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Abstract: High‑resolution water quality maps derived from imaging spectroscopy provide valuable
insights for environmental monitoring and management, but the processing of all pixels of large
datasets is extremely computationally intensive and limits the speed of map production. We demon‑
strate a superpixel approach to accelerating water quality parameter inversion on such data to con‑
siderably reduce time and resource needs. Neighboring pixels were clustered into spectrally simi‑
lar superpixels, and bio‑optical inversions were performed at the superpixel level before a nearest‑
neighbor interpolation of the results back to pixel resolution. We tested the approach on five example
airborne imaging spectroscopy datasets from Hawaiian coastal waters, comparing outputs to pixel‑
by‑pixel inversions for three water quality parameters: suspended particulate matter, chlorophyll‑a,
and colored dissolved organic matter. We found significant reduction in computational time, rang‑
ing from 38 to 2625 times faster processing for superpixel sizes of 50 to 5000 pixels (200 to 20,000 m2).
Using 1000 paired output values from each example image, we foundminimal reduction in accuracy
(as decrease in R2 or increase in RMSE) of the model results when the superpixel size was less than
750 2 m × 2 m resolution pixels. Such results mean that this methodology could reduce the time
needed to produce regional‑ or global‑scale maps and thereby allow environmental managers and
other stakeholders to more rapidly understand and respond to changing water quality conditions.

Keywords: pollution; turbidity; sedimentation; conservation; Hawai‘i; Global AirborneObservatory

1. Introduction
Monitoring of changes in water quality is extremely important for understanding and

responding to events that can affect human and ecosystem health [1]. To this end, remote‑
sensing technology has revolutionized our ability to monitor water quality at large spatial
scales by reducing time spent in the field sampling and at the same time drastically in‑
creasing the spatial sampling frequency [2]. Maps of water quality produced from remote‑
sensing data allow wall‑to‑wall coverage of a region of interest with high enough spatial
resolution to discern distributional patterns in individual water quality parameters. Maps
with such high spatial detail allow researchers and environmental managers to better track
changes inwater bodies over time, identify pollution sources and hotspots, and implement
targeted conservation strategies [2–4]. The development of remote‑sensing‑based water‑
quality‑mapping capability has progressed along with the development in the spatial res‑
olution and spectral fidelity of the available sensors.

One rapidly developing technology that has greatly improved our ability to map wa‑
ter quality parameters of interest is imaging spectroscopy, which measures reflected solar
radiation sampled across a large number of spectral bands at increasingly fine spectral
and spatial resolutions [5,6]. Unlike multispectral instruments, which are more limited to
empirical fitting of band ratios to individual water quality parameters (see [7] for several
examples), the expanded spectral detail provided by imaging spectroscopy allows for the
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simultaneous detection and quantification of various water quality parameters, including
chlorophyll‑a (Chl‑a), suspended particulate matter (SPM), and colored dissolved organic
matter absorbption coefficient at 440nm (CDOM) [6,8,9]. A common approach to this prob‑
lem is to use optimization techniques applied to iterative forward simulations of radiative
transfer through the water body using a radiative transfer model with adjustable parame‑
ters for bottom reflectance and water properties [10].

When it comes to responding to water quality issues involving human or ecosystem
health, time is of the utmost importance. While water quality mapping from imaging spec‑
trometer data yields improvements in accuracy over simpler data types, the process is
extremely complex and time‑consuming. Indeed, data latency is one of the key factors hin‑
dering the adoption of remote‑sensing technology into water quality management prac‑
tices [11]. In addition to modeling out the effects of an air atmosphere, methods for re‑
trieving water quality information from spectrometer data typically require modeling the
radiative transfer of light through a column of water, involving a very large number of
unknowns [12–16], and unmixing the influence of water properties and the bottom sur‑
face quickly becomes a very lengthy and underdetermined computation, even for mod‑
ern computing architectures [17]. More rapid approaches use empirical models based on
band ratios and indices; however, these approaches require re‑calibration and cannot be
quickly adapted to new regions of interest and likely even different coverage dates [18].
The high spatial and spectral resolutions of modern imaging spectroscopy datasets afford
millions or even billions of individual reflectance spectra needing to be fit. Even with clus‑
ter computers, this extreme number can present a significant hurdle when trying to build
large‑scale water quality maps from such data on short time scales. Techniques to speed
up this modeling can make mapping projects much more tractable and, more importantly,
increase the speed at which useful maps of water quality can be made available to rapidly
detect and respond to significant changes in water quality.

