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Abstract: In the process of radiometric calibration, the corrections for bidirectional reflectance
distribution functions (BRDFs) and spectral band adjustment factors (SBAFs) are crucial. Time-series
MODIS images are commonly used to construct BRDFs by using the Ross–Li model in current research.
However, the Ross–Li BRDF model is based on the linear relationship between the kernel models and
is unable to take into account the nonlinear relationship between them. Furthermore, when using
SBAF to account for spectral difference, a radiative transfer model is often used, but it requires many
parameters to be set, which may introduce more errors and reduce the calibration accuracy. To address
these issues, the random forest algorithm and a spectral interpolation convolution method using
the Sentinel-2/multispectral instrument (MSI) are proposed in this study, in which the HuanJing-2A
(HJ-2A)/charge-coupled device (CCD3) sensor is taken as an example, and the Dunhuang radiometric
calibration site (DRCS) is used as a radiometric delivery platform. Firstly, a BRDF model by using the
random forest algorithm of the DRCS is constructed using time-series MODIS images, which corrects
the viewing geometry difference. Secondly, the BRDF correction coefficients, MSI reflectance, and
relative spectral responses (RSRs) of CCD3 are used to correct the spectral differences. Finally, with
the validation results, the maximum relative error between the calibration results of the proposed
method and the official calibration coefficients (OCCs) published by the China Centre for Resources
Satellite Data and Application (CRESDA) is 3.38%. When tested using the Baotou sandy site, the
proposed method is better than the OCCs of the average relative errors calculated for all the bands
except for the near-infrared (NIR) band, which has a larger error. Additionally, the effects of the
light-matching method and the radiative transfer method, different approaches to constructing the
BRDF model, using SBAF to account for spectral differences, different BRDF sources, as well as the
imprecise viewing geometrical parameters, spectral interpolation method, and geometric positioning
error, on the calibration results are analyzed. Results indicate that the cross-calibration coefficients
obtained using the random forest algorithm and the proposed spectral interpolation method are
more applicable to the CCD3; thus, they also account for the nonlinear relationships between the
kernel models and reduce the error due to the radiative transfer model. The total uncertainty of the
proposed method in all bands is less than 5.16%.

Keywords: HuanJing-2A (HJ-2A); Sentinel-2; cross-calibration; bidirectional reflectance distribution
function (BRDF); random forest algorithm; spectral difference

1. Introduction

During a satellite’s operation in orbit, the radiometric performance of its sensors may
change due to variations in the surrounding environment and its motion dynamics [1].
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Thus, performing timely radiometric calibration is essential for quantitative remote sensing
research on satellite imagery, which is a prerequisite for ensuring the quality of data and
products during the life cycle of a payload and represents the core and foundation of
quantitative remote sensing [2]. This process not only enables the real-time monitoring of
changes in the sensor’s radiometric characteristics but also allows for the assessment of its
radiometric quality, thereby strongly supporting the stability of remote sensing data [3].

Generally, radiometric calibration can be categorized into two broad types: absolute
radiometric calibration and relative radiometric calibration [4,5]. Relative radiometric
calibration is the process of correcting for differences in the relative response of the imag-
ing elements of a sensor [6]. Absolute radiometric calibration establishes a quantitative
relationship between the digital number (DN) of the image and the amount of radiation [7].
Absolute radiometric calibration has an important impact on the improvement in remote
sensing image quality and applications [8,9], ensuring the reliability of image data and
meeting the needs of quantitative applications [3].

Among the current commonly used absolute radiometric calibration methods in China
are on-orbit calibration, site calibration, and cross-calibration [10–12]. However, no on-orbit
calibrator systems have been installed on the many existing satellite platforms, which makes
it infeasible to achieve on-orbit calibration. The China Center for Resources Satellite Data
and Application (CRESDA) also conducts site calibration experiments only once a year in
July–September, a process that is costly in terms of human, material, and financial resources
and requires regular monitoring [3,13,14]. Cross-calibration has become widely utilized
over the years because of its low cost, high frequency, and high accuracy [15,16]. For exam-
ple, Xie et al. [17] developed the bottom-of-atmosphere (BOA) and the top-of-atmosphere
(TOA) spectral band adjustment factor (SBAF) model using the Sentinel-3/ocean and
land color instrument sensor to correct for differences in sensor spectra with the HaiYang-
1C/Chinese ocean color and temperature scanner (COCTS) sensor. The results indicate
that the BOA SBAF is more effective for cross-calibration of the COCTS. To overcome
the problems caused by the large field of view of satellites, Dong et al. [18] proposed a
cross-calibration scheme using the combined observation data of Gaofen-1 (GF-1) and GF-6,
thus expanding their applicability to various viewing geometries. Han et al. [19] used the
bidirectional reflectance distribution function (BRDF) parameters and SBAF parameters
to correct the spectral and geometric differences between the GF-4/panchromatic and
multispectral sensors and the Landsat8/operational land imager, finally obtaining the
cross-calibration coefficients. Using GF-5/advanced hyperspectral images, which offer
better calibration performance, cross-calibration is adopted by Niu et al. [20] to calibrate
the Ziyuan1-02D. Using a Moderate-Resolution Imaging Spectroradiometer (MODIS) to
construct a BOA BRDF model and the cubic polynomial interpolation approach, Han and
Tao [21] provided an ideal cross-calibration project for a GF-6/wide-field-of-view sensor in
case of a lack of reference bands. Liu et al. [22] utilized the MODIS sensor to correct spectral
differences with the HuanJing-1A (HJ-1A)/charge-coupled device (CCD1), successfully
completed cross-calibration of the CCD1 sensor, and investigated its on-orbit operational
performance.

In previous studies, the viewing geometric differences between sensors are often
corrected by BRDF, and time-series MODIS images are often used for constructing the BRDF
model by Ross–Li [19,22,23], which is used to obtain the BRDF correction coefficients. On
the other hand, when considering the spectral difference between two sensors, it is common
to use SBAF for correction, which requires the simultaneous measurement of surface
parameters and atmospheric parameters, followed by spectral correction using a radiative
transfer model; the surface reflectance is then simulated to the TOA reflectance [12,17,21].
Currently, there are two major issues that require further research and implementation.

