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Abstract: Increasing global plastic usage has raised critical concerns regarding marine pollution.
This study addresses the pressing issue of floating marine macro-litter (FMML) by developing a novel
monitoring system using a multi-spectral sensor and drones along the southern coast of South Korea.
Subsequently, a convolutional neural network (CNN) model was utilized to classify four distinct
marine litter materials: film, fiber, fragment, and foam. Automatic atmospheric correction with the
drone data atmospheric correction (DROACOR) method, which is specifically designed for currently
available drone-based sensors, ensured consistent reflectance across altitudes in the FMML dataset.
The CNN models exhibited promising performance, with precision, recall, and F1 score values of 0.9,
0.88, and 0.89, respectively. Furthermore, gradient-weighted class activation mapping (Grad-CAM),
an object recognition technique, allowed us to interpret the classification performance. Overall, this
study will shed light on successful FMML identification using multi-spectral observations for broader
applications in diverse marine environments.

Keywords: floating marine macro-litter; unmanned aerial vehicle; multi-spectral sensor; atmospheric
correction; reflectance retrieval; convolutional neural network

1. Introduction

The escalating global use of plastic has led to a significant increase in marine pollution
caused by marine litter, which is a pressing global concern. Marine litter encompasses
persistent, human-made, and processed solid substances discarded or lost in marine and
coastal environments [1]. FMML is defined as any floating item over 2.5 cm in length on the
surface or in the surface layer of a water column [2–4]. FMML poses a significant threat to
various marine life groups [5–11] and can affect beaches and the seafloor, where it has been
reported to be a source of secondary micro-litter. To reduce such damage, it is essential to
collect information on the distribution and trend of FMML systematically. Therefore, it is
necessary to efficiently monitor the amount of FMML as well as its spatial and temporal
changes, sources, and movement paths.

Many problems have occurred with marine litter in South Korea, and monitoring
studies on beach litter have been conducted to solve these problems. Several studies have
estimated the sources of marine plastic debris and investigated the distribution of small
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pieces of plastic debris found on beaches. This can help reduce and evaluate the types
and amount of beach litter [12–14]. However, due to the lack of effective monitoring and
evaluation methods for FMML, more efficient monitoring is necessary to inform policies
aimed at its reduction. Therefore, there is a need for remote sensing methods capable of
providing a high spatial resolution and near-real-time data for the efficient monitoring and
classification of macro-litter, particularly focusing on FMML.

Remote sensing methods for FMML, such as satellites [15–18], aircraft [15,16,19,20],
and unmanned aerial vehicles (UAVs, also known as drones) [21–24], have emerged as
efficient and cost-effective monitoring strategies. However, satellite and aircraft observa-
tions still have insufficient spatial resolutions for detecting and monitoring the small size of
FMML at high flight altitudes, and obtaining permission for aircraft surveys is difficult. To
address these limitations, drone observations, which offer a high spatiotemporal resolution
and ease of access, have emerged as viable alternatives for monitoring FMML [20,22]. For
example, Garcia-Garin et al. [20] distinguished between images with and without FMML
captured by drones and aircraft in the northwest Mediterranean region. These surveys were
performed using an RGB camera and analyzed using deep learning algorithms. Nonethe-
less, it is difficult to recognize marine litter in RGB images, as RGB bands allow only object
chromaticity to be described [25]. Furthermore, using multi-spectral images to acquire
multi-spectral characteristics to classify macro-litter types and materials by the spectral
angle mapping (SAM) technique has been conducted on a beach dune [24]. Therefore,
multi-spectral sensors can provide more detailed spectral differences in marine litter.

