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Abstract: Wildfires increasingly threaten ecosystems and infrastructure, making accurate burn sever-
ity mapping (BSM) essential for effective disaster response and environmental management. Machine
learning (ML) models utilizing satellite-derived vegetation indices are crucial for assessing wildfire
damage; however, incorporating many indices can lead to multicollinearity, reducing classifica-
tion accuracy. While principal component analysis (PCA) is commonly used to address this issue,
its effectiveness relative to other feature extraction (FE) methods in BSM remains underexplored.
This study aims to enhance ML classifier accuracy in BSM by evaluating various FE techniques
that mitigate multicollinearity among vegetation indices. Using composite burn index (CBI) data
from the 2014 Carlton Complex fire in the United States as a case study, we extracted 118 veg-
etation indices from seven Landsat-8 spectral bands. We applied and compared 13 different FE
techniques—including linear and nonlinear methods such as PCA, t-distributed stochastic neighbor
embedding (t-SNE), linear discriminant analysis (LDA), Isomap, uniform manifold approximation
and projection (UMAP), factor analysis (FA), independent component analysis (ICA), multidimen-
sional scaling (MDS), truncated singular value decomposition (TSVD), non-negative matrix factoriza-
tion (NMF), locally linear embedding (LLE), spectral embedding (SE), and neighborhood components
analysis (NCA). The performance of these techniques was benchmarked against six ML classifiers
to determine their effectiveness in improving BSM accuracy. Our results show that alternative FE
techniques can outperform PCA, improving classification accuracy and computational efficiency.
Techniques like LDA and NCA effectively capture nonlinear relationships critical for accurate BSM.
The study contributes to the existing literature by providing a comprehensive comparison of FE
methods, highlighting the potential benefits of underutilized techniques in BSM.

Keywords: burn severity mapping; feature extraction Landsat; machine learning

1. Introduction

Wildfires are a recurring and increasingly severe threat to ecosystems, human in-
frastructure, and water resources. Accurate burn severity mapping (BSM) is essential
for effective disaster response [1], ecological restoration [2], and long-term water quality
management [3]. Optical satellite remote sensing has become a critical tool in wildfire
severity assessment [4]. Reflectance changes are a key indicator used in BSM to distinguish
between burnt and unburnt areas [5,6]. When a wildfire occurs, the vegetation and soil
undergo physical and chemical changes, which alter how they reflect light across different
parts of the electromagnetic spectrum [7]. Burnt vegetation absorbs more visible light and
reflects less of the near-infrared (NIR) spectrum than healthy, unburned vegetation [8].
These changes in reflectance can be captured by optical satellite sensors and are used to
identify and map burnt areas. Indices like the Normalized Burn Ratio (NBR) utilize these
reflectance differences to assess the severity of the burn [9] and help monitor ecosystem
recovery following a wildfire [10].
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Implementing machine learning (ML) techniques has revolutionized remote sensing
and environmental monitoring [11–17]. ML models can handle vast volumes of data and
identify complex patterns that traditional empirical methods might overlook [18]. In BSM
studies, ML applications have demonstrated superior accuracy [19–22]. Vegetation indices,
commonly calculated from combinations of spectral bands, are crucial predictors in as-
sessing the extent and intensity of wildfire damage [23]. These indices are derived from
specific mathematical forms between spectral bands that capture variations in reflectance
characteristics associated with vegetation health, such as chlorophyll content and water
stress. For instance, indices like the Burn Area Index (BAI), Normalized Difference Vegeta-
tion Index (NDVI), and Normalized Burn Ratio (NBR) leverage the visible, near-infrared
(NIR), and short-wave infrared (SWIR) bands to highlight differences between healthy and
burned vegetation. Incorporating more indices typically improves the classification of burn
severity levels. However, when too many indices derived from the same spectral bands
are included in ML models, multicollinearity—a condition where predictors are highly
correlated—can arise. This leads to redundant information and a subsequent reduction in
classification accuracy [24].

To address this issue, techniques such as feature reduction (FR), which involves se-
lecting a subset of the original variables, and feature extraction (FE), which transforms
data into a lower-dimensional space while preserving essential characteristics, are com-
monly employed. Several studies have utilized random forest (RF) feature importance for
dimensionality reduction in BSM. By ranking features based on their contribution to model
accuracy, RF can help identify the most influential variables while reducing the dimension-
ality of the dataset. For instance, Quintano et al. (2020) employed RF to select key variables
for burn severity classification, demonstrating that focusing on the most significant fea-
tures improved overall model performance [25]. Similarly, Liu et al. (2023) applied RF to
identify the spectral indices that contributed most significantly to burn severity prediction,
which led to more accurate mapping results by reducing redundancy in the data [23]. In
another study, Van et al. (2024) introduced a novel FR approach using an eXplainable AI
(XAI) framework [24]. Their methodology incorporates qualitative and quantitative feature
selection, a crucial step in the broader feature extraction process, to improve the accuracy
and interpretability of ML models. By applying an RF algorithm optimized through the
SHapley Additive exPlanation (SHAP) and a forward stepwise selection approach, the
study narrowed down 235 potential predictors to the 12 most critical.

Principal component analysis (PCA) is one of the most widely used FE methods
due to its ability to transform large sets of correlated variables into smaller, uncorrelated
components. By reducing dimensionality, PCA enhances the performance of ML classifiers
and other predictive models [26,27]. Numerous studies have demonstrated its effectiveness,
particularly in improving the accuracy of models used in burn severity assessments, where
datasets often contain complex, interrelated features. For instance, Richards (1984) found
that PCA enhances the detection of fire-related changes and reduces classification errors,
leading to more accurate thematic maps that distinguish between static and dynamic cover
types [28]. Siegert and Ruecker (2000) found that PCA enhances the detection of burned
scars in tropical rainforests by emphasizing changes in radar backscatter, making it easier to
differentiate between burned and unburned areas, especially under dry conditions, leading
to the more accurate identification and mapping of fire-affected regions [29]. Nielsen et al.
(2002) found that PCA effectively identifies burned areas by capturing changes in vegetation
index and surface temperature, leading to a more accurate classification of fire-affected
pixels [30]. The study demonstrated that PCA simplifies the identification of burned areas
by reducing atmospheric variability and decorrelating the data, improving the accuracy of
burned area estimation from AVHRR data. Koutsias et al. (2009) applied PCA to enhance
the visibility of burned areas in Landsat-7 imagery [31]. By transforming the multivariate
data, they demonstrated that PCA effectively distinguishes burnt surfaces by reducing
the dimensionality of the dataset, which in turn highlights the most significant changes
pertinent to identifying burned areas. Chen et al. (2015) employed PCA to streamline
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the handling of extensive spectral data from high spectral resolution MASTER airborne
images by reducing the number of spectral bands from 50 to a smaller number of principal
components, reducing the computational load and enhancing the efficiency of the analysis
process [32]. Similarly, in the recent study by Kulinan et al. (2024), PCA was used as
a critical step to enhance classification efficiency [20]. PCA was applied after extracting
textural features from Sentinel-2 imagery to identify the most relevant features for burned
area training data.