• The traditional Ross–Li BRDF model is based on the linear relationship between the
kernel models, and the nonlinear relationship fails to adequately consider.

• The measured data are often difficult to obtain, especially when carrying out historical
data calibrations using SBAF to correct spectral differences. Although Han et al. [15]
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proposed an interpolation method using MOD09GA instead of measured data, the
radiative transfer model also causes an increase in the uncertainty of the calibration
results [10,24].

Therefore, this study takes the HJ-2A/CCD3 sensor as an example, choosing Sentinel-
2/MSI as a reference sensor, and builds a BRDF model by using the random forest algorithm
with time-series MODIS images. Then, the method for constructing the BRDF model that is
more suitable for CCD3 is further explored. In addition, we interpolate the TOA reflectance
of the MSI under the CCD3 angle and then convolve it with the relative spectral responses
(RSRs) of CCD3 for spectral difference correction and judge whether this approach is more
advantageous than SBAF. The investigation results will aid in analyzing the suitability and
robustness of this cross-calibration method for the CCD3 sensor and facilitate monitoring
the attenuation of its sensor signals during orbit, ensuring that the image data acquired by
CCD3 can be effectively and broadly utilized across various fields.

This study is structured as follows: Section 2 introduces the CCD sensor, the MSI
sensor, the MODIS sensor, the test sites, and the datasets. The construction process of the
BRDF model using the random forest algorithm and the spectral interpolation convolution
method used to correct the spectral difference between the two sensors are outlined in
Section 3. Section 4 calculates the relative errors between the cross-calibration results
presented in this study and the official calibration coefficients (OCCs), as well as the
measured values from the Baotou sandy site. Section 5 analyzes the advantages of the
method proposed in this study with respect to the light-matching cross-calibration and the
radiative transfer cross-calibration, evaluates the influence of different BRDF models and
different spectral correction methods on the calibration results, presents other influencing
factors in the calibration process, and provides the total uncertainty. Section 6 summarizes
the proposed method, presents the conclusions, and offers suggestions for future research.

2. Satellites, Test Sites, and Datasets
2.1. Satellites

The HuanJing-2A (HJ-2A) satellite was successfully launched by a Long March 4B
launch vehicle on 27 September 2020, with a 16 m payload consisting of four CCD cameras
and a 5-year design lifetime [25]. A single CCD camera has a coverage width of more than
200 km, and four splices can achieve a total width of more than 800 km, with a revisit cycle
of 4 days. The data acquisition capability, technical performance, and accuracy of remote
sensing data have been greatly improved compared with those of the HJ-1A/B satellite [26].
In addition to the commonly used blue, green, red, and near-infrared (NIR) bands, a “red
edge” band, which effectively captures the unique spectral characteristics of crops, has also
been added, and it is of great significance to research on remote sensing [27]. Additionally,
the CRESDA can freely download HJ-2A satellite images.

Sentinel-2 is an Earth observation mission under the Copernicus program of the
European Space Agency (ESA), divided into two satellites, 2A and 2B [28]. It is equipped
with MSI that covers 13 bands, has a swath width of up to 290 km, and orbits at an altitude
of 786 km, providing a revisit period of 10 days for one satellite and 5 days when both
satellites are operational. It can detect wavelengths from visible and NIR to short-wave
infrared (SWIR), with different resolutions of 10 m, 20 m, and 60 m and calibrations with
up to about 3% accuracy [29]. Level 1C products can be downloaded freely from the ESA.

MODIS, installed on the Terra satellite, was successfully launched on 18 December
1999. It has 36 spectral bands with a spectral range from 0.4 µm to 14.4 µm [22]. Currently,
MODIS data products are widely used, and their accuracy has been tested [30,31]. Accord-
ing to the research needs of this study, the MOD02HKM product, which provides apparent
reflectance, the MOD09GA product, which provides surface reflectance, the MOD03 prod-
uct, which provides solar/viewing angle information, and the MOD04_L2 product, which
provides aerosol optical depth value (AOD), are downloaded [19].

In this study, the blue, green, red, NIR, and red edge, corresponding to the bands
of CCD3 and the MSI, are selected for the research on cross-calibration. Table 1 lists the
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wavelength range, spatial resolution, swath width, and revisit cycle of the corresponding
bands of the CCD3 and MSI sensors, and Figure 1 demonstrates the RSRs of the two sensors
in the five bands.

Table 1. Information on the corresponding bands of CCD3 and MSI.

Sensor Band Name Wavelength Range
(nm)

Spatial Resolution
(m) Swath Width (km) Revisit Cycle (d)

CCD3

Blue 450–520

16 200 4
Green 520–590
Red 630–690
NIR 770–890

Red edge 690–730

MSI

Blue 460–520

10 290 5
Green 540–580
Red 650–680
NIR 790–900

Red edge 690–730 20
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2.2. Test Sites

The Dunhuang radiometric calibration site (DRCS) is a radiation calibration site in
China, situated in the Dunhuang area of Jiuquan City, Gansu Province. The whole site
spans approximately 30 km by 30 km, located between the geographic coordinates of
40.04◦N to 40.28◦N and 94.17◦E to 94.50◦E (as illustrated in Figure 2), with an elevation
of around 1200 m above sea level [32,33]. As a national radiation calibration field, it has
been internationally recognized by the virtue of its uniform and flat ground surface, wide
range, low precipitation, small atmospheric fluctuations, etc., and is often used to carry out
research on site calibration experiments [34]. It is also a radiation transmission platform
for evaluating the difference in radiation between two kinds of sensors [35]. Therefore, the
DRCS is used as a calibration site in this study.
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Figure 2. DRCS from CCD3 image on 9 May 2022.

