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Abstract: Accurate cotton yield prediction is essential for optimizing agricultural practices, improving
storage management, and efficiently utilizing resources like fertilizers and water, ultimately benefiting
farmers economically. Traditional yield estimation methods, such as field sampling and cotton
weighing, are time-consuming and labor intensive. Emerging technologies provide a solution by
offering farmers advanced forecasting tools that can significantly enhance production efficiency. In
this study, the authors employ segmentation techniques on cotton crops collected using unmanned
aerial vehicles (UAVs) to predict yield. The authors apply Segment Anything Model (SAM) for
semantic segmentation, combined with You Only Look Once (YOLO) object detection, to enhance the
cotton yield prediction model performance. By correlating segmentation outputs with yield data, we
implement a linear regression model to predict yield, achieving an R2 value of 0.913, indicating the
model’s reliability. This approach offers a robust framework for cotton yield prediction, significantly
improving accuracy and supporting more informed decision-making in agriculture.

Keywords: cotton; semantic segmentation; unmanned aerial vehicles; segment anything; yield
estimation; object detection

1. Introduction

Crop yield prediction is increasingly critical due to concerns about food security and
the need to estimate food availability for a growing population [1]. Accurate early predic-
tions are essential for reducing famine risks and improving resource management, which
benefits farmers through better decisions on crop insurance, harvest planning, and bud-
geting [2]. Traditional methods, such as labor-intensive manual surveys and modeling
approaches, are often costly, subjective, and inefficient, especially for large-scale opera-
tions [3]. Remote sensing methods use vegetation index, such as the normalized difference
vegetation index (NDVI), to estimate crop yields [4]. For instance, Anastasiou et al. demon-
strated that proximal sensing, particularly green normalized difference vegetation (GNDVI)
during veraison, provided stronger correlations with grape yield compared to satellite-
based methods [5]. Additionally, Kogan et al. used the advanced very high resolution
radiometer (AVHRR)-based vegetation condition index (VCI) to estimate vegetation state
and productivity, showing a strong correlation with crop density [6]. However, index-based
approaches are limited by their reliance on calibration, manual interpretation, and difficul-
ties in handling environmental variability and high-dimensional data. Unmanned aerial
vehicle (UAV) technology has emerged as a valuable tool in ecological research for monitor-
ing vegetation and ecosystems, offering a cost-effective and user-friendly alternative for
agricultural remote sensing applications [7–9].
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Machine learning and computer vision techniques have been developed for crop yield
prediction. For example, Veenadhari et al. developed a classifier using the decision tree
approach that helps to understand how different climatic factors influence the results [10].
Ramesh et al. developed statistical models, such as multiple linear regression and a density-
based model, to estimate future year yield, taking into account variables such as snow area,
fertilizers, rainfall, and production [11]. Khaki et al. trained deep neural network models
that incorporate genotype, weather, and soil conditions to predict and check yield [12].
In addition, feature selection was performed to optimize the input space, without significant
reduction in accuracy. Aggarwal et al. applied histogram equalization and k-means
clustering to separate the crop from the background in images, increasing accuracy and
computational efficiency [13]. You et al. effectively integrated spatial and temporal features
by combining long short-term memory (LSTM) networks with Gaussian processes for
accurate yield prediction of soybean crop [14]. Computer vision tools are powerful for
automating the inspection tasks in agriculture. Image segmentation is a crucial step in
computer vision tasks where the goal is to partition an image into meaningful segments,
typically by classifying each pixel into a predefined category. In the context of agriculture,
segmentation plays an essential role in extracting valuable information from images of
crops. For example, Wang et al. developed an automated system for apple yield estimation
by capturing the nighttime images of trees and segmented the apples based on color
cues [15]. Morphological operations were applied to locate and count the apples. In [16],
Sarkate et al. performed color segmentation using thresholding and histogram analysis in
the hue, saturation, and value (HSV) color space to detect gerbera flowers.