Here, we develop and demonstrate a working approach for accelerating water quality
parameter inversion on large imaging spectroscopy datasets to overcome the computational
challenges that hinder our ability to meet these rapid, actionable mapping needs. This ap‑
proach utilizes two key features to achieve significantly reduced computational time with
minimal loss of accuracy. First, neighboring pixels of the input reflectance map are clus‑
tered into superpixels, or clusters of neighboring and spectrally similar pixels. Spectra from
the pixels within these superpixel clusters are averaged and inversions are performed at
the superpixel level. Second, these model‑fitting results are then back‑interpolated to all
original pixels using a local regression model. We describe this algorithm in detail and an‑
swer the following questions to determine if this approach is useful. First, how closely do
outputs from the algorithmmatch computational gains and accuracy losses from using this
approach over the pixel‑by‑pixel approach on some sample datasets? Second, what levels
of efficiency gains can be achieved? Finally, because the superpixel size should affect both
answers above, is there an optimal spatial scale for the superpixels to maximize the utility
and accuracy of this algorithm?

2. Materials and Methods
2.1. Bio‑Optical Inversion Model

For this investigation, we used the bio_optics package version 0.0.2 [19] for the in‑
version of three individual water quality parameters, Chl‑a (µgL−1), SPM (mgL−1), and
CDOM (m−1). This package contains an inversion optimization tool that incorporates the
bio‑optical simulation model of Albert and Mobley [13] and the water surface reflectance
model of Gege [20]. For inversion, we used the default input parameters (mostly provided
as part of the water color simulator software package WASI version 6 [15]) to compute the
spectral absorption and backscattering of the water body.

Bottom reflectance is simulated as a mixture of endmembers representing different
benthic cover classes. To better match the model results to the study region, we used a
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custom bottom reflectance (Rb) library with four benthic classes, (1) sand, (2) live coral,
(3) algae, and (4) dark rock, built using averaged example in situ spectra collected locally.

The inversion window included 54 spectral bands between the wavelengths 420 to
690 nm. During optimization, the mean absolute error—calculated as the sum of all band‑
wise absolute differences between observed and simulated below‑surface remote sensing—
was used as a loss function. Parameters allowed to vary during model optimization in‑
cluded the following (see [19] for details):
• Concentrations of Chl‑a in µgL−1 from 6 different phytoplankton types (C0 through

C5), all with a starting value of 0.1 and an allowed range of 0.0 to 100.0;
• The concentration of Mie‑scattering particles (CMie) in mgL−1, with a starting value

of 0.1 and an allowed range of 0.0 to 100.0;
• The concentration of particles with a spectrally flat backscattering response (CX) in

mgL−1, with a starting value of 0.5 and an allowed range of 0.0 to 100.0;
• The CDOM absorption coefficient at wavelength 440 nm (CY) in m−1 units, with a

starting value of 0.01 and an allowed range of 0.00 to 4.00;
• Contributions of each of the four benthic cover classes to bottomreflectance (f1 through

f4), each with a starting value of 0.25 and an allowed range of 0.00 to 1.00;
• Water depth (zB) in meters, with a starting value of 10.0 and an allowed range of 0.0

to 100.0;
• Surface glint, using the intensity of direct glint (gdd) as well as diffuse glint originating

from Raleigh and aerosol scattering processes (gdsr and gdsa).
After inversion, the three parameters of interest were retrieved from the fitted param‑

eters using the following equations:

Chl‑a = ∑
i∈[0,5]

Ci (1)

CDOM = CY (2)

SPM = CX + CMIE +
Chl‑a
1000

(3)

2.2. Validation Data
To test our algorithm, we chose five individual flight lines of reflectance imagery

collected by the Global Airborne Observatory (GAO) [21] from example sites across the
Hawaiian Islands (Table 1). Each of these test images exhibited easily identifiable gradi‑
ents of one or more of the water quality parameters of interest. The GAO VSWIR spec‑
trometer measures radiance in 428 calibrated channels ranging from 348 to 2486 nm at
approximately 5 nm intervals, with the full width half max for each channel ranging from
5.49 to 5.82 nm. The instrument is radiometrically calibrated on the ground using an inte‑
gration sphere and standard NIST lighting instrumentation at least once a year to update
the individual band center wavelengths, compute correction factors for uniformity of de‑
tector elements, and compute the coefficients used to convert raw digital number values
into calibrated radiance readings (µWcm−2Sr−1nm−1). The pushbroom instrument has a
field of view of 34 degrees, which measures cross‑track in 598 samples at a rate of 100 Hz.

During collection for all of the above flight lines, nominal altitude was 2000 m above
ground levelwith amaximumair speed of approximately 130 kts (66.9ms−1), which, when
orthorectified, results in a spatial resolution of 2 × 2 m. Days and times of data collection
were tightlymanaged tominimized variation in solar lighting andwater surface conditions.
To manage lighting conditions and solar glint, we targeted sections of coastline with clear
skies and limited data collection to the hours 9 AM to 11:30 AM, and the aircraft azimuth
was set such that the sunwas behind the tail of the aircraft tomanage solar angles. If winds
were picked up before 11:30, then another location was targeted or data collection was
stopped so that we couldminimize water surface variations to further minimize solar glint.
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Table 1. Information on the five imaging spectroscopydatasets used as the validation of the proposed
algorithm. All times are in 24 h format, and Latitude and Longitude are in decimal degrees.