The Baotou sandy site located in the city of Bayannur, Inner Mongolia, is a remote
sensing field calibration site often referred to as the “Baotou Site”, situated at the geographic
coordinates 40.87◦N, 109.62◦E (as illustrated in Figure 3), with an altitude of approximately
1270 m above sea level. The site is flat and open, dry with little rain, and one of the first
demonstration sites for the Radiometric Calibration Network (RadCalNet) [36]. Reflectance
measurements of both TOA and BOA in the 400–1000 nm spectral range are taken at 10 nm
intervals every 30 min, accompanied by a series of automated spectral and atmospheric
parameter measurements [37,38]. Therefore, the Baotou sandy site is used as a validation
site in this study.
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2.3. Datasets

For this study, CCD3 and MSI images that passed over the DRCS on the same day in
2022 are selected. The transit time difference between the images is less than 1 h, suggesting
that the atmospheric and surface conditions remained relatively stable during this period.
Cloud cover must be absent over the DRCS, as clouds can interfere with the spatial and
spectral characteristics of the site [39]. Furthermore, the coefficient of variation (CV) is
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less than 3%, which has been widely used to ensure radiometric spatial homogeneity at
calibration sites, and the formula is shown below [34,40]:

CV =
σ

µ
× 100% (1)

In this equation, σ represents the standard deviations (SDs) within the pixel windows.
µ represents the mean within the pixel windows. Through data search, a total of five valid
calibrated image pairs from 2022 are collected, and the image information for both sensors
on the calibration days is shown in Table 2.

Table 2. Valid image pair information for DRCS and Baotou sandy site in 2022. VZ, SZ, VAZ, and
SAZ denote the viewing zenith angle, solar zenith angle, view azimuth angle, and solar azimuth
angle, respectively.

Site Data Sensors Time VZ (◦) SZ (◦) VAZ (◦) SAZ (◦)

DRCS

8 February 2022 CCD3 13:05 8.4215 56.6671 103.4571 164.8759
MSI 12:47 8.5310 57.5814 279.3340 159.9170

6 April 2022 CCD3 12:57 8.4153 35.6701 103.6651 158.9273
MSI 12:37 8.3255 37.0937 97.1749 151.1280

1 May 2022 CCD3 13:07 8.4139 26.3112 103.5479 161.6297
MSI 12:37 8.3934 28.6676 97.9633 146.9239

9 May 2022 CCD3 13:02 8.4189 24.4026 103.5665 157.8442
MSI 12:47 8.4819 25.5119 279.2809 150.0180

23 June 2022
CCD3 13:01 8.4165 19.2089 103.5895 147.7677
MSI 12:47 8.6379 20.7595 278.6671 139.7400

Baotou sandy site 12 April 2022 CCD3 12:05 8.9038 33.4352 103.4926 161.2189
1 October 2022 CCD3 12:03 8.9019 44.3239 103.4880 170.2459

Given that the spatial resolutions of CCD3 and the MSI are different and resampling
affects the original radiometric information of the image and the accuracy of the cross-
calibration [8], this study focuses on the center of the DRCS (approximately 80 m × 80 m)
as the research target. For the MSI sensor, 8 × 8 pixel windows are selected from 10 m
resolution images, 4 × 4 pixel windows from 20 m resolution images, and 5 × 5 pixel
windows from 16 m resolution images with the corresponding CCD3 sensor [17,21].

The CCD3 images passing over the Baotou sandy site in 2022 are also selected, ensuring
no cloud cover obscures the experimental area. As CCD3 transits the Baotou sandy site around
12:05 (local standard time), the TOA reflectance data from the file (*.output) downloaded from
the RadCalNet portal (https://www.radcalnet.org, accessed on 3 February 2024) should be
valid at 12:00 (local standard time) [23]. With data retrieval, a total of two valid images from
2022 are collected as validation data from the Baotou sandy site, and the image information is
shown in Table 2.

As there is an angle difference between the two sensors, BRDF correction needs to
be considered. This is why a total of 70 MODIS images in 2022 transiting the DRCS are
collected to extract angle and reflectance information, and no cloud occlusion is allowed.
The extracted reflectance values should have a CV of less than 3% to ensure feature homo-
geneity, while outliers are rejected with the condition of mean ± two times the SDs [17,41].
The solar/viewing geometry information is extracted from the MOD03 product, and the
geometry information is shown in Figure 4.

Additionally, because the CCD3 sensor provides only viewing geometry information
at the center point, the target research area may not be located at the image’s centroid
position. Since the geometry influences the calibration results, this study applies the angle
correction method proposed by Long et al. [42] to adjust the CCD3 viewing angle. The
geometry information at the center point of the DRCS for the MSI is extracted from the file
(*.hdr) after reprojecting.

https://www.radcalnet.org
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3. Methodology

In this study, the random forest algorithm and a spectral interpolation convolution
method are proposed for the cross-calibration of HJ-2A/CCD3 using Sentinel-2/MSI with
high radiometric performance as a reference sensor. A flowchart of this method is shown
in Figure 5.
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The cross-calibration method for HJ-2A/CCD3 based on Sentinel-2/MSI includes the
following seven steps.

1. Utilizing the time-series MODIS imagery in 2022, the solar zenith angle, solar azimuth
angle, view zenith angle, view azimuth angle, and TOA reflectance at the center point
of the DRCS are extracted to calculate the volumetric scattering kernel, Kvol , and
geometric optical scattering kernel, Kgeo, in order to construct the stable target dataset
required by the model [43,44].

Kvol(θ, φ, ϕ) =
(π/2 − ξ) cos ξ + sin ξ

cos θ + cos φ
− π

4
(2)

Kgeo(θ, φ, ϕ) =
1
π
(t − sin t cos t)(sec θ + sec φ)− sec θ − sec φ +

1
2
(1 + cos ξ) sec θ sec φ (3)

In this equation, θ is the viewing zenith angle, φ is the solar zenith angle, ϕ is the
relative azimuth angle, and t is calculated from these three angles [45]. ξ is the scattering
angle [17].

2. The Kvol and Kgeo are put into the random forest algorithm, where 70% are randomly
selected as the training set and 30% as the validation set to construct the BRDF model.
To evaluate the BRDF model’s accuracy, the validation set is used to calculate the
root-mean-square errors (RMSEs) (by Equation (4)) between the simulated and the
measured TOA reflectance of the MODIS image [5], and the results are displayed
in Table 3. It can be seen for the constructed BRDF model using the random forest
algorithm that all have RMSEs of less than 0.96%, which proves that the model for the
DRCS has high precision in 2022 [21].

