considering the influence of geographical characteristics, climate
types, and population distribution.

2.1.4. IMERG Precipitation Data

The GPM IMERG product represents a new generation of global satellite precipitation
products released in recent years [33]. Being equipped with an advanced dual-frequency
precipitation radar and using improved algorithms, it has a higher accuracy, wider coverage
range, and higher spatiotemporal resolution than its predecessors. Rainfall and snowfall
data on a global scale are provided every 30 min based on microwaves within 3 h and the
IMERG algorithm, and they can be used to promote research and applications in disciplines
such as hydrology, meteorology, agriculture, disaster management [19,52–54].

The IMERG product has a spatial resolution of 0.1◦ × 0.1◦ and a temporal resolution
of 0.5 h. To meet the needs of different users, three IMERG product types have been
developed, i.e., near real-time “Early-run” (IMERG_E), “Late-run” (IMERG_L), and post
real-time “Final-run” (IMERG_F), releasing data with delays of 4 h, 14 h, and 3 months,
respectively [33]. To reduce product bias, climate-related adjustments are made in IMERG_E
and IMERG_L, while adjustments related to monthly precipitation observations are made
in IMERG_F. Various versions of these IMERG products have been developed and the
technology has been continuously improved [55]. In this study, data obtained from IMERG-
F V6 covering the period from January 2001 to December 2020 and the region between
60◦N and 60◦S were selected for analysis.

2.2. Methods of Analysis
2.2.1. Data Processing

To be consistent with the time span of IMERG precipitation data, hourly precipitation
observations from the ISD, CMA, and USCRN datasets between 2001 and 2020 were
selected as validation data. To assess IMERG data quality across different global regions,
the precipitation amounts from previous hour to the current hour recorded in Coordinated
Universal Time (UTC) were chosen as the observations at this hour. Due to the maintenance
of equipment at meteorological stations as well as their spatial distribution and relocation
across different regions, a proportion of effective observations throughout the year of no
less than 90% was required to ensure data consistency and reduce sampling errors. The
IMERG product with a temporal resolution of 0.5 h was added for the hourly retrieval of
precipitation data.

Because the precipitation observations were collected at meteorological stations, and
the IMERG products were available at the 0.1◦ × 0.1◦ grid, the gauge observation datasets
(i.e., ISD, CMA, and USCRN) were matched with the grid in GPM IMERG based on the
station location to avoid the errors introduced by any interpolation. Specifically, if only one
station fell into a given 0.1◦ × 0.1◦ grid, the precipitation records from that station were
compared with those from the IMERG grid. If a grid contained two or more stations, the
average precipitation metrics obtained from all stations within the grid was used as the
observation for that grid [12,47]. The spatial range of IMERG data considered in this study
was between 60◦N and 60◦S, and stations beyond these latitudes were not included. A
regional analysis among different continents was conducted based on previous studies, as
shown in Figure 1 [52,56]. Due to the limited availability of ground station data, the analysis
focused on regions with a relatively large number of stations for validation, specifically
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North America, Europe, North Asia, and South Asia, which have 223, 152, 1786 and 999
stations, respectively.
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Figure 1. Spatial distribution of meteorological stations used in this study over land areas of the
northern hemisphere. The four rectangles represent the regions with a relatively large number
of stations: North America (25◦–59◦N, 125◦–50◦W), Europe (40◦–59◦N, 15◦W–50◦E), North Asia
(30◦–59◦N, 50◦–150◦E), and South Asia (10◦–30◦N, 60◦–150◦E).

2.2.2. Statistical Indicators

To analyze the capability of IMERG to estimate precipitation, the following three pa-
rameters were considered: annual precipitation total, annual precipitation frequency, and
precipitation intensity. Annual precipitation total is the sum of all hourly precipitation amounts
throughout the year and is measured in mm/y; annual precipitation frequency is the number
of records greater than 0.1 mm/h divided by the total number of hours throughout the year
and is expressed as a percentage; and finally, precipitation intensity is the annual precipitation
total divided by the number of hours with records greater than 0.1 mm/h throughout the year.
The spatial differences in the multi-year averages of these parameters between station-derived
observations and IMERG data were analyzed and compared.