Site Name Date Local
Time Latitude Longitude

1 Pelekane Bay 30 October 2023 10:02 20.0243 −155.8256
2 East Kaho‘olawe 22 January 2024 09:15 20.6027 −156.5638
3 Hilo Bay 15 January 2023 11:30 19.7353 −155.0636
4 Mā‘alaea Bay 22 January 2024 10:19 20.7805 −156.4842
5 South Moloka‘i 7 January 2024 11:31 21.0866 −157.2159

We transformed calibrated radiance data from each of the test sites above into above‑
surface reflectance (R, unitless) using the “apply_oe” tool provided in the ISOFIT pack‑
age [22,23] version 2.10.2. During this processing, each image was broken into clusters
representing approximately 1600 m2 of area on the Earth’s surface (approx. 400 image pix‑
els), and atmospheric correction was applied to each of these clusters to obtain a posterior
estimate of reflectance. For this, we used an empirically derived prior surface covariance
model that was computed by ISOFIT from a library of ocean and terrestrial reflectance
spectra collected for the PRISMmission. The cluster‑level inversions were then used in an
empirical line approach to create a linear model of radiance to reflectance for each band,
which could be applied to the individual pixel radiance spectra from the image to create a
map of modeled reflectance scaled as a value from 0 to 1.

The resulting reflectance images were next processed using a series of multi‑band
indices used as filters to mask out pixels representing non‑water surfaces, crashing waves,
shadowed bottom surface conditions, and extreme amounts of direct solar glint. Any pixel
failing one or more of the following tests of water reflectance patterns was removed from
consideration in the water quality mapping:
1. An Automated Water Extraction Index [24] greater than 0.005;
2. A Modified Normalized Difference Water Index [25] greater than 0.2;
3. An NIR glint metric, computed as the mean reflectance of all bands between 880 and

920 nm, less than 0.06;
4. A brightness metric, computed as the mean reflectance of all bands between 500 and

560 nm, greater than 0.01;
5. A green–nir slope metric, computed as the negative of the slope parameter of a re‑

gression line fit to reflectance values for all bands between 575 and 700 nm against
the center wavelengths of these bands, divided by the value of the glint metric in
(3) above, greater than 0.0025;

6. The same brightness metric as in (4) above less than 0.15 OR a blue‑green slope index,
computed as (reflectance at 490 nm—reflectance at 440 nm)/(reflectance at 440 nm),
greater than 0.05.
Tests 1 and 2 were quick to separate terrestrial and aquatic reflectance spectra. The

glint metric (3) easily identified pixels where any below‑surface spectral signal would be
lost in the high noise of solar glint after glint removal. The minimum brightness score
(4) detected pixels where shadowing on the bottom surface drastically reduced the signal‑
to‑noise ratio. With initial tests using a simple filter of high brightness, we found that
a bright sand bottom surface could lead to similar levels of brightness as aerated water
near crashing waves. Tests 5 and 6 were developed to better separate these two cases and
enable masking of the latter. After masking pixels that were not appropriate for inversion
modeling, we converted the remaining reflectance spectra R into above‑surface radiance
reflectance (rrs0+; sr−1), used as input by the inversion model, by dividing all bands by
π. The glint signal remaining in the rrs0+ spectra would later be modeled out during the
inversion modeling.
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2.3. The Superpixel Approach
To greatly speed up the time it takes to produce a high‑resolution map of water qual‑

ity parameters from a single flight line of airborne imaging spectrometer data, our algo‑
rithm started with the creation of superpixels from the input dataset (Figure 1). In the
first step, water pixels in the input surface reflectance image were segmented into super‑
pixels. Because these superpixels have similar spectral characteristics, they can be treated
as a meaningful sampling unit if within‑superpixel variance is significantly smaller than
between‑superpixel variance. While there are several superpixel clustering algorithms to
break each of the non‑orthorectified spectral images into superpixels [26], we chose the
SLIC algorithm [27] because it is well tested, sufficiently fast, and easily implemented us‑
ing the Scikit‑Image python package [28]. This algorithm has also been demonstrated suc‑
cessfully on water color data [29].