Table 3. RMSEs between the simulated and measured TOA reflectance of the random forest algorithm
for DRCS in 2022.

Blue Green Red NIR

0.96% 0.73% 0.69% 0.74%

RMSE =

√
∑N

1
(
ρr f − ρre f

)2

N
(4)

In this equation, ρr f and ρre f denote the simulated reflectance obtained by the random
forest algorithm and the measured TOA reflectance obtained from the MODIS; and N is
the number of images used to construct the validation set.

3. The BRDF correction coefficients, C, are derived from ρCCD3_simulate and ρMSI_simulate,
which are counted by the solar/viewing geometry angle information, as well as the
random forest algorithm [43]. Since the MODIS sensor has no red edge band, the
BRDF correction coefficient in the red edge band of CCD3 is set to 1.0 in this study [15].

C =
ρCCD3_simulate

ρMSI_simulate (5)

4. The TOA reflectance of the MSI image on the day of calibration, ρMSI, in the five
bands is converted to that under the viewing angles of CCD3, ρCCD3_MSI, by [15,46]
the following:

ρCCD3_MSI = C × ρMSI (6)

5. The spectral difference between the two sensors is corrected using the cubic poly-
nomial interpolation to interpolate ρCCD3_MSI into a continuous spectrum curve,
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ρCZ_CCD3_MSI, then convolving with the RSRs of the CCD3 and using it as the TOA
reflectance at the CCD3 [23].

ρCCD3 =

∫
ρCZ_CCD3_MSI × RSRCCD3(λ)dλ∫

RSRCCD3(λ)dλ
(7)

In the formula, RSRCCD3 is the RSRs of CCD3.

6. According to Equation (7), the TOA radiance at the pupil of CCD3, LCCD3, can be
calculated as follows [19]:

LCCD3 =
ρCCD3 × ESUN × cos ϑ

πd2 (8)

where ESUN is the TOA solar irradiance, calculated from the convolution of the WRC solar
spectrum curve [10], ϑ is the solar zenith angle for the CCD3 sensor, and d is the Sun–Earth
distance.

7. Finally, Gain is the desired calibration coefficient for CCD3 [39,46].

Gain =
LCCD3

DNCCD3 (9)

where DNCCD3 is the average digital number (DN) of the 5 × 5-pixels windows of CCD3.

4. Results
4.1. Cross-Calibration Coefficients

Through the above method, the cross-calibration coefficients and SDs of the five
calibration day images in 2022 are derived. Table 4 shows that the SDs for the five bands
are less than 0.23%, indicating that the calibration coefficients across different dates exhibit
good consistency [15]. This demonstrates that the cross-calibration method proposed in
this study is stable.

Table 4. Cross-calibration coefficients and the SDs, FCCs, and OCCs of CCD3 in 2022.

Band 8 February 2022 6 April 2022 1 May 2022 9 May 2022 23 June 2022 SDs FCCs OCCs

Blue 0.0663 0.0673 0.0666 0.0631 0.0623 0.0023 0.0647 0.0657
Green 0.0544 0.0549 0.0539 0.0519 0.0516 0.0015 0.0530 0.0526
Red 0.0497 0.0508 0.0496 0.0480 0.0476 0.0013 0.0489 0.0473
NIR 0.0560 0.0576 0.0561 0.0554 0.0548 0.0010 0.0559 0.0555

Red edge 0.0534 0.0559 0.0546 0.0548 0.0548 0.0009 0.0549 0.0534

Additionally, the cross-calibration coefficients of the five images are linearly fitted for
the purpose of subsequent tests, ultimately obtaining the total cross-calibration coefficients
in 2022. The fitted cross-calibration coefficients (FCCs) are presented in Table 4 and Figure 6.

4.2. Validation of Cross-Calibration Coefficients with the OCCs

The cross-calibration coefficients are compared with the CCD3 sensor site calibration
coefficient published by CRESDA in 2022 to calculate the relative error, which is defined
as the absolute value of “cross-calibration coefficients/OCCs−1” [15,41]; then, average
relative errors on the different calibration days are calculated, and the FCCs and OCCs are
also used to count the relative error. The error results are shown in Table 5.
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Table 5. Relative errors between cross-calibration coefficients and OCCs at DRCS.

Band 8 February 2022 6 April 2022 1 May 2022 9 May 2022 23 June 2022 Average FCCs

Blue 0.85% 2.40% 1.41% 4.03% 5.12% 2.76% 1.48%
Green 3.51% 4.42% 2.56% 1.32% 1.88% 2.74% 0.80%
Red 5.51% 7.49% 4.86% 1.49% 0.68% 3.93% 3.38%
NIR 0.98% 3.71% 1.00% 0.09% 1.31% 1.42% 0.63%

Red edge 0.07% 4.73% 2.31% 2.70% 2.59% 2.48% 2.72%

The results show that the relative errors of all bands to the OCCs are less than 7.49%,
the average relative errors are less than 3.93%, and the relative errors of the FCCs are less
than 3.38%, which suggests that the method proposed in this study is applicable to the
CCD3 sensor.

4.3. Validation of Cross-Calibration Results with the Baotou Sandy Site

In this study, the measured TOA reflectance (*.output) of the Baotou sandy site is first
interpolated to 1 nm intervals and then convolved with the RSRs of CCD3, eventually
taking the interpolated and convolved reflectances (ICRs) as the true value. Subsequently,
the FCCs along with the OCCs are converted to reflectance and then compared to ICRs
to determine the relative errors of the two validation images. Relative error is defined as
the absolute value of “reflectance calculated based on FCCs/ICRs − 1” and the absolute
value of “reflectance calculated based on OCCs/ICRs − 1”, respectively [19,21]. Then, the
average relative error of the two validation images is also calculated, and the results are
shown in Figure 7.