The ability of IMERG to estimate precipitation at the hourly time scale was evaluated
by comparing its estimates with observations derived from meteorological stations using
conventional statistical indicators [57,58], including the Pearson correlation coefficient (CC),
Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Relative Bias (RB).
CC reveals the linear relationship between satellite-derived precipitation data and station
observations; the closer the CC value is to 1, the stronger the correlation. Additionally, the
one-sample t-test at 0.05 level is used to detect whether the generated correlation coefficient
is significant. MAE represents the average of the absolute differences between the two
types of data. RMSE measures the degree of dispersion between the two datasets; the closer
the RMSE value is to 0, the smaller the degree of dispersion. RB indicates the percentage of
the difference between satellite-derived precipitation data and station observations relative
to the latter; the smaller the bias is, the closer the error is to 0.

The diurnal variation of the gauge-derived and IMERG data can be illustrated by the
changes of hourly total precipitation, frequency, and intensity throughout the day (24 h).
Several qualitative indicators are commonly used to measure the capabilities of satellite
precipitation products. Similar to previous studies, the data obtained from IMERG at different
hours of the day were evaluated using the following metrics [10,21,47,59]: Probability of
Detection (POD), False Alarm Ratio (FAR), and Critical Success Index (CSI). Specifically, POD
represents the fraction of precipitation hours that IMERG detects among the total actual
precipitation hours, and FAR represents the fraction of unreal precipitation hours among all
the hours recorded by IMERG [60]. The CSI can actually be expressed as a function of POD and
FAR combining the characteristics of false alarms and missed precipitation hours [61]. These
metrics comprehensively assess the performance of satellite precipitation products, clearly
determining their advantages and disadvantages [15,18]. The methods used to calculate these
parameters and their optimal values are shown in Table 1.
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Table 1. Equations used to calculate the metrics for the evaluation of IMERG precipitation data and
their optimal values. In these formulas, N represents the number of samples, Sn and σS represent
satellite-derived precipitation data and standard deviation, respectively, while Gn and σG represent
gauge observations and standard deviation, respectively. Additionally, n11 denotes the number of
hours for which both gauge observations and IMERG precipitation data were obtained, n10 represents
the hours for which IMERG data were obtained but gauge observations were not, n01 denotes the
opposite of n10, and n00 represents the hours for which neither records were obtained.

Metric Formula Optimal Value Reference

Correlation
Coefficient CC =

1
N ∑N

n=1
(
Sn − S

)(
Gn − G

)
σSσG

1 Yong et al., 2010 [57]

Mean Absolute Error MAE =
1
N

N

∑
n=1

|Sn − Gn| 0 Yong et al., 2010 [57]

Root Mean Square
Error RMSE =

√
1
N ∑N

n=1(Sn − Gn)2 0 Yong et al., 2010 [57]

Relative Bias RB =
1
N ∑N

n=1(Sn − Gn)
1
N ∑N

n=1 Gn
× 100% 0 Yong et al., 2010 [57]

Probability of
Detection POD =

n11
n11 + n01

1 Ebert et al., 2007 [60]

False Alarm Ratio FAR =
n10

n11 + n10
0 Ebert et al., 2007 [60]

Critical Success Index CSI =
n11

n11 + n01 + n10
1 Gerapetritis and

Pelissier, 2004 [61]

3. Results
3.1. Spatial Patterns of IMERG Precipitation Data and Gauge Observations

As shown in Figure 2(a1–d1, a2–d2), the annual precipitation total records obtained
from IMERG and meteorological stations exhibited a very similar spatial pattern, although
IMERG generally overestimated this parameter. The relative bias of IMERG data with
respect to gauge observation was also calculated, and the regional mean RB statistics are
reported in Table 2. The IMERG precipitation data obtained for China largely reflected the
spatial patterns of gauge observations, and specifically the spatial distribution divided by
the Qinling-Huaihe Line. The southeastern coastal region of China was characterized by
abundant precipitation, with annual totals exceeding 800 mm/y, and even reaching up to
2000 mm/y in some areas. Precipitation decreased progressively from the southeast to the
northwest. Specifically, the northwestern inland regions experienced sparse precipitation



Remote Sens. 2024, 16, 4334 7 of 20

with annual totals below 800 mm/y, while in most of the other areas total precipitation
reached less than 400 mm/y annually.
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Figure 2. Average annual precipitation total from 2001 to 2020 obtained from gauge observations
(a1–d1) and IMERG data (a2–d2), and the bias of IMERG data relative to gauge observations (a3–d3),
for North America, Europe, North Asia, and South Asia, respectively.