Deep learning-based segmentation has gained significant prominence due to its robust-
ness and adaptability. Unlike traditional methods, which are often sensitive to noise and
require carefully tuned thresholding values, deep learning models excel in handling variability
within agricultural images [17,18]. For instance, in [19], Palacios et al. focused on predicting
the number of berries and the overall yield of grapevines by employing a SegNet-based con-
volutional neural network (CNN) to detect berries and canopy features in grapevine images,
which were then used to train support vector regression (SVR) models for predicting berry
count and yield. This approach allowed accurate yield forecasting up to 60 days before harvest.
In [10], Veenadhari et al. created an ensemble framework based on the bagging strategy and
the UNet network. It utilizes both RGB and HSV color spaces to improve the segmentation of
maize crop. In [20], Yu et al. modified UNet by reducing the downsampling rate, and adding
attention as well as feature extract blocks to help model distinguish oranges from complex
backgrounds in orchard environments. CNNs have become highly significant in segmentation
tasks due to their impressive accuracy and effectiveness. However, their ability to capture
information is inherently limited to local regions [21], and they struggle to model long-range
dependencies across an image. This limitation arises from the localized nature of convolutional
operations and the fixed receptive field of convolutional layers. Following the introduction of
the self-attention mechanism in [22], there has been a significant surge in the application of
Transformer models. The integration of CNNs and Transformers is particularly promising for
complex vision tasks that require both fine-grained feature extraction and an understanding
of broader spatial relationships. For instance, in [23], Chen et al. proposed TransUnet, which
used transformer to encode image tokens from a CNN feature map to extract global contexts,
while the decoder upscales these encoded features and merges them with low-level feature
maps to attain precise location. In [24], Silva et al. leveraged a hybrid approach by adding
a resnet block after the transformer encoder to combine the advantages of both CNN and
vision transformer (ViT) for soybean weed detection. In [21], Coro et al. employed an encoder
CNN combined with a spatial and channel reconstruction unit to preserve essential spatial
information, while developing a decoder transformer with multiple attention mechanisms to
focus on the local features of crops.

More recently, the Segment Anything Model (SAM) was proposed, and gained a
lot of attention because of its capability to accurately segment the images based on user
prompts [25]. This foundational model was trained on a large dataset of 1 million im-
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ages and over 1 billion masks, which makes it highly adaptable and able to transfer its
knowledge to any new distribution of images. For instance, in [26], Zhang et al. evaluated
the performance between SAM automatic mode and SAM box prompt for segmenting
clinical radiotherapy images. In [27], Zhang et al. developed SAMed for medical image
segmentation, which infused a low-rank adaptation fine-tuning strategy, also incorporat-
ing a warm-up strategy and the Adam optimizer for better convergence and lower loss.
Though SAM has excellent segmentation capabilities, it is seldom used to segment on
agriculture-specific domains. To address this issue, researchers are working on fine-tuning
millions of parameter-trained models. In [28], Li et al. incorporated SAM adaptors between
the decoder layers, keeping all other parameters constant, to better suit the segmentation
task for agricultural images.

Despite the strong zero-shot segmentation capabilities of SAM, it struggles with
multiple objects and domain-specific images, such as those from agricultural settings.
To overcome these limitations, in this article, the authors explore the innovative use of
vision foundational models for cotton yield prediction, which leverages trained prompts
for segmenting various objects, and present a comparative analysis showcasing its superior
performance against other models on cotton yield prediction. Cotton plays a vital role in the
global economy and is one of the most widely used natural fibers worldwide. Its versatility
makes it essential in various industries, from textiles to food production. In the United
States (US), cotton is a major cash crop that contributes significantly to the agricultural
sector. The United States is one of the largest producers and exporters of cotton globally,
accounting for about 35% of global cotton production [29]. Among US states, Texas is the
largest producer, responsible for approximately 40% of the nation’s cotton production in
recent years [30]. This makes cotton essential not only for the agricultural economy but
also for various industries that rely on its diverse applications.