As can be seen from Figure 7, the maximum average relative error between the OCCs
and ICRs is 4.44% and 4.11% between the FCCs and ICRs. Moreover, except for the NIR
band, which has a larger error, the average relative errors calculated for all bands are better
than those of the OCCs. This indicates that the method used in this study is suitable for
research on CCD3.
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5. Discussion

In order to analyze the suitability and stability of this proposed cross-calibration
method for the CCD3 sensor, we will discuss the calibration results according to the
following schemes:

5.1. Cross-Calibration Results Based on the Light-Matching Method

The light-matching method achieves cross-calibration by comparing images acquired
by different sensors at the same time, at the same location, and at the same observation
angle [47]. Therefore, the calibration coefficient of the sensor to be calibrated needs to be
obtained using a linear regression analysis [48] between the radiance at the pupil of the
reference satellite sensor (i.e., also the radiance at the pupil of the satellite to be calibrated)
and the DN value of the satellite image to be calibrated [12,49]. In this section, the light-
matching method is used to obtain the cross-calibration coefficients for the five bands of
the CCD3, which has a similar band setup to the MSI, using the MSI sensor as a reference,
as shown in scheme (a) in Table 6.

Table 6. The research schemes to be conducted.

Schemes BRDF Spectral Difference

(a) Non-consideration Non-consideration
(b) Ross–Li (MODIS) SBAF
(c) Ross–Li (MODIS) Interpolation convolution
(d) Random forest algorithm (MODIS) SBAF
(e) Random forest algorithm (MSI) Interpolation convolution

Parentheses indicate the data sources used to construct the BRDF.

From Table 7, it can be seen that the results calculated based on the light-matching
method differ significantly from the OCCs and from Figure 8; its maximum relative error
with respect to ICRs is 11.41%. This illustrates the fact that even if the difference in the
angles of these two sensors is not significant, the light-matching method may lead to a
large error because it cannot take into account the spectral differences between the sensors.
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Table 7. Relative errors between cross-calibration results based on the light-matching method and
OCCs.

Band 8 February 2022 6 April 2022 1 May 2022 9 May 2022 23 June 2022 FCCs

Blue 12.07% 1.37% 0.75% 0.09% 3.79% 1.14%
Green 12.36% 2.47% 1.60% 1.44% 4.89% 2.40%
Red 10.44% 4.55% 3.15% 1.81% 7.99% 4.82%
NIR 15.75% 0.63% 2.11% 3.60% 3.35% 2.70%

Red edge 6.82% 9.51% 7.21% 14.63% 19.59% 11.16%
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5.2. Cross-Calibration Results Based on the Radiative Transfer Model Method

The radiative transfer model method takes into account the effects of viewing geometry
and spectral differences of sensors on the calibration results [47,49]. The approach differs from
the one proposed in this study mainly in the different methods used to consider the differences
between the two sensors, as described in scheme (b) of Table 6. The BRDF parameters are firstly
derived by the Ross–Li BRDF model with time-series MODIS images [15], and they are shown
in Table 8. Then, using the MSI solar/viewing geometry and the CCD3 solar/changed-viewing
geometry on the day of the calibration to calculate the BRDF correction coefficients [17],
the TOA reflectance for the MSI image is converted to the viewing angles as the CCD3
by Equation (6). After, the MOD09GA surface reflectances are then extracted, and cubic
polynomial interpolation is applied to acquire continuous spectral curves (see Figure 9), which
are subsequently convolved with the RSRs of CCD3 and the MSI to derive the equivalent
surface reflectance for each band [39]. Next, the 6S radiative transfer model, in which the input
solar/viewing angle information is obtained from CCD3 and the AOD values are obtained
from MOD04_L2, is used to convert the equivalent surface reflectance to the TOA reflectance
to evaluate the SBAF parameters (as shown in Table 9) [19]. Finally, the simulated TOA
radiance for CCD3 is determined by combining the SBAF parameters and the BRDF correction
coefficients to obtain the cross-calibration results [21].

Table 8. Ross–Li BRDF parameters of DRCS with MODIS in 2022.

BRDF Parameters Blue Green Red NIR

f iso 0.2092 0.2473 0.2741 0.2967
f vol 0.2264 0.1171 0.0954 0.1071
f geo −0.0110 0.0174 0.0236 0.0209
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Table 9. SBAF parameters between CCD3 and MSI.

Band 8 February 2022 6 April 2022 1 May 2022 9 May 2022 23 June 2022

Blue 0.9963 0.9926 0.9911 0.9950 0.9934
Green 1.0023 0.9970 0.9975 0.9987 0.9987
Red 0.9909 0.9910 0.9908 0.9915 0.9909
NIR 0.9548 0.9110 0.9140 0.9154 0.9156

Red edge 1.0061 1.0033 1.0042 1.0030 1.0048

The relative errors between the cross-calibration coefficients when using the radiative
transfer model and the OCCs are given in Table 10. The maximum value of the relative
error of the calibration coefficients is reduced from 9.08% based on the radiative transfer
model to 7.49% based on the proposed method, and compared to FCCs, it is decreased
from 7.30% to 3.38%. Concurrently, as shown in Figure 8, the average relative error of
the cross-calibration results based on the radiative transfer model with ICRs is 4.78% at
maximum, while the method proposed is only 4.11% at maximum. This indicates that
the proposed random forest algorithm and spectral interpolation method present greater
benefits compared to the radiative transfer model and can be used when considering the
viewing and spectral difference between two sensors, which will consider the nonlinear
relationships between kernels and reduce uncertainties due to the radiative transfer model,
thus also obtaining stable results in all bands.

Table 10. Relative errors between cross-calibration results using the radiative transfer model and the
OCCs.

Band 8 February 2022 6 April 2022 1 May 2022 9 May 2022 23 June 2022 FCCs

Blue 0.03% 1.42% 0.23% 4.12% 5.06% 2.01%
Green 3.51% 4.30% 2.47% 1.20% 1.66% 0.86%
Red 4.80% 7.00% 4.45% 1.65% 0.65% 3.21%
NIR 3.05% 5.59% 7.64% 7.95% 9.08% 7.30%

Red edge 0.12% 4.65% 2.39% 3.01% 2.91% 2.87%

5.3. Influences of Different Methods to Construct BRDF on Cross-Calibration Results

When constructing the BRDF model in step 2 of Section 3, the proposed method of
the BRDF is the random forest algorithm. As different methods can affect the calibration
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results, this summary recalculates the calibration coefficients by changing the method for
constructing the BRDF model to Ross–Li [15], with the proposed spectral interpolation still
used when considering spectral differences, as shown in scheme (c) from Table 6.