Table 2. Variability of hourly precipitation in different regions as revealed by the Pearson Correlation
Coefficient (CC), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Relative Bias (RB),
Probability of Detection (POD), False Alarm Ratio (FAR), and Critical Success Index (CSI). “*” denotes
statistical significance at the 0.05 level.

North America Europe North Asia South Asia

CC 0.367 * 0.308 * 0.373 * 0.350 *
MAE (mm/h) 0.131 0.155 0.115 0.223
RMSE (mm/h) 0.880 0.761 0.842 1.291

RB 22.7% 27.7% 28.0% 12.7%
POD 49.2% 41.9% 51.0% 49.3%
FAR 69.6% 54.8% 62.6% 55.1%
CSI 22.7% 27.4% 27.2% 30.1%

In North America, the special distributions of both IMERG data and gauge obser-
vations were also quite similar. To the west of 100◦W, both methods recorded annual
precipitation totals below 800 mm/y, with most areas reaching around 400 mm/y. In
the Pacific Northwest, due to the influence of atmospheric rivers, precipitation is more
abundant, which was reflected in both IMERG data and gauge observations. Past studies
have shown that the precipitable water and integrated water vapor fluxes over this area
were largely enhanced by the negative anomalies in sea level pressure and upper-level
height in the central Pacific [62]. The variability in atmospheric river frequency can drive
hydrometeorological extremes with broad societal impacts over the Pacific Northwest of
North America [63]. To the east of 100◦W, the frequent tropical cyclones and cold fronts
result in higher precipitation, as revealed by values exceeding 800 mm/y annually in most
areas and reaching up to 1400 mm/y in the southeastern regions.

In Europe, despite the few selected grid points, the annual precipitation total estimates
derived from IMERG were still quite consistent with gauge observations. On average,
the average RB in the annual precipitation total records from 2001 to 2020 at almost all
stations was larger than zero, indicating that IMERG generally overestimated this parameter.
Spatially, the RB between IMERG data and gauge observations was larger in regions with
lower annual precipitation totals, such as the northwestern regions of China and parts of
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the western United States, where it exceeded 30%, and even reached 50% in some grids. In
other regions, the RB of most grids was less than 10%.

Figure 3 shows that the precipitation frequency estimated by IMERG was significantly
higher than that obtained from meteorological stations, especially in northern China and
western America. This discrepancy may be attributed to the fact that GPM products are
capable of detecting light rainfall and solid precipitation events. Previous assessments have
also demonstrated the clear improvement achieved in the IMERG precipitation product
in comparison with its predecessor, especially in reducing missed precipitation and hit
bias in winter, revealing the general superiority of GPM IMERG [44,64]. However, due
to differences in data sources, observation methods, and spatial scales, a certain bias was
detected between IMERG data and gauge observations. Specifically, in China, IMERG
data overestimated the precipitation frequency in the northern region by approximately
4% compared to gauge observations, with RB values reaching up to 100% in some areas.
This could be due to the complex atmospheric circulation and convective precipitation in
northern China [65,66], leading to errors in the GPM inversion of these complex processes.
Similarly, in western America, IMERG overestimated the precipitation frequency overall,
with the RB values in most grids exceeding 40% and reaching up to 100% in some cases. This
may be related to the complexity of the terrain and the influence of atmospheric circulation
near the Pacific Ocean. The precipitable water and integrated water vapor fluxes over
this area derived from the atmospheric river and were blocked by the Rocky Mountains,
resulting in plentiful precipitation [62]. It was found that the IMERG precipitation records
in this area were related to the documented low detection rate of satellites and to over
arid/semiarid areas with hot background surfaces [19,67].
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Figure 3. Average annual precipitation frequency from 2001 to 2020 obtained from gauge observations
(a1–d1) and IMERG data (a2–d2), and the bias of IMERG data relative to gauge observations (a3–d3),
for North America, Europe, North Asia, and South Asia, respectively.