The objective of this study is to develop and evaluate deep learning models, specifi-
cally YOLO and SAM, for cotton boll image segmentation and yield prediction using UAV
RGB images. The major contributions are (1) the application of YOLO for high-accuracy
cotton boll detection; (2) the integration of the SAM model for semantic segmentation in
cotton yield prediction; and (3) the provision of the model framework, code, and methodol-
ogy to support future research and applications in agriculture. The rest of the manuscript
is organized as follows: Section 2 outlines in detail the materials and methods used to
predict cotton yield using the YOLO and SAM models. Section 3 delves into a compre-
hensive analysis and discussion of cotton boll image segmentation achieved with these
models, highlighting the relationship between yield and segmentation results. Finally,
Section 4 concludes the study, summarizing the key findings and their implications for
agricultural research.

2. Materials and Methods
2.1. Study Area

The field experiments were conducted in Lubbock, Texas (33.59◦N, 101.90◦W) on a
2.2-acre cotton field (Figure 1). Cotton was harvested mechanically from each individual
row, generating a dataset comprising 96 rows of yield data. Each row extended 200 feet,
containing about 150 cotton plants, with a 40-inch distance between rows [8].

Figure 1. The cotton field on 9 November 2022.
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2.2. UAV Image Acquisition and Processing

High-resolution aerial images of the cotton field were acquired on 9 November 2022
using a DJI Phantom 4 Pro (Shenzhen DJI Sciences and Technologies Ltd., Shenzhen,
China) equipped with a 1 inch complementary metal oxide semiconductor sensor (CMOS).
The flight was carried out at an altitude of 25 m above ground level (AGL) and lasted
approximately 18 min. The UAV flight path was planned with an 80% side and front
overlap, resulting in a total of 406 high-resolution aerial images.

Data processing was performed with Agisoft Metashape to generate an orthomosaic.
The image processing workflow followed a structured pipeline, starting with the alignment
of the photos by identifying key points. Ground Control Points (GCPs) were incorporated
to improve spatial accuracy, followed by optimizing camera parameters to refine alignment.
A dense point cloud was then created, which was further utilized to build a Digital Elevation
Model (DEM). Finally, the orthomosaic was generated using the DEM and aligned images.
A visual representation of this workflow is presented in Figure 2, which outlines the
step-by-step process from image acquisition to the generation of final data products.

Figure 2. The step-by-step workflow from image acquisition to the generation of the orthomosaic image.

2.3. Image Annotation

The authors used the AnyLabeling software (Version: 0.4.15) to annotate images,
leveraging SAM for automatic segmentation. The process involved running the encoder
only once for each image, followed by running the decoder based on input prompts such
as points or boxes to generate output masks. A post-processing step was automatically
implemented to identify contours and created shapes like polygons or rectangles for label-
ing. AnyLabeling offers three versions of SAM. The original SAM, trained on 11 million
images and 1 billion segmentation masks, excels at segmenting objects without prior train-
ing knowledge, making it ideal for autolabeling even with new objects. SAM 2, Meta’s
latest advancement, offers enhanced visual segmentation for both images and videos [31].
MobileSAM is a lightweight variant designed for mobile applications [32]. For our image
annotation, we used the original SAM model, annotating around 1800 images. A demon-
stration of the original images and labeled masks is shown in Figure 3.

Figure 3. A demonstration of the original and mask images.
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2.4. The Segment Anything and YOLO Models

SAM is a prompt-based model that, similar to language models, generates a valid
segmentation mask from ambiguous prompts like points, text, or rough boxes. It comprises
an image encoder, a pretrained masked autoencoder vision transformer that processes the
image input, and a prompt encoder that handles sparse prompts by embedding them with
learned embeddings and positional encodings. Text embeddings are generated using the
contrastive language-image pretraining (CLIP) encoder, while dense prompts (masks) are
processed through convolutional layers [33]. The decoder, inspired by Transformer models,
uses self-attention within prompts and cross-attention between prompts and image features
to update the embeddings. After two processing blocks, the image features are upscaled,
and a neural network maps the output token to a classifier, which predicts the foreground
mask, resulting in the final segmentation mask.