Table 11 illustrates the relative errors of the calibration coefficients using the Ross–Li
BRDF model with OCCs, which shows that the relative errors are all less than 7.71%,
and the fitted ones are all less than 4.36%, whereas the ones computed by the proposed
method are all less than 7.49% and 3.38%, respectively. As can be seen from Figure 8, the
average relative error of the Ross–Li BRDF model with ICRs has a maximum of 4.46%
in scheme (c). These results show that using different methods to construct the BRDF
model does impact the calibration results. However, in comparison, the calibration results
obtained from the BRDF model constructed using the random forest algorithm are better
for the cross-calibration of CCD3 than using the Ross–Li BRDF model and fully address the
nonlinear relationships between kernel models.

Table 11. Relative errors between cross-calibration results using the Ross–Li BRDF model and OCCs.

Band 8 February 2022 6 April 2022 1 May 2022 9 May 2022 23 June 2022 FCCs

Blue 2.39% 2.02% 0.86% 2.60% 6.88% 1.00%
Green 3.11% 4.66% 2.53% 0.09% 2.33% 1.52%
Red 5.04% 7.71% 4.98% 2.80% 1.36% 4.36%
NIR 0.45% 3.76% 1.05% 0.28% 2.09% 0.56%

Red edge 0.10% 4.69% 2.30% 2.40% 2.40% 2.79%

5.4. Influence of Considering Spectral Differences Based on SBAF on Cross-Calibration Results

When considering the spectral difference in step 5 of Section 3, the method proposed
in this study is a spectral interpolation convolution. In this part, utilizing the SBAF to
correct the spectral difference and calculating the calibration coefficients with the BRDF
method is still constructed using the random forest algorithm, as depicted in scheme (d) of
Table 6.

The relative errors between the cross-calibration coefficients, for which the correction
of spectral difference is SBAF, and the OCCs are calculated in Table 12. We obtained a
maximum value of 8.24% based on the SBAF cross-calibration results with OCCs and a
maximum value of 6.52% after fitting, while the maximum average relative error with the
ICRs is 4.46%. This shows that the proposed spectral interpolation method is more advan-
tageous than SBAF, thus also reducing the errors caused by the relatively large number of
parameters involved in the radiative transfer model and improving the calibration accuracy.

Table 12. Relative errors between cross-calibration results using SBAF to consider spectral difference
and the OCCs.

Band 8 February 2022 6 April 2022 1 May 2022 9 May 2022 23 June 2022 FCCs

Blue 1.64% 1.33% 0.25% 0.27% 0.73% 0.26%
Green 4.53% 4.29% 3.43% 0.61% 2.12% 2.60%
Red 6.44% 6.74% 4.36% 2.69% 3.87% 4.40%
NIR 4.22% 5.76% 7.64% 6.66% 6.71% 6.52%

Red edge 3.76% 4.58% 2.37% 7.02% 8.24% 5.24%

5.5. Influence of Different Data Sources for BRDF Models on Cross-Calibration Results

In step 1 of Section 3, the data source for the constructed BRDF model by using the
random forest algorithm is MODIS. Whether it is suitable for constructing the BRDF model
should be discussed. Therefore, we calculate the new calibration coefficients by changing
the source for the BRDF model to MSI in the part, just as in scheme (e). The TOA reflectance
of cloud-free and homogeneous MSI images crossing the DRCS, along with solar and
viewing geometry information, are extracted to construct the BRDF model based on MSI.
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The extracted reflectance’s CV should be less than 3%, excluding reflectance other than the
mean ± 2 times the SDs [40]. Finally, a total of 43 MSI (1C) images in 2022 are collected,
and the reflectance information of the screened images is shown in Figure 10. The BRDF
correction coefficients are calculated by Equations (2)–(5) (see Table 13).
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Table 13. BRDF correction coefficients of DRCS based on time-series MSI in 2022.

Band 8 February 2022 6 April 2022 1 May 2022 9 May 2022 23 June 2022

Blue 1.0067 1.0000 1.0002 1.0622 1.0750
Green 1.0506 0.9999 1.0094 1.0476 1.0642
Red 1.0478 0.9988 0.9989 1.0362 1.0475
NIR 1.0327 1.0001 0.9998 1.0524 1.0556

Red edge 1.0364 0.9993 0.9999 1.0389 1.0518

Table 14 shows the relative errors of the calibration coefficients using the MSI BRDF
model by utilizing the random forest algorithm with OCCs, which demonstrates that the
relative errors are all less than 5.06%. From Figure 8, the maximum relative error to ICRs is
5.22%. These results illustrate that the calibration results obtained from the BRDF model
constructed using the MODIS, whose viewing angle does cover a wide range, are more
reasonable for the cross-calibration of CCD3 than using MSI, whose viewing angle varies
only in a small range.

Table 14. Relative errors between cross-calibration results using MSI to construct the BRDF model by
utilizing the random forest algorithm and OCCs.

Band 8 February 2022 6 April 2022 1 May 2022 9 May 2022 23 June 2022 FCCs

Blue 0.98% 2.29% 1.07% 0.35% 1.19% 0.93%
Green 4.12% 4.39% 3.41% 0.61% 2.19% 2.55%
Red 6.90% 7.26% 4.84% 3.00% 4.44% 4.80%
NIR 0.58% 3.57% 1.01% 1.84% 1.28% 1.80%

Red edge 3.56% 4.70% 2.32% 6.83% 7.55% 5.06%

5.6. Influence of Imprecise Viewing Geometrical Parameters on Cross-Calibration Results

Because the viewing geometry affects the cross-calibration results to some extent, this
study corrected the viewing geometry of CCD3 in step 3 of Section 3, in order to obtain
precise geometrical parameters [42]. Therefore, in this section, how imprecise viewing
geometrical parameters affect the calibration results will be discussed. That is, using the
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viewing angle information of the image published in the file (*.xml), even if the center point
of the DRCS is not positioned in the center of the images.