Despite the widespread use of PCA as a dimensionality reduction technique in BSM,
very few studies have critically evaluated its performance relative to other FE methods.
Most research has defaulted to PCA due to its simplicity and well-established status in the
field. This narrow focus overlooks the potential benefits that alternative methods could
offer. As advances in ML and remote sensing continue to evolve, FE techniques have shown
promise in different fields but remain underexplored in the context of wildfire mapping
(Table 1). The lack of comparative studies examining a broader array of FE techniques
suggests a gap in the wildfire mapping literature.

Table 1. Recent research using feature extraction methods for dimension reduction.

Method Application

t-NSE Air quality [33] and bioinformatics [34]
LDA Land cover mapping [35]

Isomap Groundwater quality assessment [36], vegetation mapping [37,38], and
fluid mechanics [39]

UMAP Species distribution modeling [40] and air quality [33]
FA Medical [41] and biological applications [42]

ICA Mechanical fault diagnosis [43,44]
MDS Pattern recognition [45]
TSVD Reservoir simulation [46]
NMF Information retrieval [47]
LLE Fluid mechanics [39], bioinformatics [34], and medical applications [48]
SE Bioinformatics [34]

NCA Pattern recognition [49] and data science [50]

This study aims to enhance the accuracy of ML classifiers in BSM by evaluating FE
techniques that mitigate multicollinearity in vegetation indices. Using composite burn
index (CBI) data from the 2014 Carlton Complex fire that occurred in the United States as a
case study, we used 112 vegetation indices from seven Landsat-8 bands. We then applied
and compared 13 different FE techniques, including linear and nonlinear methods such as
PCA, t-distributed stochastic neighbor embedding (t-SNE), linear discriminant analysis
(LDA), Isomap, uniform manifold approximation and projection (UMAP), factor analysis
(FA), independent component analysis (ICA), multidimensional scaling (MDS), truncated
singular value decomposition (TSVD), non-negative matrix factorization (NMF), locally
linear embedding (LLE), spectral embedding (SE), and neighborhood components analysis
(NCA). The performance of these techniques is benchmarked against six ML classifiers.

In the following sections, we will provide a detailed description of our methodology,
present the results of our comparative analysis, and discuss the implications of our findings
for future BSM and management practices.

2. Methodology
2.1. Feature Extraction Methods
2.1.1. Principal Component Analysis (PCA)

PCA is a linear dimensionality reduction technique that transforms the original data
into a set of linearly uncorrelated components called principal components [51]. These
components maximize the variance in the data. The transformation is defined as:

Z = XW (1)
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where X is the data matrix of shape n × p, with n samples (CBI data) and p features
(vegetation indices), and W is the matrix of eigenvectors corresponding to the k largest
eigenvalues of the covariance matrix of X.

2.1.2. Linear Discriminant Analysis (LDA)

LDA is a supervised linear method that maximizes the ratio of between-class variance
to within-class variance, providing optimal class separability [52]. It projects the data into a
lower-dimensional space using the following criterion:

WLDA = argmaxW
WTSBW
WTSWW

(2)

where SB is the between-class scatter matrix, and SW is the within-class scatter matrix.
WLDA represents the projection matrix.

2.1.3. t-Distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE is a nonlinear technique that embeds high-dimensional data into a lower-
dimensional space by minimizing the divergence between probability distributions of
pairwise point distances in high- and low-dimensional spaces [53]. Given the pairwise
similarities Pij in high-dimensional space and Qij in the lower-dimensional space, t-SNE
minimizes:

C = ∑
i

∑
j

Pij log
Pij

Qij
(3)

2.1.4. Isomap

Isomap is a nonlinear extension of classical multidimensional scaling (MDS) that seeks
to preserve the geodesic distances between points on a manifold [54]. The geodesic distance
dG(i, j) is computed as the shortest path between points in the neighborhood graph. The
final embedding is found by applying classical MDS to the geodesic distance matrix.

2.1.5. Uniform Manifold Approximation and Projection (UMAP)

UMAP is a manifold learning technique that optimizes a fuzzy set representation
of the local neighborhood in high-dimensional space and attempts to preserve local and
global data structures [55]. UMAP seeks to minimize the cross-entropy between the fuzzy
simplicial sets in high- and low-dimensional spaces:

C = cross entropy
(

A(high), B(low)
)

(4)

where A(high) and B(low) are the high- and low-dimensional fuzzy simplicial sets, respec-
tively.

2.1.6. Independent Component Analysis (ICA)

ICA is a linear method that separates a multivariate signal into additive, indepen-
dent components [56]. Unlike PCA, which focuses on variance, ICA assumes that the
source components are non-Gaussian and statistically independent. The mixing model is
defined as:

X = AS (5)

where A is the mixing matrix and S is the source matrix of independent components.
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2.1.7. Factor Analysis (FA)

FA is a statistical method that assumes the observed data are generated by fewer
unobserved latent variables (factors) plus some noise [57]. The model is represented as:

X = LF + ϵ (6)

where L is the loading matrix, F is the latent factors, and ϵ is the noise.

2.1.8. Multidimensional Scaling (MDS)

MDS aims to preserve pairwise Euclidean distances in the low-dimensional embed-
ding [58]. It minimizes the stress function:

Stress
(

X’, X
)
=

√
∑
i<j

(
dij

(
X’
)
− dij(X)

)2
(7)

where dij

(
X’
)

is the distance between points i and j in the lower-dimensional space, and
dij(X) is the distance in the original space.