Significant overestimation biases were also identified between IMERG data and gauge
observations in terms of the spatial distribution of high-frequency rainfall events. In China,
IMERG estimated high-frequency rainfall in the Yangtze-Huaihe River basin, with annual
precipitation frequencies as high as 20%. Gauge observations, on the other hand, revealed a
belt-like area characterized by high-frequency precipitation in this region, possibly due to its
climatic characteristics and topographical conditions. Conversely, IMERG underestimated
the precipitation frequency in the Sichuan Basin, possibly due to the limitations of this
technology in accurately simulating complex terrain and precipitation systems. In Europe,
IMERG provided good estimates of precipitation frequency, largely replicating the spatial
patterns of gauge observations, with RB values below 20%. This was likely because the



Remote Sens. 2024, 16, 4334 9 of 20

climate in Europe is relatively temperate, and the atmospheric circulation and precipitation
systems can be reversed more accurately, resulting in a higher consistency between IMERG
data and gauge observations.

Figure 4 illustrates noticeable discrepancies in the estimates of precipitation inten-
sity derived from IMERG compared to gauge observations across different regions. In
both China and America, IMERG tended to underestimate high-intensity precipitation
events. In southern China and the Beijing-Tianjin-Hebei region, IMERG could identify the
areas characterized by high-intensity precipitation, but the maximum detected frequency
reached only 2 mm/h, which was approximately 0.5 mm/h lower than that measured at
meteorological stations. This led to IMERG data having an overall negative RB of up to
−50%, particularly in the Beijing-Tianjin-Hebei region. A similar situation was observed
in the southeastern United States, where the IMERG data for precipitation intensity were
spatially consistent with gauge observations, but the former technology underestimated
the magnitude. Conversely, in the Sichuan Basin, China, IMERG overestimated the hourly
precipitation intensity but underestimated the precipitation frequency. For areas where
precipitation intensity exceeded 1.5 mm/h, the RBs in this parameter reached 50%. In
Europe, the IMERG estimates of precipitation intensity were notably higher than gauge
observations. This overestimation could be attributed to the higher estimates of average
annual precipitation totals in Europe and the good performance of IMERG in estimating
annual precipitation frequencies.
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Figure 4. Average annual precipitation intensity from 2001 to 2020 obtained from gauge observations
(a1–d1) and IMERG data (a2–d2), and the bias of IMERG data relative to gauge observations (a3–d3),
for North America, Europe, North Asia, and South Asia, respectively.

3.2. Analysis of Errors in IMERG Precipitation Data

To further evaluate the errors in the IMERG estimates of hourly precipitation and
investigate the correlation between IMERG data and gauge observations, the two datasets
obtained for the four regions examined over the study period were ranked by the observa-
tion hours. Then, three metrics, i.e., CC, MAE, and RMSE, were calculated to analyze the
variability of hourly precipitation for these two time series with same length.

Table 2 shows that the correlation between IMERG data and gauge observations
clearly varied across different regions. Notably, the lowest CC (0.308) was observed for
European stations. However, in this region, IMERG data exhibited the smallest RMSE of
0.761 mm/h when compared to gauge observations. This discrepancy may be attributed to
the prevalence of light rainfall and higher precipitation frequencies in Europe, resulting
in a poorer correlation but smaller RMSE. In comparison, the CC for South Asia is 0.350,
and higher RMSE and MAE values were obtained in this region, possibly due to the
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predominance of extremely intense convective rainfall. Similar CC values were obtained
for North America (0.367) and North Asia (0.373). The RMSE and MAE values were also
comparable between these regions. This was likely due to their geographical proximity and
similar climatic conditions within the same latitude belt. Additionally, the higher number of
meteorological stations in North Asia contributed to the better correlation between IMERG
data and gauge observations.