The YOLO v7 and YOLO v8 object detection algorithms were mainly explored for
generating bounding boxes. The YOLO models have continuously evolved to address the
limitations and disadvantages of their previous versions. Unlike traditional models such as
RCNN and Fast RCNN [34], which use two separate outputs for object detection, one for
classification and the other for bounding-box regression, the YOLO models perform both
tasks in a single pass. This streamlined approach allows YOLO to predict class labels and
bounding box coordinates simultaneously, enhancing both efficiency and performance [35].
The architecture of YOLO v7 is structured into three main components: the backbone, neck,
and head [36]. The backbone is crucial for the extraction of features, playing a significant role
in both the training of the model and its overall efficiency. It is responsible for capturing and
representing detailed features from the input data. The neck functions as the feature aggregator,
combining low-level spatial information with high-level semantic information to build rich
feature maps at various levels. Finally, the head utilizes these aggregated features to perform
final object detection, generating precise bounding boxes and class predictions. To enhance
feature representation, YOLO v7 employs the efficient layer aggregation network (ELAN).
Unlike traditional models that use stack convolutional layers, which limit detection capabilities
for objects of various sizes, ELAN aggregates features from multiple layers. This approach
allows YOLO v7 to combine information from different stages of processing, capturing features
at multiple scales simultaneously. ELAN further extends this by integrating multiple paths for
feature aggregation, improving the model’s ability to handle a broad range of features without
significantly increasing computational costs. YOLO v8 is the current superior object detection
model built upon its previous versions to boost the performance and flexibility. Along with
object detection, pose estimation, tracking and classification, this architecture also supports
segmentation. Unlike earlier versions that relied on anchor boxes for detecting objects, YOLO
v8 utilizes an anchor-free approach, which does not use predefined boxes [37]. It directly
predicts the location and size of the objects. This reduces the computational complexity and
makes the model simpler and faster, with fewer hyperparameters to tune. The head of the
network is “decoupled”; it separates the processing for the objectness score, classification,
and regression, which lets the model specialize in its specific task.

In this article, we propose an innovative two-stage approach for image segmentation
that integrated object detection with advanced segmentation technique. In the first stage,
we employed YOLO v7 and YOLO v8 as the object detector, which processed the input
images to predict bounding boxes around the region of interest (Figure 4). These bounding
boxes were then passed as input to the prompt encoder, which performed prompt encoding
by embedding the box coordinates along with positional encodings. More specifically,
from the AnyLabeling software, we extracted the bounding box coordinates for the bolls in
the cotton images. These bounding boxes were then converted to the YOLO labeling format
using Roboflow, which transformed the coordinates into the required format: (class index,
normalized x center, normalized y center, normalized width, normalized height). Since
all of the images contained only one class, cotton bolls, the class index was consistently
set to 0. Out of the 1800 images, we used 1500 for training, 100 for validation, and the
remaining 200 for testing the model. To further enhance the performance of the model,



Remote Sens. 2024, 16, 4346 6 of 13

we resized the image resolution from 150 × 150 to 640 × 640 (on which originally YOLO
models were trained) pixels to improve object detection for the small cotton bolls scattered
across the field.

Figure 4. Comparison of cotton boll detection between YOLO v7 and YOLO v8 models.