Machine learning approaches, such as support vector machines (SVM) and random
forest (RF), have been widely applied to RGB and multi-spectral data analysis [23,26,27].
However, deep learning [28] has provided the efficient extraction of valuable information
from aerial imagery [17,29,30], significantly reducing the time required for data processing.
Particularly, CNNs have demonstrated a superior performance in image recognition tasks
due to their capacity to automatically learn and extract complex features across multiple
neural network layers [31,32]. CNN models utilizing RGB imagery have been specifically
applied to the detection and classification of FMML. For instance, RGB camera-to-CNN ap-
proaches have successfully classified FMML into three distinct categories, with studies such
as those conducted in Cambodia using high-resolution RGB aerial imagery to develop and
train CNN-based detection and quantification systems [26]. Despite these advancements,
RGB data alone imposes limitations due to its restricted spectral range, which may hinder
accurate classification. Recent progress in drone-based multi-spectral data analysis now
enables CNNs to leverage the extensive spectral information inherent in multi-spectral data,
allowing for a more nuanced and automated feature extraction process. Building upon
these advances, this study aims to address the limitations of RGB imagery by employing
CNN models trained on high-resolution multi-spectral data, thereby enhancing FMML
detection and classification. Therefore, while previous studies have primarily relied on
CNNs trained with RGB data from drone imagery [20], this study seeks to advance FMML
classification and monitoring by utilizing multi-spectral imagery, marking a significant step
forward in remote sensing-based marine litter detection [33].

The aim of this study is to develop a deep learning model using drone-acquired
multi-spectral images to monitor and classify FMML. First, we calculated the reflectance
of FMML at different flight altitudes after correcting for atmospheric effects. Second, we
analyzed the reflectance characteristics of FMML, which showed a wide range of colors
and material types. Third, we trained and tested three CNN models to accurately classify
FMML. Finally, we used a visualization technique called Grad-CAM to better understand
how the models identified the FMML based on different types and colors, providing insight
into the models’ performance.

Therefore, for the first time, this study presents a comprehensive approach for clas-
sifying and detecting FMML using drone-based multi-spectral images. The remainder
of this paper is organized as follows: Section 2 details the study area, data acquisition
process, and methods used. In Section 3.1, we outline the methodology for acquiring and
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preparing UAV-based multi-spectral images, including the use of atmospheric correction
techniques for reflectance across varying altitudes. Section 3.2 describes the analysis of
FMML reflectance characteristics, considering the wide range of sizes, colors, and materials.
Section 3.3 presents the development and training of three CNN models optimized for
FMML detection and classification. Section 3.4 applies Grad-CAM to visualize model
performance, providing insights into how the models identify FMML based on different
types and colors. Section 4 discusses the results, comparing the performance of different
models and analyzing the effectiveness of our approach. Finally, Section 5 presents the
conclusions of this study and outlines potential applications for marine litter monitoring
and management.

2. Data and Methods

Figure 1 shows the overall workflow for classifying FMML using drone-acquired
data and deep learning models. In this study, we selected the Dong-Sun seawall, Gadeok
Island, as the study area, which is the location of the National Coastal Litter Monitoring
Program conducted by the Ministry of Oceans and Fisheries of South Korea [34], according
to different geographical features and human activities. Drone surveys were also conducted
in the study area. The drone was equipped with a multi-spectral sensor to acquire multi-
spectral images of FMML. We manually selected and used all acquired images without
interfering with the FMML detection. The FMML images were divided into four categories
for model training: film, fiber, fragment, and foam. The DROACOR (version 2.0.1, ReSe
Application LLC, Wil, Switzerland) method [35] was used to obtain consistent reflectance
from the drone’s multi-spectral images obtained at various flight altitudes. The entire
FMML dataset obtained through the drone surveys increased the number of images through
image augmentation to improve the effective classification and accuracy before using deep
learning algorithms. The images were then resized for the utilization a CNN model.
Finally, three different models were constructed based on the number of training images.
The completed models were classified using the CNN algorithm, and Grad-CAM was
employed to visualize the classification results, helping to identify and improve model
performance in the challenging areas of FMML detection.
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Figure 1. The overall workflow shows the processes that led to the classification of FMML using
drone-acquired data and deep learning models. We performed three steps: (1) FMML exploration;
(2) data processing for the deep learning models; and (3) deep learning to process FMML classification
and visualization.
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2.1. Study Area