In brief, the SLIC algorithm begins by evenly spreading cluster center points across
the image. A smoothing operation, controlled by a sigma value, is applied to the image.
Then, each cluster is given the X, Y location and the spectral color values of the nearest
pixel. Each pixel is then assigned to the cluster with the closest (Euclidean) values for both
X, Y location and pixel color, weighted by a compactness parameter that affects the relative
scaling of location versus color values (higher compactness will more greatly emphasize
location differences over color differences, keeping the clusters more uniformly shaped).
Once all pixels are assigned, the cluster centers and color are recomputed from the aver‑
age of all pixels within the clusters. Pixel assignment and cluster mean computation are
repeated iteratively until centers are stable, and a 2‑dimensional image array is returned
with each pixel valued as an integer cluster ID. In this paper, the resulting clusters were
used as superpixels.

Superpixel clusteringwas performed using all spectral bandswithin themodel‑fitting
range of 420 to 690 nm. For this approach, we adjusted two parameters of the SLIC func‑
tion: (1) We used a compactness parameter of 0.1 to allow the superpixel shapes to better
follow natural edges in water quality parameter distribution resulting from water eddies
and currents. (2) We used a sigma value of 2.0 for the smoothing operation of the SLIC
algorithm to reduce the impact of spectral noise on superpixel determination. However,
we found that these parameters workedwell for 2 m resolution data, and these parameters
might need adjustment for different image resolutions.

The water quality parameter inversion, the slowest step by far, was then performed at
the superpixel level. The bio‑optical model described above was used to obtain estimates
of the three water quality parameters from the average reflectance spectrum of each su‑
perpixel. This was also a chance to run quality control on the bio‑optical model outputs
and ignore superpixels when bio‑optical model outputs were less certain. Superpixels for
which the model did not reach an optimal solution within the 400 allowed iterations were
removed from further consideration.

Next, the superpixel‑level water quality parameters were back‑interpolated from su‑
perpixels into the original pixel resolution. This was performed using a nearest‑neighbor
approach where the individual pixels were matched to spectrally similar superpixels. For
this, we reduced the dimensionality and noise by performing a principal component analy‑
sis (PCA) on brightness‑normalized average reflectance spectra from the superpixels. The
rotations from the first six orthogonal components of the PCAwere applied to both the su‑
perpixel reflectance data and the pixel reflectance data. Then, for each pixel, water quality
values were computed using inverse‑distance weighted averages of water quality values
from the k nearest superpixel neighbors in six‑dimension PCA space. After comparing dif‑
ferent values, we determined that a k of 4 balanced the contradicting desires to increase
stability of results and to avoid excessive smoothing of the resulting maps.
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Figure 1. The superpixel water‑quality‑mapping process for decreasing time and computational
needs for high‑resolution output maps of suspended particulate matter (SPM), chlorophyll‑a (Chl‑
a), and colored dissolved organic matter (CDOM).

2.4. Analysis
For each of the example reflectance images, we ran the bio‑optical model both on a

pixel‑by‑pixel basis and using the superpixel approach defined above. We ran the super‑
pixel approach using a single processor core for each flight line in our study, and we kept
track of the full time needed for the process to be complete for each example site reflectance
image. For the pixel‑by‑pixel approach, we processed all pixels on a computing cluster [30]
in parallel chunks of three rows. Beyond the inversions, the only other time‑consuming
step of the pixel‑by‑pixel approach was reflectance map input and water quality map out‑
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put. To obtain a comparable estimate of the time needed for the pixel‑by‑pixel approach on
a single core, wemultiplied the number of pixels by the average time for spectral inversion
plus 0.0001 s per pixel for file input and output.

To test the effect of superpixel size on the speed and quality of output water quality
maps, we ran the superpixel approach for five example sites using 13 different superpixel
size settings: 50, 100, 250, 500, 600 (default superpixel size), 750, 1000, 1250, 1500, 2000, 3000,
4000, and 5000 pixels. We tracked similarity in the output maps using both horizontal tran‑
sect profiles for visualization and regressionmodels applied tomatching pixels for 1000 ran‑
domly selected water pixels within each location. R2 and RMSE values were collected and
used to directly compare approaches and settings for the same reflectance image.

We also assessed variation in the outputmaps from thepixel‑by‑pixel approachwithin
the SLIC individual clusters identified in the superpixel approach across the various super‑
pixel size settings. Total variance (SST) was computed as the sum of squared differences
between pixel values and themean value across the entire map. After computing themean
values for each SLIC cluster, we computed error variance (SSE) as the sum of all squared
differences between pixel values and their associated cluster mean. RMSE was computed
by dividing the SSE by the total number of valid pixels in each map and taking the square
root of the resulting value. The proportion of variance explained by within‑cluster error
was computed as SSE/SST. By performing this analysis at each superpixel size setting, we
could assess how well the cluster sizes match the scales of variation in the water quality
variables across the five example sites.