In the second stage, the SAM encoded the entire image using a pretrained vision
transformer. The bounding boxes, now encoded by the prompt encoder, were also fed into
the SAM decoder (Figure 5). The SAM decoder performed a series of operations involving
both self-attention within the prompts and cross-attention between the image features and
the encoded prompts. This bidirectional attention mechanism enabled the model to refine
and update the embeddings, ensuring that the segmentation was accurate and aligned
with the detected objects. This information was processed to generate the final output,
a segmented mask that precisely delineated the objects within the image. By combining
YOLO v7 or v8 for object detection with SAM’s powerful segmentation capabilities, our
approach effectively handled images with complex scenarios, resulting in a robust and
efficient solution for image segmentation tasks.

Figure 5. The proposed YOLO + SAM model architecture.

2.5. Model Evaluation Metrics

To evaluate the model’s performance in detecting objects, we use the following metrics.
Precision measures the proportion of objects detected by the model that are actually relevant
(true positives). It is calculated as the ratio of true positives (TP) to the sum of true positives
and false positives (FP). Precision reflects how accurate the detections are by indicating the
percentage of correct detections (Equation (1)). Recall measures how well the model detects
relevant objects in the dataset. It is calculated as the ratio of true positives to the sum of true
positives and false negatives (FN). Recall indicates the model’s ability to identify all relevant
objects (Equation (2)). F1-Score finds the most optimal confidence score threshold where
precision and recall give the highest F1 score. The F1 score calculates the balance between
precision and recall. If the F1 score is high, precision and recall are high, and vice versa
(Equation (3)):
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Precision =
TP

TP + FP
, (1)

Recall =
TP

TP + FN
, (2)

F1-Score = 2 × Precision × Recall
Precision + Recall

. (3)

To evaluate the performance of our segmented images, we use the Intersection over
Union (IoU) score, also known as the Jaccard coefficient (Equation (4)). The IoU score mea-
sures the overlap between the ground truth mask A and the predicted mask B, providing a
quantitative measure of the precision of the segmentation of objects in the region of interest.
The area of intersection is the area where the predicted mask and the ground truth mask
overlap, and the area of union is the total area covered by both the predicted mask and the
ground truth mask combined. For Mean Average Precision (mAP), the IoU threshold is
set to 0.5, which means that a predicted object is considered a true positive if the overlap
between the predicted bounding box and the ground truth bounding box is at least 50%. It
indicates how competent the model is in localizing the objects:

Jaccard(A, B) =
Area of Intersection (A ∩ B)

Area of Union (A ∪ B)
. (4)

3. Results and Discussions
3.1. The SAM and YOLO Model Performance

To achieve an optimal balance between precision and recall, we systematically evaluate
the the F1 score on various decision thresholds. By plotting the F1 score as a function of the
confidence threshold, we identify the threshold that maximizes the F1 score for each model
on the validation dataset. For YOLO v7, the optimal confidence threshold is determined
to be 0.3, while for YOLO v8, a threshold of 0.25 yields the highest F1 score. This analysis
reveals that the maximum achievable F1 score in both models is 0.83. These thresholds
ensure that the models achieve an optimal trade-off between precision and recall, enhancing
their ability to accurately identify relevant objects while minimizing false positives and
false negatives. The output of each object in the image includes the class number and the
normalized coordinates of its bounding box, represented as (xcenter, ycenter, w, h), where
xcenter and ycenter are the normalized coordinates of the center of the bounding box, and w
and h are the normalized width and height. To convert these normalized coordinates to
absolute pixel coordinates, we use the following equations:

xmin =
(

xcenter −
w
2

)
× W, ymin =

(
ycenter −

h
2

)
× H;

xmax =
(

xcenter +
w
2

)
× W, ymax =

(
ycenter +

h
2

)
× H;