2.1.9. Spectral Embedding (SE)

SE, or Laplacian eigenmaps, is a nonlinear method that uses the eigenvectors of
the graph Laplacian to embed the data in a lower-dimensional space [59]. The graph
Laplacian L is constructed from the adjacency matrix of the nearest-neighbor graph and
the embedding is derived by solving the generalized eigenvalue problem:

Ly = λDy (8)

where D is the degree matrix, L = D − A is the graph Laplacian, and y is the embedding
coordinates.

2.1.10. Locally Linear Embedding (LLE)

LLE is a nonlinear dimensionality reduction technique that preserves the local struc-
ture of the data [60]. It computes weights, Wij, that best reconstruct each data point from
its neighbors, and then minimizes the reconstruction error in the lower-dimensional space:

Φ = ∑
i

∣∣∣∣∣Xi − ∑
j

WijXj

∣∣∣∣∣
2

(9)

where Xi is the i-th data point and Wij are the reconstruction weights.

2.1.11. Non-Negative Matrix Factorization (NMF)

NMF is a linear method that decomposes the data matrix X into two non-negative
matrices W and H, such that

X ≈ WH (10)

where W represents the basis vectors and H the coefficients. This method is useful when
the data components, such as spectral indices, are expected to be non-negative.

2.1.12. Truncated Singular Value Decomposition (TSVD)

TSVD is a variant of PCA where only the top k singular values and corresponding
vectors are retained [61]. The data matrix X is decomposed as:

X = UΣVT (11)
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where U and V are orthogonal matrices, and Σ is the diagonal matrix of singular values.
Only the top k singular values are used to reconstruct the data.

2.1.13. Neighborhood Components Analysis (NCA)

NCA is a supervised, nonlinear method that learns a linear transformation that maxi-
mizes the accuracy of nearest neighbor classification [62]. The transformation matrix A is
learned by minimizing the stochastic loss function:

L(A) =− ∑
i

log∑
j ̸=i

exp
(
−
∥∥Axi − Axj

∥∥2
)

(12)

where xi and xj are data points and A is the learned transformation.

2.2. Satellite Data Acquisition and Preprocessing

Landsat-8 is a satellite in the Landsat program that captures Earth observation data,
specifically designed for monitoring changes in the environment and land use. Launched
in 2013, it carries two key instruments: the Operational Land Imager (OLI) and the Thermal
Infrared Sensor (TIRS). The OLI captures images in nine spectral bands, including visible,
NIR, and SWIR, allowing for the detailed analysis of vegetation, water bodies, and urban
areas. TIRS measures thermal radiation in two bands, which is particularly useful for
monitoring surface temperatures, heat patterns, and water stress. Landsat-8’s data, with
a spatial resolution of 30 m for most bands and 100 m for thermal bands, offers high-
quality imagery used in various applications such as disaster monitoring, agriculture,
forestry, and climate change research. With a revisit time of 16 days, Landsat-8 provides
consistent, repeatable coverage of Earth’s surface, making it an essential tool for long-term
environmental monitoring.

We used Google Earth Engine to acquire and pre-process Landsat-8 data due to its
comprehensive tools and datasets [63]. To mitigate seasonal variations and accurately
represent post-wildfire conditions, we selected images from one month before and one
month after the field survey, which was conducted one year after the fire. We chose atmo-
spherically corrected surface reflectance products for their precision in measuring ground
reflectance, unaffected by atmospheric distortions such as scattering and absorption [64].
We only considered images with a maximum cloud coverage of 25%, resulting in five viable
scenes. Finally, we systematically applied the median filter and band selection functions
across the entire dataset to generate a composite image incorporating seven high-resolution
bands (Ultra blue, Red, Green, Blue, NIR, SWIR1, and SWIR2).

2.3. Data Structuring

We organized our input data into a numerical matrix format for pixel-based classifica-
tion. In this structure, each column represents a different feature, such as an optical index,
while the rows correspond to labeled data.

2.3.1. Optical Index Generation

The selection of optical indices was based on the premise that the distinctive character-
istics of burned areas differ from those of unburned sites. We selected nine commonly used
indices from BSM research (Table 2). Additionally, we generated synthetic optical indices
through custom calculations proposed by Van et al. (2024) [24], aimed to provide a more
nuanced and effective means of assessing the varying levels of burn severity across the
landscape. These formulations included normalized difference (a − b)/(a + b), ratio-based
(a/b), algebraic sum (a + b), algebraic difference (a − b), and product-based (a × b) calcula-
tions, where a and b represent any two of the seven Landsat-8 bands. As a result, a total of
118 indices, including the 7 original bands, were used in this study.
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Table 2. Lists of nine established indices were used in this study. Acronyms: BAI—Burn Area Index;
NBR—Normalized Burn Ratio; SAVI—Soil-Adjusted Vegetation Index; EVI—Enhanced Vegetation
Index; GEMI—Global Environment Monitoring Index; NIRv—Near-Infrared Reflectance of Vege-
tation; VARI—Visible Atmospherically Resistant Index; NDVI—Normalized Difference Vegetation
Index; CSI—Char Soil Index.

No. Index Formula References

1 BAI 1
(0.1−Red)2+(0.06−NIR)2 [65]

2 NBR NIR−SWIR2
NIR+SWIR2 [66]

3 SAVI 1.5×(NIR−Red)
NIR+Red+0.5

[67]

4 EVI 2.5×(NIR−Red)
NIR+6×Red−7.5×Blue+1

[68]

5 GEMI
eta×(1 − 0.25 × eta)−

(
Red−0.125

1−Red

)
, where

eta =
2×(NIR2−Red2)+1.5×NIR+0.5×Red

NIR+Red+0.5

[69]

6 NIRv NIR × NDVI [70]
7 NDVI NIR−Red

NIR+Red [71]
8 VARI Green−Red

Green+Red−Blue [72]
9 CSI NIR

SWIR1 [73]

2.3.2. Data Labeling: Composite Burn Index (CBI)

The CBI method, developed by Key and Benson (2006), is a widely used technique to
assess the severity of wildfires across different vegetation strata [66]. The method evaluates
fire effects in five distinct layers: substrate (soil and ground cover), herbaceous vegetation,
shrubs, intermediate tree layers, and canopy trees. For each layer, a trained observer
assigns a burn severity rating based on criteria, such as vegetation mortality, scorch height,
and changes in surface fuels. CBI is typically applied within predefined plots, allowing
for calculating an overall burn severity score by averaging the ratings across strata. This
method provides a standardized and comprehensive approach to quantify fire impacts,
aiding in ecological recovery assessments and landscape-level fire management strategies.