As shown in Table 15, the maximum relative error between the FCCs using imprecise
viewing geometrical parameters and the OCCs is 4.04%, with an average relative error
of 4.24% at maximum when compared to the ICRs. When the angles are changed using
Long’s proposed method, the maximum relative error with OCCs is 3.38% from Table 5
and 4.11% with ICRs from Figure 8. This demonstrates that the viewing geometry affects
the calibration results, and the calibration accuracy is improved to some extent after the
correction of the viewing angle.

Table 15. Relative errors between cross-calibration results using imprecise viewing geometrical
parameters and OCCs.

Band 8 February 2022 6 April 2022 1 May 2022 9 May 2022 23 June 2022 FCCs

Blue 1.14% 2.63% 1.19% 4.80% 5.43% 1.95%
Green 2.87% 5.28% 2.34% 1.04% 1.34% 1.06%
Red 6.41% 8.02% 4.65% 2.77% 1.37% 4.04%
NIR 0.25% 4.09% 0.80% 0.89% 1.79% 0.27%

Red edge 0.64% 5.27% 2.09% 2.45% 2.54% 2.62%

5.7. Influence of Different Interpolation Methods on Cross-Calibration Results

During the interpolation process in step 5 of Section 3, this study adopts the cubic
polynomial interpolation method. Different interpolation methods will also have a certain
impact on the calibration results; as such, this section will use cubic spline interpolation in-
stead of cubic polynomial interpolation to explore its effect on the calibration results [15,17].

Table 16 shows the relative errors of the calibration coefficients using cubic spline
interpolation and OCCs, these results are not much different from the results obtained
using cubic polynomial interpolation, as shown in Table 5. Additionally, as can be seen
in Figure 8, both methods exhibit the same maximum average relative error of 4.11%, in
contrast with the ICRs, demonstrating that cubic polynomial interpolation and cubic spline
interpolation are both suitable for obtaining the continuous spectral profile.

Table 16. Relative errors between cross-calibration results using the cubic spline interpolation method
and OCCs.

Band 8 February 2022 6 April 2022 1 May 2022 9 May 2022 23 June 2022 FCCs

Blue 1.99% 2.66% 1.89% 2.48% 3.72% 0.47%
Green 3.58% 4.38% 2.56% 0.99% 1.62% 0.95%
Red 5.57% 7.51% 4.99% 2.54% 1.53% 3.61%
NIR 0.89% 3.86% 1.13% 0.42% 1.58% 0.52%

Red edge 0.50% 4.98% 2.42% 1.16% 1.30% 2.06%

5.8. Influence of Geometric Positioning Error on Cross-Calibration Results

Owing to the existence of offsets caused by varying image accuracies, two different
sensors may locate different features, even at the same latitude and longitude. Therefore,
this section will discuss the effect of the cross-calibration results when the sliding windows
(5 × 5 pixels) of the CCD3 image are shifted by 1 pixel (approximately 16 m) [17].

From Table 17, the maximum relative error between the calibration results after cor-
recting the geometric positioning error and OCCs is 7.65%. After fitting, the maximum
relative error is 3.66%, and with the ICRs, it is 4.11%. The differences between the maximum
relative error from Tables 5 and 17 are 0.16% and 0.28%, respectively. When using the
Baotou sandy site, the maximum difference is the same. This explains the homogeneity of
the experimental area, which is applicable to this study.
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Table 17. Relative errors between calibration results after correcting the geometry positioning error
and OCCs.

Band 8 February 2022 6 April 2022 1 May 2022 9 May 2022 23 June 2022 FCCs

Blue 1.02% 2.51% 1.57% 3.99% 4.99% 1.37%
Green 3.64% 4.54% 2.80% 1.21% 1.59% 0.99%
Red 5.41% 7.65% 5.24% 1.69% 0.99% 3.66%
NIR 1.29% 3.88% 1.30% 0.07% 0.94% 0.88%

Red edge 0.31% 4.96% 2.51% 2.87% 2.92% 2.94%

5.9. Total Uncertainty

In this section, the total uncertainty of the final cross-calibration coefficients is calcu-
lated, acknowledging that not all factors can be quantified. Six main influencing factors are
considered in this study.

1. BRDF: During the construction of the BRDF model, there are several factors that can
lead to variations in the calibration results, such as different BRDF models, TOA
reflectance of MODIS, ignored BRDF correction coefficients in the red edge band, and
the solar/viewing angles, so the uncertainty is taken into account. Firstly, by using the
random forest algorithm and the Ross–Li model for constructing the BRDF model, the
maximum differences between the cross-calibration coefficients are derived for each
band, which is taken as the uncertainty of different BRDF models. Secondly, for the
MODIS BRDF model constructed using the random forest algorithm, the calibration
accuracy of MODIS is about 2% [10], which is treated as the uncertainty associated
with the TOA reflectance of MODIS. Thirdly, since the red edge band is set to 1 when
calculating the BRDF correction coefficients, its effect on the calibration uncertainty
should be considered. The BRDF correction coefficients in the red edge band are
increased by 0.01 and decreased by 0.01 to recalculate the relative errors between
the new calibration coefficients and the OCCs. Then, the relative errors are then
subtracted from each other, and the maximum difference obtained for the red edge is
taken as the uncertainty. Fourthly, the errors of the solar angles are neglected [15]. In
order to consider the errors of the viewing angles, we increased them by 0.1◦ and then
used them to recalculate the new results. The maximum relative differences between
the new cross-calibration coefficients and the coefficients given in Table 4 for each
band are treated as the uncertainty values associated with the viewing angles [10].
Finally, these error values are calculated by the square root method as the uncertainty
values with respect to BRDF, the results are shown in Table 18.

2. Reference satellite: Uncertainties due to the reference satellite need to be addressed.
The calibration uncertainty of Sentinel-2/MSI is approximately 3% [35].