This study was conducted in the Dong-Sun seawall area of Gadeok Island in South
Korea, which was chosen as one of the sites for the National Coastal Litter Monitoring
Program, supported by the MOF and organized by the Korea Marine Environment Man-
agement Corporation [34]. This program, which has been ongoing since 2018, conducts
regular surveys every two months at 40 selected coastal sites along South Korea’s shore-
lines. The selection criteria for these sites include a minimum coastline length of 100 m,
characterized by sandy and pebbly beaches. These terrain-imposed mobility restrictions
during the two-month monitoring period and were infrequently subjected to cleaning
activities, allowing litter to accumulate during the monitoring process. Based on these
criteria, we conducted three pre-site field trips, identifying the study area as the Dong-Sun
seawall on the southern coast of South Korea’s South Sea (Figure 2). This location is near
the mouth of the Nakdong River, one of the largest river mouths in South Korea, with
geographical features that facilitate the accumulation of marine litter. The region is popular
for tourism activities, such as camping and fishing, contributing to the generation of marine
litter due to anthropogenic activities. Furthermore, because of ocean currents and weather
patterns, a significant amount of marine litter has been found near the study area, including
on Jinwoo Island and Shinja Island. Therefore, we chose this study area based on National
Coastal Litter Monitoring Program criteria and our pre-site field trips.
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Figure 2. The study location on Gadeok Island in South Korea and the data acquisition location of
the drone surveys in the study area in drone-based imagery (red rectangle). Maps of the study area
and a Pix4Dmapper image were used to illustrate the data acquisition.

2.2. Drone Surveys

This study used the DJI Inspire 2 (DJI, Shenzhen, China), a drone with a maximum
payload capacity of 4 kg. The flight time varies according to the battery and payload,
providing approximately 27 min of operation. It features a dual-battery system for extended
flight times and can reach speeds of up to 94 km/h in sport mode. The drone was equipped
with a 5-channel Micasense RedEdge-MX sensor (Micasense Inc., Seattle, WA, USA) for
data collection. Table 1 provides detailed information regarding the specification of the
Micasense RedEdge-MX sensor. This sensor captures images in five spectral bands with
central wavelengths of 475, 560, 668, 717, and 840 nm, corresponding to the blue, green,
red, red edge, and near-infrared (NIR) bands, respectively. The blue and green bandwidths
were 20 nm, while the red and red edge bandwidths were 10 nm, and the NIR bandwidth
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was 40 nm. Using drone surveys to acquire images for object detection and classification
was important for image resolutions, expressed as the ground sampling distance (GSD).
The GSD is determined by flight altitudes and sensor properties. The Micasense sensor had
width of 4.8 mm and a focal length of 5.4 mm. It achieved a GSD of 8 cm per pixel at a
flight altitude of 120 m [36,37].

Table 1. Detail of Micasense RedEdge-MX sensor Specification.

Band Name Blue Green Red Red Edge NIR

Central wavelength (nm) 475 560 668 717 840
Bandwidth (nm) 20 20 10 10 40

Drone surveys were conducted on 11 January, 29 March, 20 July, and 7–8 September
2023 to represent the seasonal seawater conditions and sunlight of this study area. These
surveys were conducted over seawater approximately 3 m from the coastline of the Dong-
Sun seawall on Gadeok Island. Observations were conducted between 11:00 a.m. and
4:30 p.m. on cloudy and clear days to minimize the potential influence of wind on object
detection and calm sea conditions (i.e., a Beaufort sea state < 3). This precaution aimed
to mitigate the effects of sun glint, turbidity, and cloud shadows, as these factors can
significantly affect the detection of marine litter. However, it is worth noting that we
manually selected images after the surveys, ensuring that these parameters did not affect
the results. Furthermore, the flight altitude of the drone used for the image acquisition was
carefully controlled. All images captured using the Micasense sensor fell within the range
of 10 to 170 m, ensuring a GSD that ranged from 0.69 to 11.8 cm per pixel. The sensor angles
were adjusted to the nadir (90◦ to the ground) to maintain proper alignment, and a shooting
interval of 2–3 s was set to enable automated capturing and facilitate the acquisition of
multi-spectral images.