In our study, we used the dataset titled ‘Composite Burn Index (CBI) Data for the Con-
terminous US, Burned Areas Boundaries, Collected Between 1994 and 2018 [74]’ because it
provides a comprehensive and standardized assessment of wildfire burn severity across a
wide geographical and temporal range. The dataset is published by the U.S. Geological
Survey, and labeling involves categorizing various burn severity levels across different
regions of the U.S. using satellite imagery and ground measurements [75]. This dataset
spans more than two decades and provides valuable information on the extent of burned
areas, aiding in analyzing fire impact on ecosystems. The 2014 Carlton Complex fire was
selected for this study because it is the largest wildfire in Washington State’s history, burn-
ing approximately 103,643 hectares [76]. Its scale presents a unique opportunity to study
various burn severities across diverse vegetation types and landscapes, making it an ideal
case for advancing BSM techniques. Additionally, the fire contains the highest number of
CBI measurements—a total of 328 plots—offering a rich and comprehensive dataset for ML
modeling (Table 3) [77].

Table 3. Burn severity category definition used in this study, proposed by Miller and Thode (2009) [78].

Severity Category CBI Values Number of Data

No burn 0.00–0.1 110
Low 0.1–1.24 105

Moderate 1.25–2.24 54
High 2.25–3.00 59
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2.4. Machine Learning

Six different ML models were selected to ensure the robustness and generalization
of data classification. Each model has unique strengths and weaknesses, enhancing our
ability to test our methodology comprehensively. Additionally, employing multiple models
facilitates the validation of results, with consistent findings across different models improv-
ing the reliability of the research. This section briefly outlines ML models chosen for their
prominence in the literature and practical BSM applications.

2.4.1. Random Forest (RF)

RF is an ensemble learning method that constructs multiple decision trees during
training and outputs the mode of the classes from individual trees [79]. Each tree is trained
on a bootstrap sample from the dataset, and at each node, only a random subset of features
is considered for splitting, reducing overfitting. Given a set of decision trees T1, T2,. . ., TM,
the final predicted class ŷ for an input x is determined by majority voting:

ŷ = mode(T1(x), T2(x), . . . , TM(x)) (13)

The individual decision trees Ti are built by recursively splitting the data based on
feature values to maximize a certain criterion, such as Gini impurity or information gain.
This process is naturally extended to multi-class classification, where the RF model predicts
the class label that receives the most votes from all decision trees, allowing it to handle
problems involving multiple classes effectively.

2.4.2. Support Vector Machines (SVM)

SVM is a supervised learning model that aims to find the hyperplane that best sep-
arates classes in the feature space [80]. For linearly separable data, the hyperplane is
defined by:

wTx + b = 0 (14)

where w is the weight vector, x is the input vector, and b is the bias term. SVM seeks to
maximize the margin γ, the distance between the hyperplane and the closest data points
(support vectors). This is achieved by solving the optimization problem:

minw
1
2
∥w∥2subject to yi

(
wTxi + b

)
≥ 1 (15)

where yi represents the class labels and xi are the feature vectors. For nonlinearly separable
data, SVM can apply kernel functions K(xi, xj) to transform the input space into a higher-
dimensional feature space, allowing for a more flexible decision boundary. In this study,
we extended SVM to handle multi-class classification by employing one-vs-rest strategies,
which allow SVM to effectively differentiate between multiple classes. These approaches
involve decomposing the multi-class problem into several binary classification problems,
enabling SVM to be used for distinguishing the different burn severity levels effectively.

2.4.3. K-Nearest Neighbors (KNN)

KNN is a simple, non-parametric classifier that assigns a class to an input x based on
the majority class of its k-nearest neighbors in the feature space [81]. The distance metric,
typically Euclidean distance, is used to find the k closest data points to x. The predicted
class ŷ is:

ŷ = mode({yi|xi ∈ Nk(x)}) (16)

where Nk(x) presents the set of the k-nearest neighbors of x in the training data and yi is
the label of neighbor i. The number of neighbors k is a hyperparameter that controls the
classifier’s behavior, balancing local sensitivity (low k) and global generalization (high k).

In the case of multi-class classification, KNN can effectively handle multiple classes
by determining the majority class among the k-nearest neighbors, making it suitable for
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distinguishing different levels of burn severity. The mode function used in KNN naturally
extends to handle multiple classes, allowing it to predict the most common class label
among its neighbors.

2.4.4. Logistic Regression (LR)

Logistic regression is a linear classifier used for binary or multiclass classification
problems [82]. It models the probability of a sample belonging to a particular class using the
logistic sigmoid function. For binary classification, the probability P(y = 1|x) is given by:

P(y = 1|x) = 1
1 + e−wTx

(17)

where w is the weight vector, and x is the input feature vector. The decision rule for
classification is:

ŷ =

{
1 ifP(y = 1|x) ≥ 0.5

0 if P(y = 1|x) < 0.5
(18)

The model parameter w is estimated by maximizing the log-likelihood function:

LL(w) =
n

∑
i=1

[yilogP(yi|xi) + (1 − yi) log(1 − P(yi|xi))] (19)

For multi-class classification, LR can be extended using the one-vs-res strategy, where
multiple binary classifiers are trained to distinguish one class from the rest. Alternatively,
the SoftMax regression (or multinomial logistic regression) approach can be used, which
allows LR to handle multiple classes simultaneously by modeling the probability distribu-
tion over all possible classes. This multi-class adaptation is particularly useful in scenarios
like burn severity classification, where multiple burn severity levels must be differentiated.

2.4.5. Multi-Layer Perceptron (MLP)

MLP is an artificial neural network (ANN) consisting of layers of multiple neurons
(nodes) [83]. Each neuron in a layer receives input from the previous layer, applies a
weighted sum followed by a nonlinear activation function, and passes the result to the next
layer. For a single hidden layer MLP, the output of the network is:

ŷ = f(W2f(W1x + b1) + b2) (20)

where W1 and W2 are weight matrices, b1 and b2 are bias vectors, and f is the activation
function, commonly the sigmoid function or rectified linear unit (ReLU). The MLP is
trained using backpropagation to minimize a loss function, such as cross-entropy, for
classification tasks.