3. Results
With an iteration limit of 400 on the inversion optimization process, we found that the

average number of seconds per inversion was 3.877 across many thousands of inversions
completed in this project. Across the different example sites, using the default nominal
superpixel size of 600 pixels (2400 m2 of surface coverage), we found that the superpixel
approach to bio‑optical inversion sped up map production from 218.8 to 511.5 times ver‑
sus a pixel‑by‑pixel approach (Table 2). There was no noticeable correlation between this
increase in speed and the number of valid water pixels in the reflectance map.

Table 2. Computational requirement information about the pixel‑by‑pixel approach and the super‑
pixel approach for each example site using a superpixel size of 600. The Pixels column specifies the
number of remaining water pixels after the filtering described in Section 2.2.

Site Name Pixels Superpixels Pixel‑by‑Pixel
Seconds

Superpixel
Seconds

Speed
Multiplier

1 Pelekane Bay 354,231 658 1,373,389.0 3442.5 398.9
2 East Kaho‘olawe 769,855 1232 2,984,804.8 8092.0 368.9
3 Hilo Bay 709,184 1036 2,749,577.3 5410.8 508.2
4 Mā‘alaea 1,313,666 2256 5,093,214.4 23,147.0 220.0
5 South Moloka‘i 700,016 1063 2,714,032.0 5450.1 498.0

Water quality maps produced by both the pixel‑by‑pixel and the superpixel approach
with a superpixel size of 600matched qualitatively and quantitatively (Figures S1–S5). Hor‑
izontal transect profile plots showed that spatial patterns of magnitude were retained in
the superpixel approach (Figure 2). Regressions between the pixel‑by‑pixel estimates and
the superpixel estimates showed tight correspondence with R2 values ranging from 0.78 to
0.95 for SPM, 0.83 to 0.99 for Chl‑a, and 0.87 to 0.99 for CDOM (Figures 3–5; Table S1). All
R2 values were associated with extremely small p‑values of less than 0.00001 largely due to
the high number of samples (1000 for each example site). Importantly, superpixel‑based
modeling also appeared to greatly reduce the influence of pixel‑level spectral noise and
water surface variations on the output maps (Figures 2c–f and S1–S5).



Remote Sens. 2024, 16, 4344 8 of 18

Remote Sens. 2024, 16, x FOR PEER REVIEW  8  of  19 
 

 

Horizontal transect profile plots showed that spatial patterns of magnitude were retained 

in the superpixel approach (Figure 2). Regressions between the pixel-by-pixel estimates 

and the superpixel estimates showed tight correspondence with R2 values ranging from 

0.78 to 0.95 for SPM, 0.83 to 0.99 for Chl-a, and 0.87 to 0.99 for CDOM (Figures 3–5; Table 

S1). All R2  values were  associated with  extremely  small  p-values  of  less  than  0.00001 

largely due  to  the high number of  samples  (1000  for  each  example  site).  Importantly, 

superpixel-based modeling also appeared  to greatly reduce  the  influence of pixel-level 

spectral noise and water surface variations on the output maps (Figures 2c–f and S1–S5). 

 

Figure 2. Transect profile plots of modeled values of suspended particulate matter (SPM) across four 

transects in the Māʻalaea site on Maui. Transect locations are shown on the output maps from the 

superpixel approach using a superpixel size of 600 pixels (2400 m2 area) (a) and the pixel-by-pixel 

Figure 2. Transect profile plots of modeled values of suspended particulate matter (SPM) across four
transects in the Mā‘alaea site on Maui. Transect locations are shown on the output maps from the
superpixel approach using a superpixel size of 600 pixels (2400 m2 area) (a) and the pixel‑by‑pixel
approach (b). Profiles for the superpixel map (red line) and the pixel‑by‑pixel map (blue line) visibly
align in panels (c–f). The x‑axes in the profile plots can be converted to pixel units by dividing by 2.
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Figure 3. Regressions of suspended particulate matter (SPM) values from 1000 randomly selected
matched pixels from the pixel‑by‑pixel approach and the superpixel approach for the (a) Pelekane
Bay, (b) East Kaho‘olawe, (c) Hilo Bay, (d) Mā‘alaea, and (e) South Moloka‘i example sites.