3. Viewing geometric parameter: The uncertainty caused by the viewing geometric
parameter must be considered in the process of cross-calibration. The maximum
difference in the relative error of the cross-calibration coefficients for five bands before
and after the change in the CCD3 viewing angle is used as the value of the uncertainty
related to the viewing geometric parameter, and the results are shown in Table 19.

4. Interpolation method: The interpolation method used can have an influence on the
calibration results. The maximum value of the relative error between the calibration
coefficients according to the cubic spline interpolation method and the calibration
coefficients in Table 4 is calculated as the uncertainty value relevant to the interpolation
method.

5. Geometric positioning error: Since geometric positioning errors also cause changes
in the calibration results to some extent, the uncertainty caused by correcting for
geometric positioning errors cannot be ignored. The results are shown in Table 19.

6. ESUN source: The ESUN values in this study are calculated by convolving the
WRC solar spectrum curves with the RSRs of CCD3, whereas the solar irradiance
of HJ-2A/CCD3 is not given in CRESDA. For this reason, the solar spectral curve
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required for convolution shall not be negligible. The spectral curve is replaced from
WRC to Kurucz, and the coefficients are recalculated, along with the maximum rela-
tive difference from Table 4. These values are used as the uncertainty associated with
the ESUN source.

Table 18. Total uncertainty of BRDF.

Factors Blue Green Red NIR Red Edge

Different BRDF models (%) 1.85 1.43 1.30 1.42 0.29
TOA reflectance of MODIS (%) 2.00 2.00 2.00 2.00 2.00

Ignored BRDF correction in red edge band (%) 0.00 0.00 0.00 0.00 2.10
Viewing angles (%) 1.92 0.56 1.55 1.10 0.00

Total uncertainty of BRDF (%) 3.33 2.52 2.84 2.69 2.91

Table 19. Total uncertainty of cross-calibration.

Symbol Blue Green Red NIR Red Edge

BRDF (%) 3.33 2.52 2.84 2.69 2.91
Reference satellite (%) 3.00 3.00 3.00 3.00 3.00

Viewing geometric parameter (%) 1.97 0.83 1.26 0.79 0.72
Interpolation method (%) 1.61 0.34 1.04 0.33 1.50

Geometric positioning error (%) 0.17 0.30 0.36 0.37 0.33
ESUN source (%) 0.09 0.10 0.13 0.10 0.08

Total uncertainty (%) 5.16 4.03 4.46 4.14 4.51

The factors of the uncertainty and total uncertainty of the cross-calibration results are
shown in Table 19. Overall, the total uncertainty calculated using the square root method is
less than 5.16% [41].

6. Conclusions

In this study, in order to account for the nonlinear relationship between kernel models
and the differences introduced by radiative transfer models, the random forest algorithm
and a spectral interpolation convolution method are proposed, which are used to correct
the viewing geometry difference and the spectral difference between two sensors, enabling
the cross-calibration of the HJ-2A/CCD3 sensor with Sentinel-2/MSI as a reference satellite
sensor. Valid time-series TOA reflectance images from the MODIS are collected in 2022 using
the DRCS as the research area for the construction of the BRDF model. The viewing geometric
difference between the two sensors is then corrected using the BRDF correction coefficients
predicted by the random forest algorithm, followed by converting the TOA reflectance from
the MSI to the CCD3 angle on the calibration date. Subsequently, the reflectance is first
interpolated to obtain a continuous spectral profile, which is then convolved with the RSRs of
CCD3 to obtain the simulated TOA reflectance. Finally, the cross-calibration coefficients for
the CCD3 sensor are derived using the TOA radiance obtained from the simulation, along
with the mean DN value extracted on the calibration day.

From the results of the cross-calibration method proposed in this study, it can be seen
that the calibration coefficients of different dates do not differ much, and the SDs of various
bands are less than 0.23%, demonstrating good consistency. Compared with the OCCs, the
average relative errors are under 3.38%. When using the Baotou sandy site for testing, the
FCCs have a maximum average relative error of 4.11% with ICRs, and the errors for the
other bands are better compared to the OCCs, except for the NIR, which has a larger error.

As can be seen from the light-matching results, they have a large error with respect to
the OCCs. It is shown that even if the angle difference between these two sensors is not
significant, this may lead to unacceptable errors since it does not take into account the spectral
differences between the channels. Then, the maximum value of the relative error of the
calibration coefficients is reduced from 7.30% based on the radiative transfer model to 3.38%
based on the proposed approach, and in contrast to ICRs, it is decreased from 4.78% to 4.11%.
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These indicate that the proposed random forest algorithm and spectral interpolation method
present a smaller error with OCCs and ICRs compared to the radiative transfer model, also
taking full account of the nonlinear relationships between the kernels and reducing the error
associated with the radiative transfer model. When the BRDF model is replaced with MSI,
the calibration results have a relative error with the OCCs of 5.06% at maximum and 5.22%
with ICRs, respectively. It is found that the calibration coefficients obtained using the MODIS
sensor to construct the BRDF model, which has a large geometric coverage of viewing, are
better than those obtained using MSI.

Simultaneously, the effects of the viewing geometrical parameters, different spectral
interpolation methods, and geometric positioning errors on the results are discussed. It can
be seen that the cubic spline and cubic polynomial interpolation methods, as well as the
geometric positioning error, do not have much impact on the results. However, after cor-
recting the viewing geometry parameters, the accuracy of the cross-calibration is improved
to some extent. Meanwhile, uncertainties are considered, including the BRDF, difference
reference, viewing geometric parameter, interpolation method, geometric positioning error,
and ESUN sources. The total uncertainty of the cross-calibration results is less than 5.16%.

The applicability of the proposed method to the other three cameras of the HJ-2A will
be examined in future work. Additionally, the potential issue of radiometric differences
among different sensors on the same satellite will be considered. More RadCalNet sites
will also be selected for calculating calibration coefficients to further evaluate the cross-
radiometric calibration method for HJ-2A satellites and enhance the accuracy of on-orbit
radiometric calibration for these cameras.
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