In the case of multi-class classification, MLP uses a SoftMax activation function in the
output layer to generate a probability distribution over all possible classes. This allows
the network to effectively differentiate between multiple burn severity levels by assigning
probabilities to each class, with the final predicted class being the one with the highest
probability. The use of cross-entropy loss is ideal for training MLPs in multi-class scenarios,
as it penalizes incorrect predictions based on the predicted probability for each class.

2.4.6. Adaptive Boosting (AB)

AB is an ensemble method that combines weak classifiers to create a strong classi-
fier [84]. AdaBoost trains a series of weak learners (e.g., decision stumps) iteratively, giving
more weight to misclassified samples at each step. The final prediction is a weighted sum
of the weak classifiers’ predictions:

ŷ = sign

(
T

∑
t=1

αtht(x)

)
(21)
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where ht(x) is the t-th weak classifier and αt is its corresponding weight based on its
accuracy. The weights αt are updated at each iteration according to the classification error
of ht. Samples misclassified by ht receive higher weights in the next iteration, forcing the
subsequent classifier to focus on difficult examples.

For multi-class classification, AB can be extended using methods such as SAMME.
These approaches adapt the original boosting framework to handle more than two classes
by modifying the weighting scheme and decision process to accommodate multiple class
labels. Specifically, in the SAMME variant, the weak classifiers output class probabilities
rather than binary decisions, and the algorithm then aggregates these to make a final
prediction across multiple classes. This adaptation makes AB well-suited for distinguishing
between different burn severity levels, as it emphasizes challenging samples and iteratively
improves classification accuracy.

2.4.7. Particle Swarm Optimization (PSO)

PSO, a hyper-parameter optimization technique inspired by the social behavior of
birds flocking, is used in this study (Table 4). We selected PSO because of its proven
effectiveness in navigating large hyperparameter spaces and finding globally optimal
solutions with a reasonable computational cost [85]. In PSO, a group of particles (candidate
solutions) explore the search space, where each particle adjusts its position based on its
own experience (personal best) and the experience of the entire swarm (global best) [86].
The velocity of each particle is updated using a combination of inertia, cognitive influence
(how close the particle is to its own best solution), and social influence (how close it is to
the swarm’s best solution). Mathematically, the velocity update is given by:

vt+1
i = wvt

i + c1r1
(
pt

i − xt
i
)
+ c2r2

(
gt − xt

i
)

(22)

where w is the inertia, c1 and c2 are the cognitive and social coefficients, and r1 and r2
are random factors. The particle’s position is then updated based on the new velocity.
The process repeats iteratively until a stopping criterion is met in order to converge on an
optimal solution by exploiting the shared knowledge of the swarm.

In our hyperparameter tuning process, we employed PSO from the Python pyswarm
library to efficiently determine optimal model settings. Specifically, we used a swarm
of 30 particles, which allowed for a balance between diversity in exploring the hyper-
parameter space and computational efficiency. The number of iterations was set to 100,
ensuring the optimization process had enough time to converge on a suitable solution
while avoiding unnecessary computation time. For parameter settings, the inertia weight
(w) was set to 0.5 to control the influence of a particle’s previous velocity on its new velocity,
thereby balancing exploration and exploitation in the search space. We set the cognitive
parameter (c1) and the social parameter (c2) to 1.5 each. This configuration ensures that
each particle was influenced by its best historical position and the best position found by
the swarm, maintaining a balance between individual search and social learning. Velocity
clamping was not employed in our approach since we found that the dimensionality and
scaling of the hyperparameters were well-handled without needing to restrict particle
velocity. Additionally, we defined specific bounds for each hyperparameter to maintain
the optimization within feasible and meaningful limits. These bounds were established
based on prior experience and best practices in the field. The stopping criteria for the
optimization were either the maximum number of iterations (100) or an improvement in
the fitness function that fell below a threshold (epsilon) of 1 × 10−5 for 10 consecutive
iterations, which indicated that convergence had been achieved.
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Table 4. Optimal values of hyperparameters determined using the PSO method.

Models Hyper-Parameters Optimal Values

SVM

C 1.261
kernel ‘poly’

gamma ‘scale’
degree 2
coef0 5.846

RF

n_estimators 199
max_depth 25

min_samples_split 12
min_samples_leaf 2

max_features ‘sqrt’
criterion ‘log_loss’

MLP

hidden_layer_sizes (100, 100)
activation ‘tanh’

solver ‘adam’
alpha 0.00342

learning_rate ‘constant’

AB

max_depth 8
min_samples_split 10
min_samples_leaf 2

n_estimators 168
learning_rate 0.623

algorithm ‘SAMME’

LR
C 2.437

solver lbfgs

KNN
n_neighbors 12

weights ‘uniform’
algorithm ‘auto’

2.5. Experimental Setups

This research compares 13 FE methods to determine which performs best across multi-
ple classifiers. The primary goal is identifying the methods that help classifiers maintain
high BSM performance. Each FE method is evaluated using three components to ensure
a fair and comprehensive comparison. This choice is driven by the limitations of certain
methods like t-SNE and LDA, which constrain the maximum number of components to
the number of classes minus one. Figure 1 presents 3D scatter plots showing the results of
FE methods applied to our BSM dataset with four burn severity levels, namely no burn,
low, moderate, and high severity, and the goal is to visually assess how well the methods
separate the burn severity classes. It is noted that NCA and LDA, which are supervised
techniques, exhibit the clearest separation, as they are designed to maximize class dis-
tinction, making them particularly effective at clustering the burn severity categories into
distinct groups.
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Other methods, such as PCA, Isomap, and FA, show a fair amount of overlap be-
tween classes, with the limited separation of the burn severity groups. Similarly, TSVD,
LLE, SE, and t-SNE exhibit overlapping clusters, suggesting they are less effective in dis-
tinguishing between the burn classes. In contrast, ICA, MDS, NMF, and UMAP show
better-structured clustering, with MDS and UMAP providing moderate separation between
classes, particularly between the no-burn and other categories.