2.3. Data Preparation
2.3.1. FMML Dataset

We collected a variety of colors, sizes, and types of litter to represent the FMML
accurately, including plastic bags, buoys, fishing ropes, baskets, and plastic bottles. Figure 3
shows sample imagery collected around the study area and represents the most common
marine litter found on South Korean coastlines. The marine litter was labeled by the source
of its type (material), following the study in [34] for the National Coastal Litter Monitoring
Program. Table 2 lists the different size ranges, colors, and types of litter included in the
dataset. The size ranges were suggested for the floating litter surveys based on the report
and were determined by the size of the largest dimensions of the FMML. The size range
was from 2.5 cm to over 50 cm [38]. Overall, 43% of the FMML dataset was composed of
film, and 29% was composed of fragments; both fiber and foam were 14% of the dataset.
Different colors were balanced among the types of marine litter, and we put a white color
in each type to compare the reflectance of the types.

Remote Sens. 2024, 16, x FOR PEER REVIEW 6 of 21 
 

 

Furthermore, the flight altitude of the drone used for the image acquisition was carefully 
controlled. All images captured using the Micasense sensor fell within the range of 10 to 
170 m, ensuring a GSD that ranged from 0.69 to 11.8 cm per pixel. The sensor angles were 
adjusted to the nadir (90° to the ground) to maintain proper alignment, and a shooting 
interval of 2–3 s was set to enable automated capturing and facilitate the acquisition of 
multi-spectral images. 

2.3. Data Preparation 
2.3.1. FMML Dataset 

We collected a variety of colors, sizes, and types of litter to represent the FMML ac-
curately, including plastic bags, buoys, fishing ropes, baskets, and plastic bottles. Figure 3 
shows sample imagery collected around the study area and represents the most common 
marine litter found on South Korean coastlines. The marine litter was labeled by the source 
of its type (material), following the study in [34] for the National Coastal Litter Monitoring 
Program. Table 2 lists the different size ranges, colors, and types of litter included in the 
dataset. The size ranges were suggested for the floating litter surveys based on the report 
and were determined by the size of the largest dimensions of the FMML. The size range 
was from 2.5 cm to over 50 cm [38]. Overall, 43% of the FMML dataset was composed of 
film, and 29% was composed of fragments; both fiber and foam were 14% of the dataset. 
Different colors were balanced among the types of marine litter, and we put a white color 
in each type to compare the reflectance of the types. 

 
Figure 3. FMML dataset of images captured by the drone in the study area. 

Figure 3. Cont.



Remote Sens. 2024, 16, 4347 6 of 20

Remote Sens. 2024, 16, x FOR PEER REVIEW 6 of 21 
 

 

Furthermore, the flight altitude of the drone used for the image acquisition was carefully 
controlled. All images captured using the Micasense sensor fell within the range of 10 to 
170 m, ensuring a GSD that ranged from 0.69 to 11.8 cm per pixel. The sensor angles were 
adjusted to the nadir (90° to the ground) to maintain proper alignment, and a shooting 
interval of 2–3 s was set to enable automated capturing and facilitate the acquisition of 
multi-spectral images. 

2.3. Data Preparation 
2.3.1. FMML Dataset 

We collected a variety of colors, sizes, and types of litter to represent the FMML ac-
curately, including plastic bags, buoys, fishing ropes, baskets, and plastic bottles. Figure 3 
shows sample imagery collected around the study area and represents the most common 
marine litter found on South Korean coastlines. The marine litter was labeled by the source 
of its type (material), following the study in [34] for the National Coastal Litter Monitoring 
Program. Table 2 lists the different size ranges, colors, and types of litter included in the 
dataset. The size ranges were suggested for the floating litter surveys based on the report 
and were determined by the size of the largest dimensions of the FMML. The size range 
was from 2.5 cm to over 50 cm [38]. Overall, 43% of the FMML dataset was composed of 
film, and 29% was composed of fragments; both fiber and foam were 14% of the dataset. 
Different colors were balanced among the types of marine litter, and we put a white color 
in each type to compare the reflectance of the types. 

 
Figure 3. FMML dataset of images captured by the drone in the study area. Figure 3. FMML dataset of images captured by the drone in the study area.