3.3. Validating the Quality of IMERG Data Based on Diurnal Variations

Figure 5 illustrates the diurnal variation of the average annual cycle of hourly pre-
cipitation amount, frequency, and intensity for the four regions examined. In terms of
total precipitation (top row in Figure 5), both gauge observations and IMERG data showed
distinct diurnal patterns across the four regions. In North America, IMERG data were quite
consistent with gauge observations, with precipitation peaking at 23:00 UTC and reaching
minimal values around 15:00–16:00 UTC. However, IMERG tended to overestimate the
peak-hour precipitation (41 mm/h for gauge observations and 44 mm/h for IMERG data)
and underestimate the trough-hour precipitation (30 mm/h for gauge observations and
28 mm/h for IMERG data). IMERG could adequately reflect the diurnal cycle of hourly
precipitation in spite of the above-mentioned overestimation and underestimation, which
may be related to local effects associated with the terrain.
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Figure 5. Diurnal variation of average annual cycle of hourly precipitation amount (top row),
precipitation frequency (middle row), and precipitation intensity (bottom row) for different regions;
the red and blue lines represent gauge observations and IMERG data, respectively; (a) North America,
(b) Europe, (c) North Asia, and (d) South Asia. The shadow represents the nighttime (20:00–08:00) for
the local time.

In Europe, IMERG generally overestimated the diurnal cycle of hourly precipitation,
especially at peak hours (35 mm/h for gauge observations and 45 mm/h for IMERG data),
with mismatched phases between these two datasets. Distinct bimodal patterns of precipi-
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tation intensity were detected in South Asia, but IMERG overestimates a small variation in
North Asia. The peak structures observed in IMERG was close to observation in South Asia
but showed a large disparity at around 09:00 in North Asia. This disparity may be related
to the systematic problem with satellite inversion in terms of precipitation frequency and
intensity. Many drizzles can evaporate into the air before the small raindrops arriving at
the ground, thus not being captured by the rain gauge, especially at daytime. However, the
satellite estimates precipitation from the scattering of ice crystals in the clouds, resulting much
larger frequency but smaller intensity for IMERG data than gauge observation.

The ability of the IMERG product to detect precipitation at different hours for the four
regions examined is shown in Figure 6. The regional mean values of POD, FAR and CSI are
listed in Table 2. POD values fluctuating around approximately 50% throughout the day
were detected in each region. Specifically, in North America, the peak daily precipitation
occurred at 16:00 local time, with POD reaching about 55%. High precipitation rates
were maintained between 16:00 and 23:00 local time, declining thereafter until reaching a
minimum around 10:00 the next day (POD of approximately 45%). In contrast, in Europe,
the lowest POD for hourly precipitation (around 35%) was detected around 11:00 local
time and then increased to a maximum of 45% at 11:00 local time. Then, the POD values
remained near 45% until 06:00 the next day. In North Asia, three peak POD values were
detected at 19:00, 23:00, and 04:00 local time. The difference in POD between daytime
and nighttime, which ranged from 50% to 55%, was not significant, possibly due to the
high nighttime precipitation in the Sichuan Basin boosting the POD values at this time. In
contrast, a distinct diurnal variation was detected in North Asia, with a peak POD value
of approximately 57% at around 16:00 local time and dropping to a minimum of 45% at
around 02:00 the next day.
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The diurnal cycle of FAR in all regions examined showed a similar pattern to that of
POD. Similar CSI patterns were observed in North America, North Asia, and South Asia, with
values peaking around 08:00 local time and decreasing in the afternoon. This may be due to
morning weather conditions being conducive to lower errors in remote sensing observations.