For the next phase, we conducted a comprehensive benchmarking of thirteen FE
methods using six ML models to evaluate their performance in predicting fire severity
levels. To ensure that our evaluation is statistically robust and reliable, we incorporated a
bootstrapping method into our experimental design. The evaluation process involves the
following steps.

• Step 1: Balanced Sample Selection: We randomly selected 54 training samples for each
fire severity level, as detailed in Table 3. This selection ensures a balanced dataset,
which is crucial for the performance of classification algorithms. A balanced sample
mitigates the risk of model bias toward any particular class, enhancing the fairness
and accuracy of the evaluation [77].
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• Step 2: Dataset Splitting. The selected data (n = 216) are then randomly split into
training and testing sets using a 70/30 ratio. This standard practice in machine learning
balances the need for sufficient data to train the model (70%) with enough data to
validate its performance (30%). The training set is used to build the ML models, while
the testing set provides an unbiased assessment of how well the models generalize to
unseen data.

• Step 3: Bootstrapping for Statistical Robustness: To enhance our results’ reliability and
statistical robustness, steps 1 and 2 are repeated 1000 times, mitigating any anomalies
that might influence the outcomes due to variability in data splits.

For model accuracy assessment, overall accuracy (OA), precision, recall, and F1-score
are used in this study (Table 5). OA generally measures how well the model correctly
classifies instances across all categories. Precision focuses on the model’s ability to correctly
identify positive instances without misclassifying negative ones, while recall assesses
how well the model captures all relevant positive instances in the dataset. The F1-score,
a harmonic mean of precision and recall, offers a balanced assessment of the model’s
performance by considering both false positives and false negatives, making it especially
useful in cases of an imbalance between classes. These metrics together provide a robust
evaluation of the model’s effectiveness in the study.

Table 5. Statistical metrics used in this study. Acronyms: TP—true positive; TN—true negative;
FP—false positive; FN—false negative.

Metrics Formula Range Optimal Value

OA TP+TN
TP+TN+FP+FN 0.0–1.0 1.0

Precision TP
TP+FP 0.0–1.0 1.0

Recall TP
TP+FN 0.0–1.0 1.0

F1-score 2 × Precision×Recall
Precison+Recall 0.0–1.0 1.0

2.6. Case Study

The Carlton Complex fire (Figure 2), which ignited in July 2014 due to lightning
strikes amidst severe drought conditions, became the largest and one of the most destruc-
tive wildfires in Washington State’s history [87]. Located in north-central Washington’s
Okanogan County, the fire began as four blazes—the Stokes, Gold Hikes, French Creek,
and Cougar Flat fires—merged into a massive inferno fueled by high temperatures and
strong winds [88]. Over its duration, the fire scorched approximately 103,643 hectares of
land, destroyed over 300 homes and numerous other structures, and caused an estimated
USD 98 million in damages. Thousands of residents were forced to evacuate as the fire
damaged infrastructure, including power lines and communication networks. Despite the
efforts of over 3000 firefighters from various agencies, the fire was not fully contained until
late August 2014. The Carlton Complex fire left lasting scars on the landscape, leading to
environmental issues like soil erosion and habitat loss, and profoundly impacted local com-
munities, underscoring the challenges of wildfire management and the need for improved
preparedness in the face of changing climate conditions.
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Figure 2. Location of the 2014 Carlton Complex wildfire used in this study.

The aftermath of the Carlton Complex fire has left enduring ecological scars, including
soil erosion and habitat loss, highlighting the ongoing challenges of wildfire management
and the imperative for enhanced preparedness amidst evolving climate conditions. The
selected imagery for this study includes data from one month before and one month
between the field survey date in August 2015. By capturing the post-fire effects close to the
field survey date, we aimed to minimize the impact of seasonal variations and provide a
robust basis for evaluating burn severity levels across the affected area.

3. Results
3.1. Comparative Performance Analysis of Feature Extraction Methods

Figure 3 presents the classification results by different ML models when applied to
various RF methods. Overall, LDA consistently emerges as the top-performing RF method
across various classifiers and performance metrics. When evaluating the OA, LDA achieves
superior results with high values across all classifiers, reaching 0.84 with SVM, RF, and
MLP and 0.82 with AB. Notably, even for the weaker classifiers like KNN and LR, LDA still
delivers a relatively strong accuracy of 0.85, outperforming most other methods. Regarding
precision, LDA also excels, showing a high precision value of 0.84 with SVM and 0.85 with
RF, MLP, LR, and KNN, indicating its ability to minimize false positives. LDA’s recall
performance follows a similar trend, maintaining consistently high recall values, such as
0.84 with SVM and RF and 0.85 with MLP, RF, and KNN, showcasing its ability to capture
relevant instances effectively. The F1-score heatmap further cements LDA’s dominance,
with high F1-scores across classifiers, including 0.84 for KNN and 0.85 for LR, reflecting its
balanced strength between precision and recall.
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Figure 3. Heatmaps representing the performance of thirteen feature extraction methods on four
different metrics, namely (a) overall accuracy (OA), (b) precision, (c) recall, and (d) F1-score, across
six machine learning classifiers. The x-axis of each heatmap lists the FR methods, while the y-axis
lists the classifiers. The color intensity in each heatmap indicates the mean performance score of
1000 simulations.

While LDA leads overall, NCA closely follows, occasionally surpassing LDA in specific
cases, especially with the AB model. For instance, when using AB, NCA achieves a slightly
higher F1-score of 0.83 compared to LDA’s 0.82 and achieves the same 0.83 for OA, precision,
and recall. This demonstrates NCA’s ability to enhance performance slightly with this
classifier, even though it tends to be less effective than LDA in most other scenarios. In
other cases, such as with SVM, MLP, and LR, NCA performs closely to LDA but does not
surpass it, typically trailing by only a small margin, such as achieving 0.84 in the F1-score
for SVM, which is just slightly lower than LDA’s value. These small differences highlight
that, while NCA is a robust dimensionality reduction method, particularly for AB, LDA
remains the most reliable and high-performing method across different classifiers, making
it the optimal choice for dimensionality reduction in this context.
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3.2. Impact of Feature Extraction Components on Classifier Performance

This analysis explores the relationship between the number of components used in
various FE methods and their impact on OA (Figure 4). To approach this analysis more ef-
fectively, we grouped the FE methods based on their behavior as the number of components
increases and then analyzed each group. This allowed for a more structured and insightful
analysis by focusing on methods that share similar patterns in performance. The methods
can be grouped into three main groups based on their behaviors. Understanding these
groupings allows for more informed decisions when selecting the number of components
for each FE method, maximizing classification performance across models.