(5)

where (xmin, ymin) and (xmax, ymax) represent the coordinates of the bottom-left and top-
right corners of the bounding box in pixel coordinates, respectively. The width W and
height H refer to the dimensions of the image in pixels. These absolute coordinates are
then provided to the SAM as prompts for segmenting the regions around the bounding
box. The SAM model uses these coordinates to accurately identify and segment objects of
interest within the specified bounding box, ensuring precise and focused segmentation.
From the comparative analysis presented in Table 1, it is evident that YOLO v7 outper-
forms YOLO v8 in several key metrics. YOLO v7 shows higher precision, recall, F1 score,
and mAP@50 compared to YOLO v8. Furthermore, YOLO v7, when combined with SAM,
achieves a higher IoU score of 0.683. This could be justified because there are more true
positives detected in YOLO v7 compared to YOLO v8. These results indicate that YOLO
v7 is more effective in accurately detecting and localizing objects, making it a more robust
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choice for object detection tasks. Also, from Figure 6, we observe that YOLO v7 not only
detects all objects in the image but also identifies objects that are missed during labeling,
further validating the generalization capabilities of our algorithm. Furthermore, YOLO v7
excels in locating smaller objects, which is a significant advantage over YOLO v8. YOLO
v8 prioritizes certain optimizations such as faster inference or reduced model complexity,
which leads to a slight compromise in detection accuracy, especially in specific tasks like de-
tecting small objects. On the other hand, YOLO v7 incorporates architectural enhancements
and reparameterization techniques that are particularly effective in improving precision,
recall, and localization accuracy. This makes YOLO v7 better suited for cotton boll detec-
tion, where high detection accuracy and robust performance are more critical than other
considerations like speed or model size. Therefore, while YOLO v8 brings advances, it
might not always outperform YOLO v7 in terms of raw detection performance.

Figure 6. Comparison of cotton boll segmentation between different models.



Remote Sens. 2024, 16, 4346 9 of 13

Table 1. Comparison of YOLO v7 and YOLO v8 metrics.

Models Precision Recall F1-Score mAP0.5 IoU

YOLO v7 + SAM 0.821 0.836 0.828 0.857 0.685
YOLO v8 + SAM 0.814 0.791 0.802 0.833 0.683

In addition to its superior object detection capabilities, the integration of YOLO v7
with SAM for segmentation tasks demonstrates significant improvements in both efficiency
and accuracy compared to conventional segmentation models. Traditional segmentation
models require a large amount of labeled data for training and struggle with small or
overlapping objects. In contrast, our approach leverages the precise bounding boxes
generated by YOLO v7 to provide focused and accurate segmentation prompts to SAM.
This results in a more computationally efficient pipeline, as the model narrows down the
regions of interest before applying segmentation. Furthermore, the high IoU score of 0.685
indicates that the YOLO v7 + SAM combination is not only faster but also more effective in
identifying object boundaries, particularly for smaller objects that traditional models often
miss. This combination of speed and accuracy makes our model a suitable choice for real-
time applications requiring both object detection and segmentation, offering a substantial
advantage over conventional segmentation models. We experimented with well-known
U-Net architecture models for segmentation. U-Net with attention mechanisms leverages
the encoder–decoder structure to focus on specific regions. Variants like U-Net with ResNet
50 and VGG 16 utilize models pretrained on the ImageNet dataset as their encoders,
benefiting from feature extraction capabilities. Additionally, U-Net with a Convolutional
Block Attention Module (CBAM) introduces channel and spatial attention in the encoder,
further refining the focus on relevant features. Table 2 presents the efficiency metrics of
each model configuration.

Table 2. Comparison of multiple segmentation models.

Models IoU Score Inference Time (s)

U-Net Attention 0.697 0.0087
U-Net ResNet 50 0.696 0.033
U-Net VGG 16 0.685 0.0128
U-Net CBAM 0.680 0.013
Yolov7 + SAM 0.685 0.526
Yolov8 + SAM 0.683 0.554