3.4. Validation of IMERG Data Quality Based on Interannual Variability

Figure 7 shows the comparisons of the interannual variability of annual precipitation
total, frequency, and intensity between IMERG data and gauge observations for the four
regions examined. IMERG overestimated total precipitation in individual years, but the
data were consistent with gauge observations for all the four regions. This may be due to
the fact that the IMERG data had been corrected based on monthly ground precipitation
observations. The discrepancy was slightly larger in Europe, possibly because of the sparse
grid network used in this study leading to larger errors in IMERG data. The average annual
precipitation total in North America, Europe, and North Asia varied between 500 mm/y
and 1000 mm/y. A significant upward trend was detected in this parameter in North
America, which increased from over 500 mm/y in 2001 to around 1000 mm/y in 2020,
possibly due to climate change. Indeed, the water cycle or specific regional topography
and circulation patterns in this region would be strengthened under global warming.
Conversely, the annual precipitation total in North Asia decreased from 1000 mm/y in 2001
to 750 mm/y in 2020. This could be attributed to widespread human activities associated
with land use and land cover changes. Due to its geographical location and monsoon
system, South Asia exhibited a considerably higher annual precipitation total compared
with the other three regions, with values fluctuating around 1200 mm/y and significant
interannual variability.
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North America, Europe, North Asia, and South Asia, respectively.
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IMERG overestimated the annual precipitation frequency in North America and North
Asia by 2.5% and 2%, respectively, and the two regions showed an increasing and decreasing
trend in this parameter, also respectively. The IMERG data obtained for Europe in terms
of interannual precipitation variability matched well to the gauge observations, although
these were slightly higher than the IMERG estimates. In terms of the hourly precipitation
intensity, IMERG data performs best in South Asia, fluctuating around 1.7 mm/h. However,
in North Asia and North America, IMERG generally underestimated precipitation intensity,
while it overestimated precipitation frequency. In North Asia, the difference was minimal
(1.25 mm/h), while in North America, it was pronounced, exceeding 1 mm/h. In Europe,
as observed for total precipitation, IMERG overestimated precipitation intensity by 0.25
mm/h compared to gauge observations.

Figure 8 shows the interannual variations in precipitation in the four regions examined
as measured by the three above-mentioned qualitative indicators, i.e., POD, FAR, and CSI.
POD exhibited an upward trend in each region, with the values in North America, South
Asia, and North Asia all exceeding 50% in the later years of the study period, while a lower
POD of around 40% was observed in Europe. FAR showed a decreasing trend in North
America and Europe, and this may attribute to the small number of meteorological stations
in the early stage of the study period. Conversely, a clear increasing trend in this parameter
was observed in North Asia and South Asia, possibly due to the increased difficulty in
accurately measuring precipitation amid the rise of extreme precipitation events associated
with global warming. CSI, which reflects the trends in both POD and FAR, showed an
increasing trend in North America and Europe. In the Asian regions, this index exhibited a
downward trend, particularly in North Asia, where it decreased from around 30% in 2001
to approximately 26% in 2020.
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4. Discussion
4.1. Superiority of IMERG Product

The GPM satellite is equipped with a dual-frequency precipitation radar and integrates
active radar observation technology to enhance its ability to detect light rain and solid pre-
cipitation. It can provide multi-angle information on cloud precipitation particles, enabling
monitoring at a high spatiotemporal resolution and the analysis of precipitation at the global
scale. Among various GPM products for the analysis of precipitation, IMERG-F is corrected
by ground station observations, and usually the quality of its data is superior to that of other
products [33]. Nonetheless, satellite data are somewhat inaccurate, since they estimate ground
precipitation via an indirect method [1,3,68]. Therefore, numerous studies have attempted to
evaluate the spatiotemporal patterns and variability of IMERG data by comparing them with
observations derived from meteorological stations [17,19,26,58,69]. Although tropical ocean
regions account for the majority of global precipitation, there are almost no meteorological
stations over the ocean, meaning that the satellite inversion can only be validated using data
obtained from land-based stations [8,70]. The contribution of this study is compressively
evaluating GPM IMERG products using a wider range of gauge observation data at the
hourly scale and over the latest two decades. The new findings emphasized the changes of
precipitation at hourly scale and the improvement of detectability, under the comparisons of
IMERG product performances over different regions.