Remote Sens. 2024, 16, x FOR PEER REVIEW  16  of  24 
 

 

3.2. Impact of Feature Extraction Components on Classifier Performance 

This analysis explores the relationship between the number of components used in 

various FE methods and their impact on OA (Figure 4). To approach this analysis more 

effectively, we grouped the FE methods based on their behavior as the number of compo‐

nents  increases and then analyzed each group. This allowed for a more structured and 

insightful analysis by  focusing on methods  that share similar patterns  in performance. 

The methods can be grouped  into three main groups based on their behaviors. Under‐

standing these groupings allows for more informed decisions when selecting the number 

of components for each FE method, maximizing classification performance across models. 

 

Figure 4. Relationship between the number of components used in thirteen feature reduction meth‐

ods and  the performance  (overall accuracy, OA) of six classifiers—RF, LR, KNN, SVM, AB, and 

MLP. The x‐axis in each plot shows the number of components, while the y‐axis represents the OA. 

Each line corresponds to one of the classifiers fitted by quadratic polynomial regression models. 

Group 1 consists of methods  that exhibit a  steady  increase  in performance as  the 

number of components increases. PCA, t‐SNE, LDA, ICA, and TSVD into this category. 

PCA shows a clear improvement as components increase, with the OA rising from ap‐

proximately 0.6 at one component to nearly 0.7 or more by ten components. This behavior 

suggests that more components allow PCA to retain more variance and preserve critical 

information, which improves classification performance. For example, classifiers like RF, 

LR, and MLP perform consistently better with 10 components, reaching accuracy levels 

close to 0.7. Similarly, t‐SNE and LDA demonstrate a gradual increase in accuracy as the 

number of components increases. From around 0.75 at one component, LDA reaches ap‐

proximately 0.85 at three components. ICA and TSVD also follow this trend, with accuracy 

Figure 4. Relationship between the number of components used in thirteen feature reduction methods
and the performance (overall accuracy, OA) of six classifiers—RF, LR, KNN, SVM, AB, and MLP. The
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Group 1 consists of methods that exhibit a steady increase in performance as the
number of components increases. PCA, t-SNE, LDA, ICA, and TSVD into this category. PCA
shows a clear improvement as components increase, with the OA rising from approximately
0.6 at one component to nearly 0.7 or more by ten components. This behavior suggests that
more components allow PCA to retain more variance and preserve critical information,
which improves classification performance. For example, classifiers like RF, LR, and MLP
perform consistently better with 10 components, reaching accuracy levels close to 0.7.
Similarly, t-SNE and LDA demonstrate a gradual increase in accuracy as the number of
components increases. From around 0.75 at one component, LDA reaches approximately
0.85 at three components. ICA and TSVD also follow this trend, with accuracy increasing
steadily from 0.6 at one component to over 0.65 at ten components for classifiers like SVM
and LR.
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Group 2 includes methods that reach peak performance at a certain number of com-
ponents and then either plateau or show a decline in accuracy with further increases in
components. NMF, FA, MDS, and LLE exhibit this behavior. NMF shows a significant
increase in accuracy up to around seven components, reaching 0.70 for most classifiers,
but beyond this point, accuracy starts to decline, dropping back to around 0.63 at ten com-
ponents. This indicates that NMF performs best with seven components, and increasing
beyond this introduces unnecessary complexity, leading to decreased performance. This
pattern highlights the risk of overfitting with too many components. FA also peaks around
seven components, where accuracy reaches approximately 0.68 across classifiers and then
plateaus or slightly declines with further increases. MDS and LLE behave similarly, with
accuracy gradually improving to about eight components, reaching 0.65, but then plateaus
or slightly declines as the number of components increases. For methods in this group,
selecting an optimal number of components (around seven) is advisable, as adding more
components beyond this point does not yield significant performance improvements and
may even degrade accuracy.

The final group, Group 3, consists of methods that show little to no sensitivity to the
number of components, meaning their performance remains stable, improves minimally,
or decreases as components increase. Isomap, UMAP, SE, and NCA fall into this category.
Isomap and UMAP show stable performance across most classifiers, with accuracy hovering
between 0.60 and 0.62 regardless of the number of components. Similarly, SE shows a
small increase in accuracy as the number of components increases, but the improvement
is minimal, with accuracy hovering around 0.60 to 0.63. This suggests that those models
capture most of the important structures with very few components, and adding more
components does not impact classification performance. In contrast to the other methods,
NCA shows a slight decline in performance as the number of components increases.
Accuracy starts around 0.8 with one component but drops to around 0.75 as the number
of components increases. This indicates that NCA performs best with fewer components.
In conclusion, for methods in this group, there is little benefit in increasing the number of
components beyond three, as performance remains relatively stable.

4. Discussion
4.1. Limitations of PCA

PCA is a well-established FE technique in BSM due to its ability to reduce dimensional-
ity by transforming correlated variables into orthogonal components [20,28–32]. While PCA
effectively simplifies data structure and enhances computational efficiency, its ability to
capture underlying class separability is limited, particularly in complex, high-dimensional
datasets such as those used for BSM. Specifically, PCA’s focus on maximizing variance
without incorporating class label information often results in suboptimal performance dis-
tinguishing different burn severity levels [89]. The transformation performed by PCA does
not account for the inherent relationships between classes, which may lead to overlapping
distributions that make classification challenging. This study demonstrates that, while
PCA can effectively mitigate multicollinearity, its utility is constrained by its inability to
fully exploit the discriminative power of the feature space. To quantify these observations,
our experiments revealed that the overall accuracy (OA) of models utilizing PCA as an
FE method averaged around 64% across different classifiers, with significant variability
depending on the complexity of the dataset and the classifier used (Figure 3). These results
highlight PCA’s limitations in discriminative performance, particularly in comparison
to supervised methods that leverage class label information. Another notable limitation
of PCA is its linear nature, which restricts its ability to capture nonlinear relationships
between features [90]. BSM data often involves complex interactions between spectral
indices, which are better represented by nonlinear transformations [91]. Consequently,
PCA’s linear transformation approach can result in a loss of information when dealing with
nonlinear patterns inherent in the dataset. This is particularly problematic in BSM, where
accurately distinguishing between different burn severity levels is critical for effective wild-
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fire management and ecological restoration. Therefore, reliance on PCA may hinder the
effectiveness of ML models in capturing subtle but important differences in burn severity.