When we adjusted the superpixel size parameter across 13 settings between 50 and
5000 pixels, we found that, when averaged across the five example sites, accuracy gener‑
ally decreased with increasing superpixel size (Figure 6a–c). However, the decrease was
minimal in the case of SPM and Chl‑a, as there was no clear pattern until sizes larger than
750 pixels were considered. Below this size, R2 values varied around 0.84–0.88 for SPM
and 0.86–0.93 for Chl‑a, and RMSE values varied around 0.94–1.12 for SPM and 0.53–0.68
for Chl‑a (Figure 6a,b). At sizes of 1000 pixels and above, there was a gradual decrease in
R2 down to 0.82 for SPM and 0.84 for Chl‑a and a gradual increase in RMSE up to 1.24 for
SPM and 0.72 for Chl‑a. For CDOM, the decrease in accuracy was more consistent across
the full range of superpixel sizes, with a more discernable decrease in R2 from 0.98 to 0.89
from 50 to 5000 pixels in size and a parallel increase in RMSE from 0.034 to 0.055 along the
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same gradient (Figure 6c). However, these patterns were less consistent when looking at
individual sites, and we generally found that sites with a smaller range in an individual
water quality parameter had higher variation in R2 and RMSE for this parameter as super‑
pixel size increased (Figure S6). Of note, in several cases across the five example sites and
three water quality parameters, the maximal R2 or minimal RMSE was found at mid‑level
superpixel sizes in the 250‑to‑1000‑pixel range.
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Figure 5. Regressions of colored dissolved organic matter (CDOM) values from 1000 randomly
selected matched pixels from the pixel‑by‑pixel approach and the superpixel approach for the
(a) Pelekane Bay, (b) East Kaho‘olawe, (c) Hilo Bay, (d) Mā‘alaea, and (e) South Moloka‘i example
sites. The sites with a larger range of CDOM have higher R2 values, as shown in plot legends.

The assessment of variation within clusters of the output maps from the pixel‑by‑
pixel approach again showed that spatial variation differed between the water quality
constituents and by example site. Pixel‑level RMSE values, which depict the variation
within the superpixel clusters, grew alongwith superpixel size for all sites and constituents
(Figure 7a,c,e). In all cases, RMSE grew most rapidly for the smaller superpixel sizes less
than 1000 pixels. In example site 1, Pelekane Bay, RMSE reached an asymptote by the size
of 2000 pixels for all three constituents, though none of the other sites appeared to reach
an asymptote. Low values of the proportion of variance explained by within‑cluster er‑
ror (SSE/SST ≤ ~0.5) were observed for the smaller cluster sizes across nearly all example
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sites and constituents (Figure 7b,d,f). Small values indicate that values within superpixel
clusters are more similar to each other than the mean cluster values are across the map,
which implies that clustering is successfully capturing the spatial distribution of the water
quality constituents. Values of SSE/SST were particularly high at two sites, Pelekane Bay
and Hilo Bay, indicating that sharp changes in the constituent value occurred within indi‑
vidual clusters at these sites. For all sites, we observed a pattern of a sharper increase in
SSE/SST for superpixel sizes of less than 1000, matching the RMSE results.
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Figure 6. Mean R2 (dotted line) and RMSE (dashed line) statistics across the five example sites from
regressions between the pixel‑by‑pixel approach and the superpixel approach for (a) suspended par‑
ticulate matter (SPM), (b) chlorophyll‑a (Chl‑a), and (c) colored dissolved organic matter (CDOM)
estimates from the bio‑optical inversion model across the different superpixel sizes: 50, 100, 250, 500,
600, 750, 1000, 1250, 1500, 2000, 3000, 4000, 5000. In the bottom right panel (d), the speed increase in
the super pixel approach over the pixel‑by‑pixel approach is shown.

Compared to accuracy values, the speed increase in the superpixel approach over
the pixel‑by‑pixel approach was clearly linear with increasing superpixel size (Figure 6d).
This pattern resulted from the fact that superpixel cluster size was measured in pixels, and
thus size directly impacted the number of reduced bio‑optical model iterations. For the
smallest superpixels of size 50, the superpixel approach was approximately 38 times faster
on average than the pixel‑by‑pixel approach. For the largest superpixel size setting, the
proposed approachwas 2625 times faster. We found that our default superpixel size of 600
was a good trade‑off between map accuracy and speed savings—the superpixel approach
was 398 times faster, on average, across the sample sites, over the pixel‑by‑pixel approach.
This was equivalent to 2.5 h versus 34.5 days of computation time on a single CPU core for
superpixel and pixel‑by‑pixel approaches, respectively.
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4. Discussion
We found that the time and computational resources needed for the creation of high‑

resolution water quality mapping from imaging spectroscopy data could be drastically
reduced using a superpixel approach. While the spatial scale of the superpixels them‑
selves strongly affected this reduction in resources as well as the accuracy of the rapid
results in comparison to a simple pixel‑by‑pixel approach, acceptable levels of accuracy
loss could be obtained with a fairly large speed benefit using a mid‑range superpixel size
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of approximately 600 pixels on a 2 m× 2 m resolution map. This finding suggests that the
superpixel approach can be optimized to provide a practical solution for researchers and
environmental managers who require timely and resource‑efficient water qualitymapping
without significantly compromising the quality of the results. The total computation time
needed to complete the superpixel approach across the sample sites was at the order of
2 h (though almost 7 were needed for the longest flight line at sample location 5). Thus,
even with atmospheric correction, water quality maps could be computed from flight data
within 24 h of flight, enabling what is considered near‑real‑time availability [11]. Elimi‑
nating the slow turnaround of remote‑sensing‑based water quality maps could increase
uptake of this level of information by managers who have hesitated due to the minimal
relevance of maps that take longer [31–33].