Although many research institutions run precipitation monitoring projects based on
data obtained from meteorological stations, few of these are available at the hourly scale.
Hourly precipitation data can provide information to elucidate the mechanism underly-
ing the development of extreme precipitation events and their occurrence, whereas such
insights may be lost by averaging values over entire days [71–73]. In this study, hourly
precipitation data from the ISD, CMA, and U.S. USCRN datasets were used as a test bed to
compressively validate the GPM IMERG product over the globe. Specifically, precipitation
amount, frequency, and intensity were evaluated as they are crucial parameters for de-
scribing precipitation and play key roles in climate research, water resource management,
and disaster prevention. The accuracy and reliability of the IMERG estimates of these
parameters across different regions were compared with hourly precipitation observations
obtained from ground stations between 2001 and 2020. Due to the estimate obtained from
infrared band calibrated by microwaves, IMERG was found to facilitate the detection of
light and solid precipitation [17,26].

4.2. Discrepancies in Precipitation Frequency and Intensity

The analysis in this study revealed that IMERG data and gauge observations exhibited
similar spatial distribution characteristics, particularly in Asia and the United States. This
was mainly due to the improved inversion ability of the new-generation GPM product,
which can detect light rain and solid precipitation [34,35,42]. However, IMERG slightly
overestimated annual precipitation amounts (especially in regions experiencing lower
annual precipitation), with data exhibiting relatively larger deviations compared to ground
station observations. Similar overestimations of IMERG data in precipitation have also
been reported [34]. Significant deviations in precipitation frequency were observed in
northern China and western United States, while IMERG performed well in estimating this
parameter in the European region. This may be related to the fact that, due to oceanic climate
condition, the seasonal distribution of precipitation frequency is relatively even [73,74].
In terms of precipitation intensity, IMERG data showed noticeable deviations from gauge
observations across different regions, underestimating high precipitation intensity in China
and the United States but overestimating it in Europe. This disparity may be related to the
evaporation of small raindrops before arriving at the ground, and therefore many drizzles
cannot be captured by the rain gauge, which can be identified by the remote sensors from
the scattering of ice crystals in the clouds [12]. Past studies in a predominantly tropical
region also attributed the low performance of IMERG precipitation intensity to the difficulty
in estimating precipitation from warm clouds [75]. The results are in line with previous
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studies where precipitation frequency was also overestimated while the intensity was
underestimated, leading to annual precipitation amounts that were comparable with those
derived from gauge observations [21,37].

The diurnal cycle of precipitation is an important feature in hydrometeorological
studies and also is a key aspect in the evaluation of satellite precipitation products with a
high spatial-temporal resolution [21,72]. This study also evaluated the detectability of GPM
IMERG products in reproducing the diurnal cycle of precipitation using several quantitative
and qualitative statics. It was found that IMERG data and gauge observations described
very similar diurnal precipitation cycles in South Asia. However, the former overestimated
precipitation at peak hours but underestimated it at trough hours in North America, and
generally overestimated the diurnal variations (with a large degree of overestimation at
peak hours) in Europe and North Asia. This may be related to the influence of climatic
factors and the fact that these areas are prone to experience heavy rainfall, especially in
the summer [25,72]. The two datasets showed similar patterns of fluctuation of the hourly
precipitation frequency in the four regions examined, although the daily fluctuation for
this parameter in IMERG data was large, while gauge observations fluctuated more stably.
The POD of hourly precipitation in each region generally fluctuated around 50%. Gauge
observations have been demonstrated to reflect rather stable precipitation frequencies
and intensities during the diurnal cycle, while IMERG data have shown strong fluctua-
tions mainly because of inaccurate estimates from the cross-track microwave sensors at
individual hours [21].

In terms of the interannual variation in annual precipitation total, IMERG data and
gauge observations showed similar trends due to the correction of the former dataset using
monthly ground observations [7,33,55]. Both datasets detected a clear increasing trend in
annual precipitation total in North America and a downward trend in North Asia. This is
basically consistent with the variation in the annual precipitation frequency in these areas.
The POD values for IMERG data in each selected region showed an increasing trend, which
is due to the improved GPM sensors compared with previous versions [17,26]. In terms
of the interannual variability of hourly precipitation intensity, IMERG data and gauge
observations showed the highest consistency in South Asia, which may be related to the
high precipitation intensity characterizing the climate in this region, a feature that is thus
more easily detected.