4.2. Effectiveness of LDA and NCA

In our experiments, LDA achieved an average OA of 84% across all classifiers, signifi-
cantly improving PCA and underscoring LDA’s effectiveness in preserving class informa-
tion and improving overall model performance. Unlike PCA, LDA leverages class label
information during the dimensionality reduction process, which enables it to prioritize
the most informative features for distinguishing between different burn severity levels.
This characteristic makes LDA particularly suitable for BSM, where accurate discrimina-
tion among varying levels of burn severity is crucial. Moreover, LDA is computationally
efficient, making it a practical choice for large datasets commonly encountered in remote
sensing applications (Figure 4). These findings align with prior research, emphasizing the
effectiveness of LDA in classification tasks [35,92–95]. NCA also demonstrated promise,
achieving an average OA of 83% across classifiers. Although NCA did not consistently out-
perform LDA across all classifiers (except for the AdaBoost model), it exhibited significant
advantages in scenarios where local class separation was crucial. Similarly to LDA, NCA
leverages class label information, but it does so by optimizing the local distance metrics to
improve classification outcomes.

Figure 5 compares the performance of PCA, LDA, and NCA using six classifiers.
The F1-scores are used to assess four fire severity levels: no burn, low, moderate, and
high severity. LDA and NCA consistently outperform PCA across all burn severity levels.
For example, for the no-burn to moderate-severity classes, LDA and NCA achieve F1
scores between 0.75 and 0.9, while PCA lags behind with F1 scores around 0.5 to 0.7. This
represents a significant performance gap, with LDA and NCA providing a clear advantage
in these more complex scenarios. However, the performance gap between these FE methods
narrows in the high-severity class, making PCA more competitive. For this class, LDA
and NCA still maintain slightly higher F1-scores, typically between 0.9 and 0.93, but PCA
achieves comparable results with F1-scores in the range of 0.80 to 0.87. This smaller gap
indicates that while LDA and NCA generally perform better, PCA can hold its own in the
high-severity class, where the three methods are much closer in effectiveness.

Classifiers combined with LDA and NCA deliver much more consistent performance
than those paired with PCA, where results show significant fluctuations across models.
With LDA and NCA, F1-scores remain stable across different classifiers, typically ranging
from 0.8 to 0.93, depending on the fire severity level, highlighting the robustness of these
FE methods. In contrast, PCA shows much greater variability, especially in low- and
moderate-severity classes where F1-scores for some classifiers (i.e., KNN, LR, and SVM)
fluctuate. This inconsistency suggests that PCA is more sensitive to the choice of classifier,
leading to greater fluctuations in performance.

Our findings further indicate that LDA or NCA combined with LR or MLP achieve
the highest F1-scores, often nearing 0.92, making this combination the most effective for the
no-burn class. In the low-severity class, where classification is more challenging, LDA-LR
or NCA-KNN also performs best, with F1-scores ranging between 0.8 and 0.82. For the
moderate-severity class, the optimal combination is LDA with RF, yielding F1-scores of
0.78. While the gap between methods narrowed for the high-severity class, LDA provided
the best performance, with F1-scores of approximately 0.93 when paired with KNN.
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4.3. Research Limitations and Future Directions

Despite the promising results, several limitations should be acknowledged. First,
the study focused on a single fire event (the 2014 Carlton Complex fire), limiting the
generalizability of the findings to other fire events or regions. Additionally, the vegetation
indices generated were based solely on Landsat-8 data, which, while widely used, might
not capture the full spectral information necessary for optimal classifier performance. Other
data sources like hyperspectral sensors may offer additional insights [96]. Future research
could address these limitations by testing the effectiveness of LDA and other FE techniques
across a broader range of fire events and regions.

The lack of consideration for the influence of vegetation types on the accuracy of
burn severity mapping is also a limitation of this study. Different vegetation types, such
as forests, shrublands, and grasslands, can exhibit varying responses to fire, potentially
affecting the accuracy of burn severity assessments [97]. While our analysis focused on
using the CBI dataset, which provides a comprehensive overview of burn severity across
different landscapes, we did not specifically account for vegetation type variability. This
could be an important factor influencing burn severity detection and mapping accuracy.
As such, future research will aim to address this limitation by incorporating vegetation
type data to better understand how different ecosystems respond to fire. This will allow for
more precise and vegetation-specific BSM, enhancing the robustness of our assessments.

Another avenue of investigation could involve ensemble methods that combine multi-
ple FE techniques to handle multicollinearity and nonlinear relationships simultaneously.
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Finally, expanding this research to include real-time monitoring applications could enhance
the utility of BSM for on-the-ground disaster management efforts.

5. Conclusions

This study evaluated 13 feature extraction (FE) techniques to enhance machine learn-
ing classifiers for burn severity mapping (BSM) by mitigating multicollinearity among
vegetation indices. Using data from the 2014 Carlton Complex fire and 118 vegetation
indices from Landsat-8, we found that linear discriminant analysis (LDA) consistently
outperformed other FE methods across multiple classifiers, making it a reliable choice
for dimensionality reduction in BSM. Notably, neighborhood components analysis (NCA)
occasionally surpassed LDA under specific conditions—particularly with the adaptive
boosting classifier and when using only one component—highlighting the importance of
tailoring FE methods to the classifier and data characteristics. The number of components
impacted classifier performance, with different FE methods exhibiting varying behaviors
as components increased. These findings underscore the need for careful selection and
tuning of FE methods and the number of components to optimize BSM models, ultimately
contributing to more accurate and efficient wildfire management strategies.

By improving the handling of complex, high-dimensional datasets, this study provides
a framework to enhance decision-making and data analysis in diverse applications beyond
wildfire management. The FE and classification techniques used here, such as LDA and
NCA, can be applied to other types of natural disaster mapping, such as landslide, flood,
and drought assessment, enhancing their precision and efficiency.
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