Table 2. The information of the FMML dataset, including the colors, types, marine litter, and sizes
of the FMML, measured by its largest dimensions (A: 5 ≤ 10 cm; B: 10 ≤ 20 cm; C: 20 ≤ 30 cm; D:
30 ≤ 50 cm; E: > 50 cm).

Color Type Marine Litter Size

White
Film

Plastic bags A
Black Plastic bags A

Orange Buoy E

White Fiber Fishing rope D

White Fragment Basket C
Transparent Plastic bottles B

White Foam Buoy E

2.3.2. Atmospheric Correction for Multi-Spectral Measurements

The DROACOR method retrieves reflectance values from sensor radiance. It dynami-
cally adjusts to specific devices and prevalent atmospheric conditions, offering a versatile
solution for correcting multi-spectral and hyperspectral images [35]. Its function is to metic-
ulously remove atmospheric influences from data taken by drone-based sensors, accurately
retrieving reflectance. The processing methodology for the DROACOR method involves a
systematic sequence of steps to ensure accurate data analysis. The process encompasses
data preparation, inflight radiometric calibration, libRadtran, look-up table (LUT) gener-
ation, reflectance retrieval by atmospheric correction, spectral optimization, terrain and
bidirectional reflectance distribution function (BRDF) correction, and verification. For
a multi-spectral case over a flat terrain, no terrain correction and spectral optimization
is required, so BRDF correction was not applicable for the present case. Atmospheric
correction was applied to all multi-spectral images obtained in our campaigns, utilizing
the DROACOR procedure. The image acquisition dates were aligned with the drone sur-
veys conducted on 11 January, 29 March, 20 July, and 7–8 September 2023. All images
captured between 11:00 and 16:30 UTC+9 were carefully distributed across diverse time
zones. A singular dataset of Micasense reflectance panels (with an approximately 50%
reflectance) obtained 1 m above ground was directly employed on the shore for panel
reflection information essential for the radiometric sensor calibration. The sensor altitude of
all multi-spectral images ranged from 10 to 170 m. Consequently, a dedicated atmospheric



Remote Sens. 2024, 16, 4347 7 of 20

correction procedure was implemented for each set of multi-spectral images, aiming to
minimize atmospheric correction discrepancies to the utmost extent possible.

2.3.3. Image Processing

In this study, we initially collected images captured at altitudes ranging from 10 to
170 m. However, during the development of the deep learning model, we encountered
significant challenges in recognizing objects in images. Consequently, we reorganized
the dataset, including only images taken at altitudes between 10 and 40 m based on the
GSD (2.77–6.94 cm/pixel). This adjustment enhanced the object recognition capabilities
and overall accuracy of the model. We meticulously examined the FMML dataset and
categorized a subset of the images into the four main groups: film, fiber, fragment, and
foam. However, the initial number of images in each category (Table 3) was insufficient
for effectively training the deep learning model. To address this issue, we employed
image-augmentation techniques to expand the dataset [39]. Image-augmentation artificially
increases the number of images by introducing variations, which helps to reduce the risk of
overfitting and potentially improve the deep learning model performance [32,39].

Table 3. Label information on the number of multi-spectral images obtained from 10 to 40 m among
the FMML dataset.

Label Name Contents Number Percentage (%)

Film (White, Black) Plastic bags,
(Orange) Film buoy 354 40

Fiber (White) Fishing rope 203 23

Fragment (White) Basket, (Transparent)
Plastic bottles 124 14

Foam (White) Styrofoam buoy 206 23

In our image augmentation process, we implemented cropping, horizontal and vertical
flips, and rotations of 70◦, 140◦, and 210◦ on the available images. Consequently, after the
image augmentation, the total number of images in the FMML dataset increased to 4908 for
the film, 2880 for the fiber, 1908 for the fragment, and 2844 for the foam. Subsequently,
to expedite and enhance the classification and detection capabilities of the deep learning
model, we resized the entire dataset to 128 × 128 × 5 pixels. Table 4 illustrates the outcomes
of manually identifying and categorizing the dataset into four categories. Furthermore,
we created three different training sets for the three CNN models to determine the impact
of the number of images in each category of the FMML on the CNN model components:
(1) CNN-1 (1000 images per category), (2) CNN-2 (1500 images per category), and (3) CNN-
3 (4908 film images, 2880 fiber images, 1908 fragment images, and 2844 foam images)
(Table 4).