4.3. Effects of Monitoring Station Density

As the IMERG product is area-averaged and gauge observation is point time series, the
representativeness of these two datasets are essentially different. This directly compared
the gauge observation with the grid data in which the station is located. For a grid with
more than one station, the precipitation metrics are calculated for each station, and then the
averaged values for all the stations in this grid are used as the grid observation. Therefore,
the IMERG product is certainly closer to the gauge observation for the grid with more
meteorological stations. The evaluation results in this study showed IMERG performs
differently over different regions, possibly due to the density of monitoring stations.

Past works have illustrated that the station density is the major factor in the validation
of grid precipitation product, especially in complex terrain areas [76]. To illustrate this
point, the average number of meteorological stations within each 0.1◦ × 0.1◦ grid was
calculated. It demonstrated that most of the grids have only one station, and few of them
have two. The gauge observations in the grid with more stations are preferable to mitigate
the inherently different between the grid product and point time series. It was shown that
Europe (152 stations in 144 grids) and North Asia (1786 stations in 1436 grids) had the
lowest and highest station densities, respectively. This situation could potentially hinder
the evaluation of IMERG products in Europe as a whole. Therefore, the analysis outcomes
would seem more reliable in the Chinese domain, where more stations are available to use
for validation. Satellite precipitation products still have large uncertainty in estimating
precipitation over areas with sparsely distributed stations [15].
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4.4. Effects of Reference Value

Since precipitation is a non-normal distributed variable, especially at an hourly scale,
the selected reference value may have a certain impact on the evaluation results. This study
involved the reference value of 0.1 mm/h for IMERG data, to ensure the consistency with
the minimum value that the rain gauge could detect. Some studies of extreme weather
indices focused on a reference value of 1 mm/day, which excluded the days with very
light precipitation [77,78]. To detect the uncertainty caused by different reference value, the
statistics were recalculated using the reference value of 0.5 mm/h. The regional mean POD
is 40.2%, 40.0%, 47.1%, 49.4%, and FAR is 66.7%, 60.8%, 63.6%, 60.3% for North America,
Europe, North Asia and South Asia, respectively. It shows that these metrics are insensitive
to the reference value. However, the MAE and RMSE are much larger for the case of 0.5
mm/h than for 0.1 mm/h, due to the large magnitude and low frequency of precipitation
in both gauge observation and IMERG data under the large truncation.

Actually, precipitation is a discontinuous variable largely affected by many thermal
and dynamic factors, which cause its intermittency and fluctuation at nearly all temporal
and spatial scales. Although the evaluation conducted in this study was based on an hourly
time scale, it essentially adopted the equal-time-interval method. Alternatively, the event-
based evaluation method would provide more information, reflecting the discontinuity of
precipitation [16,48,79]. In the future research, we plan to use more precipitation data and
other assessment methods to reveal water vapor sources and the mechanisms regulating
global precipitation. Moreover, we will investigate the error associated with satellite
precipitation products in different climatic regions than the geographical zone examined in
this study.

5. Conclusions

In summary, the comparison of hourly precipitation data obtained from GPM IMERG
and gauge observations revealed largely consistent spatial patterns of annual precipitation
total but disparities in the patterns of annual precipitation frequency and intensity. The
highest and lowest correlations between the two datasets for hourly precipitation were
detected in North Asia (0.373, p < 0.05) and Europe (0.308, p < 0.05), respectively. Hourly
precipitation intensity showed the largest RMSE (1.29 mm/h) in South Asia due to the
strong precipitation intensity characterizing this region. IMERG was able to capture the
bimodal structure of diurnal precipitation in South Asia but performed a small variation
in North Asia. It generally overestimated precipitation at peak hours and underestimated
it at trough hours, which resulted in larger fluctuations in the data compared with gauge
observations. Both datasets showed similar patterns of interannual precipitation variability
after the correction of the IMERG data using monthly ground observations, but IMERG
overestimated the proportion of annual precipitation hours by 2.5% and 2.0% in North
America and North Asia, respectively. These findings provide valuable insights for weather
forecasting, the identification of extreme weather events, and climate change research.
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