3.2. Evaluation of Cotton Yield at Row Level

We apply image segmentation using the proposed method to segment cotton bolls
from field images. The segmentation process allows us to isolate cotton bolls as white pixels
in the images. We then count the number of white pixels in each image, which represent
the presence of cotton. To estimate the cotton yield for each row, we aggregate the white
pixel counts across all images belonging to that specific row. This approach allows us to
derive an estimated yield for the entire row on the basis of the segmented images. Next,
we aim to quantify the relationship between the white pixel count and the actual cotton
yield. A linear regression model is applied, where the white pixel count is used as the
independent variable and the actual yield as the target variable. We use data from 58 rows
to construct the linear regression model and test it on data from 38 rows. In Figure 7, we
plot the pixel count for each row on the x axis and the actual yield on the y axis. We observe
that the model successfully captures the correlation between these two values, achieving
a high R2 value of 0.913 with YOLOv8 + SAM, indicating that the model explains a large
proportion of the variance in cotton yield. The model has a low mean absolute error (MAE)
of 3.872 lbs/row, showing that the predictions are accurate.
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Figure 7. Linear relationship between pixel count and actual yield across different models. The
YOLOv8 + SAM has the best yield prediction performance, with a R2 of 0.913.

However, it is important to note that a higher IoU score, which typically indicates
better segmentation quality, does not necessarily translate to higher accuracy in yield
prediction (Figure 7). While a higher IoU reflects a better match between the predicted and
ground truth segmentation, it does not always correlate with the overall cotton yield since
other factors, such as boll distribution, growth stage, and environmental conditions, can
influence yield independently of segmentation accuracy. Thus, a high IoU score might not
fully capture the complexities of yield estimation. In contrast, our linear regression model
focuses on the aggregated pixel counts, which are more directly related to the overall yield,
demonstrating that effective yield prediction depends not only on accurate segmentation
but also on how well the segmentation relates to actual cotton production. Future studies
may explore additional features or hybrid models that consider both segmentation accuracy
and environmental variables to improve yield predictions.

4. Conclusions

In this study, the authors proposed a two-stage approach for image segmentation that
integrates object detection with an advanced segmentation technique to predict cotton
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yield. A comparison between two recent state-of-the-art object detection models, YOLO
v7 and YOLO v8, was conducted. YOLO v7 was observed to perform better in all metrics,
and this resulted in a high IoU score of 0.685. Using YOLO v8 and SAM in conjunction
with UAV imagery, we were able to achieve a high correlation between the segmented
output and actual yield data, reflected in an R2 value of 0.913. This model provides a
robust and reliable method for predicting cotton yields, significantly reducing the need
for traditional labor-intensive methods. The proposed approach not only improves pre-
diction accuracy but also offers a practical tool to optimize agricultural practices, resource
allocation, and decision-making processes. It paves the way for exploring the potential
of vision foundational models in agricultural applications. Additionally, the combination
of object detection with segmentation in our approach aligns with the growing interest in
zero-shot or few-shot segmentation, which enables models to adapt to new crop types with
minimal labeled data. Future work could explore the application of this framework to other
types of crops and further refine the model by incorporating additional variables, such as
soil health and climatic conditions, to improve its predictive power and generalizability in
diverse agricultural environments. In this study, we focused on a specific dataset collected
in the Lubbock, Texas area, with parameters optimized based on the characteristics of this
location, cotton variety, and growth stage. While this approach was effective within the
defined scope, we agree that further research is needed to explore how segmentation param-
eters may vary across different planting sites, cotton species, growth stages, and imaging
techniques. As part of future work, we intend to investigate how our segmentation model
generalizes under varied conditions and to test parameter adjustments that may enhance
its adaptability.

5. Research Reproducibility

We agree that generalizing to other regions and environmental conditions would
be valuable, and we have noted this as a future research direction. We believe that the
model’s framework can be adapted to different regions by local researchers. To support
this, we have provided a detailed description of our methodology and made the model
code available, facilitating adaptation and validation in diverse contexts. All the research
results in this article can be reproduced. The code is available in the author’s Github:
https://github.com/hniu-tamu/Cotton_yield_prediciton_with_YOLO_and_SAM, accessed
on 10 November 2024.
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