Table 4. CNN model information with three different training image sets.

Model
Training Image Number

Film Fiber Fragment Foam

CNN-1 1000 1000 1000 1000
CNN-2 1500 1500 1500 1500
CNN-3 4908 2880 1908 2844

2.4. Deep Learning Algorithm

In this study, we developed an algorithm for automatically detecting FMML in drone
images using a deep learning approach based on CNN architecture. Unlike other machine
learning methods that require a predefined set of features, deep learning models, specifically
CNNs, learn and recognize the spatial patterns of a target using features embedded within
its architecture. The architecture of the CNN model used in this study is shown below
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(Figure 4). The CNN model was developed using MathWorks. The figure demonstrates
the creation and training of a simple classification-based deep learning network. The CNN
architectures used in this study are listed in Table 5.

Remote Sens. 2024, 16, x FOR PEER REVIEW 8 of 21 
 

 

Table 3. Label information on the number of multi-spectral images obtained from 10 to 40 m among 
the FMML dataset. 

Label Name Contents Number Percentage (%) 
Film (White, Black) Plastic bags, (Orange) Film buoy 354 40 
Fiber (White) Fishing rope 203 23 

Fragment (White) Basket, (Transparent) Plastic bottles 124 14 
Foam (White) Styrofoam buoy 206 23 

In our image augmentation process, we implemented cropping, horizontal and ver-
tical flips, and rotations of 70°, 140°, and 210° on the available images. Consequently, after 
the image augmentation, the total number of images in the FMML dataset increased to 
4908 for the film, 2880 for the fiber, 1908 for the fragment, and 2844 for the foam. Subse-
quently, to expedite and enhance the classification and detection capabilities of the deep 
learning model, we resized the entire dataset to 128 × 128 × 5 pixels. Table 4 illustrates the 
outcomes of manually identifying and categorizing the dataset into four categories. Fur-
thermore, we created three different training sets for the three CNN models to determine 
the impact of the number of images in each category of the FMML on the CNN model 
components: (1) CNN-1 (1000 images per category), (2) CNN-2 (1500 images per cate-
gory), and (3) CNN-3 (4908 film images, 2880 fiber images, 1908 fragment images, and 
2844 foam images) (Table 4). 

Table 4. CNN model information with three different training image sets. 

Model 
Training Image Number 

Film Fiber Fragment Foam 
CNN-1 1000 1000 1000 1000 
CNN-2 1500 1500 1500 1500 
CNN-3 4908 2880 1908 2844 

2.4. Deep Learning Algorithm 
In this study, we developed an algorithm for automatically detecting FMML in drone 

images using a deep learning approach based on CNN architecture. Unlike other machine 
learning methods that require a predefined set of features, deep learning models, specifi-
cally CNNs, learn and recognize the spatial patterns of a target using features embedded 
within its architecture. The architecture of the CNN model used in this study is shown 
below (Figure 4). The CNN model was developed using MathWorks. The figure demon-
strates the creation and training of a simple classification-based deep learning network. 
The CNN architectures used in this study are listed in Table 5. 

 
Figure 4. CNN architecture for the classification of FMML. The training, validation, and test sets
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Table 5. CNN structures used in this study.