Beyond our results, similar performance and speed benefits have been found else‑
where when a superpixel approach has been applied to remote‑sensing mapping projects.
Researchers have long found significant speed and accuracy benefits in combining the
spatial and spectral characteristics of individual pixels using clustering methods during
classification and other thematic mapping projects [31–33]. For classification tasks in par‑
ticular, a Geographic Object‑Based Image Analysis (GEOBIA) was a dominant methodol‑
ogy in which superpixels were the object to be classified using shape and textural infor‑
mation from the individual pixels [34]. Given the shift to more deep learning methods
in remote sensing, there has recently been strong interest in mixing superpixel input or
post‑processing with CNN modeling to capture the combined benefits of each of these
tools [35–38]. However, with highly dimensional spectrometer data, it has generally been
more common to use spectral unmixing approaches, and some work has focused on im‑
proving these methods with superpixel approaches [39,40]. Given this history, because
of the computational needs of inversion modeling, applying superpixels to such an appli‑
cation was a natural next step. In fact, an example of such an application is the ISOFIT
atmospheric correction software [22] used in the processing of our spectrometer data and
which inspired our methodology used in this work. In this software, superpixels are used
to reduce the number of slow atmospheric retrievals by taking advantage of the high mix‑
ture of gasses, vapors, and particles in the air. With the proven utility of superpixels across
a wide range of mapping applications, there is little reason to second‑guess the utility of
incorporating them into our methodology.

Any approach using the agglomeration of spatial data to reduce computational re‑
quirements will necessitate a trade‑off between speed and accuracy. Balancing these con‑
flicting goals is a theme that occurs often across all applications of remote sensing in one
form or another [41]. In this case, there are likely many scales at which the water quality
parameters vary, and an optimal superpixel size would be related to underlying spatial au‑
tocorrelations resulting from physical processes controlling the mixing and transportation
of the given constituents [42]. We sought to find a balancing point at which we could suc‑
cessfully capture this spatial variation across a site to a sufficient level and in a timespan
that would be actionable. For this to be possible, we needed the superpixels to capture
the range of values across and minimally blend across sharp edges. Allowing the SLIC
clusters to vary in shape and follow such edges helped ensure that this edge blending was
minimized (see Figures S1–S5); however, with larger superpixel sizes, variation within
the superpixels became large enough to hinder the ability of our algorithm to maintain
fidelity to the pixel‑by‑pixel maps (see Figure 6a–c). For SPM and Chl‑a, we found that
superpixel sizes of 750 pixels or less (≤3000m2) had fairly stable R2 and RMSE values in
regression models against the pixel‑by‑pixel approach across all sites. However, looking
at the variation in mapped values within the various superpixels (Figure 7), we saw ev‑
idence that even the smallest cluster sizes were losing some spatial detail as RMSE and
SSE/SST rapidly increased in these lower cluster sizes. This along with the jaggedness in
the plots of R2 and RMSE values (Figure 6a–c) below 750 pixels support that there were
higher‑frequency, smaller‑magnitude patterns of spatial change in the water and some of
the various superpixel size settings lined up with these frequencies. It is possible that poor
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water surface conditions (glint, waves) seen in some of the pixel‑by‑pixel output maps
(Figures 2c–f and S1–S5) operate at these smaller scales and might negatively affect the
alignment of output maps from the pixel‑by‑pixel and superpixel approaches [43]. When
testing this approach, we settled on a superpixel size of 600 pixels (2400m2) becausewe felt
that this size sufficiently sped up inversion to a same‑day scale but output maps also visu‑
ally and quantitatively matched the range and distribution of the water quality constituent
maps produced by the pixel‑by‑pixel approach. At this scale, there was some evidence of
slight bias and softened edges (see Figure 2e,f), but these errors were within acceptable
limits for a rapidly produced, actionable map.

Comparing our scaling results to previous studies, we found notable similarities and
differences. Moses et al. (2016) analyzed data from spectrometers along with in situ in‑
struments and looked at relationships between ground sampling distance (GSD) and the
coefficient of variation (CV) of water properties within the specified sampling distance [42].
In most cases, CV rapidly increased with increasing GSD until a transitional point (tGSD),
ranging from 75 to 600 m (~4400 to 282,700 m2 circular pixel area), where the curve flat‑
tened. These results parallel those here, where both within‑cluster variance as well as R2
and RMSE values for the regressions between pixel‑by‑pixel and superpixel estimates de‑
teriorated after superpixel size were large enough (~3000 m2) for each parameter. Like‑
wise, large transitional scales can be found in other work. Bisset et al. (2004) found that
the largest GSD that could successfully quantify changes in spectral ocean color was 150
to 200 m (~17,600 to 31,400 m2 area) within 5 km of shore [44]. Similarly, Jordan et al.
(2023) found that Rrs values frommobile radiometers had a limiting distance of detectable
autocorrelation that ranged from 100 to 1000 m (7900 to 785,400 m2 area) across several
study sites [45]. Mahadevan and Campbell (2002) found evidence of even larger lags in
semi‑variograms of the distribution of chlorophyll in coarse MODIS data [46]. From these
results, we believe that if we were to increase the maximum tested superpixel size beyond
the 20,000m2 upper limit tested here, wewould expect to see a continued loss of the ability
to correctly interpolate the values to fill in the full resolution output maps and R2 values
would continue to decrease.

While this work was performed using the idea that the pixel‑level maps were the
true values, it is important to note that pixels represent only a random sample of a con‑
tinuous surface with inherent errors and do not represent any real tangible square unit
of area [47,48]. The pixel‑by‑pixel approach suffered from variations in modeled water
quality stemming from fluctuations in water surface and spectral noise. Such patterns of‑
ten occur in high‑resolution mapping projects and are troublesome when mapping with a
large number of spectral bands [43,49]. By running the inversions on superpixels, we took
advantage of the fact that much of the pixel noise is random in nature and the averaging
that took place within superpixels reduced the magnitude of this noise by a factor of

√
n,

where n is the size of the superpixel in pixel units [50]. This likely reduced the number
of iterations needed for optimization and the overall accuracy of the responses during the
bio‑optical inversion. Additionally, with superpixels in this study representing an approx‑
imate surface area of at least 200 m2 and up to 20,000 m2, the majority of water surface
fluctuations from waves and other surface turbulence were effectively subdued in all of
our maps from the superpixel approach. While the same could not be said about the effect
of bottom surface constituency in shallower waters, slight improvement in this regard was
also observed with the superpixel approach.

Given the above results, we believe this approach to be fairly transferable and scalable
to other applications beyond water quality mapping. The methodology presented here is
not dependent upon the particular bio‑optical inversion model used to estimate parame‑
ters for the superpixel and pixel‑by‑pixel approaches. One caveat, however, in this work is
that thewater quality constituentswere fairlywellmixed even at the 2m scale, which lends
well to a superpixel approach. If applied to a situation where spatial patterning was more
stochastic, i.e., too little spatial autocorrelation, then grouping neighboring pixels together
would not be effective at capturing the range in values of interest. Also, superpixels may
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not be appropriate if capturing the individual values with high accuracy is exceedingly
more important than capturing the spatial trend [51]. In such a scenario, if there were
a lot of sharp gradients within the water quality, one might consider modifying this ap‑
proach to allow variable cluster sizes across the scene based on dynamic assessment of the
inputmap. Similarly, for such situations, the PCA‑based interpolationmethodmight need
to incorporate more components/eigenvectors to better capture the relationship between
input and output values, perhaps even moving from a linear model to a nonlinear empir‑
ical model or a machine learning approach, but these would drastically increase the time
needed to complete the interpolation step, reducing the realized gains of the superpixel
approach. However, the efficient gains demonstrated in this study should be attainable in
most thematic mapping situations where the value of interest is slow to compute from the
input data but sufficiently correlated at scales larger than the input spatial resolution. In
particular, while satellite‑housed imaging spectrometers are currently only able to provide
much coarser data than considered in this project, there is still reason to believe that this
approach could benefitwater‑quality‑mapping projects incorporating these data. Data vol‑
umes from satellite instruments that are always inmotion have the potential to dwarf those
of airborne campaigns, and such a reduction in computing resources would be even more
beneficial and might enable mapping projects that would otherwise be insurmountable.

5. Conclusions
This study demonstrated the effectiveness of a superpixel approach for rapidly gen‑

erating high‑resolution water quality maps from imaging spectroscopy data. We found
significant speed improvements with minimal loss of accuracy across the example sites.
In addition, the superpixel approach visibly reduced the impacts of water surface undu‑
lations and spectral noise, potentially improving overall map quality and interpretability.
The adjustable size of the superpixels should allow the methodology to be transferable to
different settings and applications otherwise requiring computationally intensive model‑
ing of each individual pixel. These dramatic speed improvements can make it feasible to
process much larger datasets, potentially enabling regional‑ or global‑scale water quality
mapping from current and future high‑resolution imaging spectrometers that meets both
the latency and accuracy needs of water quality management. This should provide a valu‑
able tool for environmental managers, researchers, and policymakers to address pressing
water resource challenges. Future work could focus on further optimizing the method for
specific applications, integrating it with other advanced processing techniques, or explor‑
ing its utility for additional environmental‑monitoring tasks.
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