Order Layers Options

1 Image Input Layer Input size: 128 × 128 × 5

2 Convolution 2D Layer Filter size: 3 × 3; number of filters: 32; stride:
1 × 1

3 Batch Normalization Layer Mean decay: 0.1; variance decay: 0.1; epsilon:
0.00001

4 ReLU Layer Number of inputs: 1; number of outputs: 1
5 Max-Pooling 2D Layer Poll size: 2 × 2; stride: 2 × 2

6 Convolution 2D Layer Filter size: 3 × 3; number of filters: 32; stride:
1 × 1

7 Batch Normalization Layer Mean decay: 0.1; variance decay: 0.1; epsilon:
0.00001

8 ReLU Layer Number of inputs: 1; number of outputs: 1
9 Max-Pooling 2D Layer Poll size: 2 × 2; stride: 2 × 2

10 Convolution 2D Layer Filter size: 3 × 3; number of filters: 32; stride:
1 × 1

11 Batch Normalization Layer Mean decay: 0.1; variance decay: 0.1; epsilon:
0.00001

12 ReLU Layer Number of inputs: 1; number of outputs: 1
13 Max-Pooling 2D Layer Poll size: 2 × 2; stride: 2 × 2
14 Fully Connected Layer Output size: 512
15 ReLU Layer Number of inputs: 1; number of outputs: 1
16 Dropout Layer Number of layers: 19; number of connections: 18
17 Fully Connected Layer Output size: 4
18 Softmax Layer Number of inputs: 1; number of outputs: 1
19 Classification Classes: 4

Our network initially consisted of a sequence of layers, including three 2D convolu-
tional layers, three batch normalization layers, four rectified linear unit (ReLU) layers, and
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three max-pooling 2D layers for feature extraction. The convolution process is mathemati-
cally expressed using Equation (1) [40].

yn = f

(
∑
n

xn × ωn + bn

)
(1)

The training and test sets consisted of drone images with inputs from five spectral
bands. The input images contained preprocessed FMML datasets with the dimensions
128 × 128 × 5. The output images were labeled as film, fiber, fragment, and foam. The net-
work architecture consisted of input, feature extraction, classification, and output com-
ponents, as listed in Table 5. In Equation (1), y, x, w, and b represent the pixel values
of the output and input images, filter pixels, and bias term, respectively. Following the
convolution, the ReLU activation function (f) was applied after each convolution layer to
introduce nonlinear operations. The pooling layers were used to down-sample data from
the previous layers. In this study, we employed max-pooling, which involves selecting the
maximum value from the corresponding pixels in an input image to generate a new pixel
value. Fully connected and SoftMax layers were added. Fully connected layers linked the
output neurons from the previous layers to each neuron in the subsequent layers, creating
a network of interconnected neurons. The results from this layer were normalized into a
probability distribution for classification using the SoftMax layer. The final output was
assigned to the classification layer.

After defining the network architecture, we specified the options for training, valida-
tion, and testing. We randomly divided the model split ratios for each CNN model into
60% for training, 20% for validation, and 20% for testing. These images were not duplicated
and were repeatedly used in the process. We used the adaptive moment estimation (Adam)
optimizer based on adaptive estimates of the first and second moments [41]. The initial
learning rate for the Adam was set to 0.01, and the maximum number of epochs was set to
50, with each epoch representing a complete training cycle over the entire training dataset.
A shuffle option was applied to each epoch. Throughout the training process, the software
consistently evaluated the accuracy of the validation data. The network was trained using
a high-speed GPU to maximize processing efficiency.

2.5. Grad-CAM

In various deep learning applications related to imaging analysis, it is very important
to make deep learning models interpretative and enhanced. Grad-CAM, a generalized
method derived from the class activation map (CAM) among object recognition techniques,
provides an explainable perspective on deep learning models [42,43]. Visual explanations
using Grad-CAM have been conducted as previously described [43]. Therefore, in this study,
we applied Grad-CAM to check the possibility of enhancing the proposed deep learning
model and to analyze its interpretability. Grad-CAM uses multi-spectral images containing
preprocessed FMML datasets as an input. Grad-CAM techniques were subsequently
applied using the CNN model and then applied to any of the convolutional (Conv) layers.
Consistently with previous studies [43,44], Grad-CAM was applied to the last Conv layer.
This method indicates that Grad-CAM is a valuable tool for visually explaining the results
obtained from a CNN model, which may enhance the accuracy of deep learning models.

3. Results
3.1. Reflectance Estimation of Different Flight Altitudes Through Atmospheric Correction

Figure 5a shows the drone image and spectral data according to the altitude obtained
on 29 March 2023. The spectral data of the FMML were obtained continuously at the same
location from at flight altitudes of 23 to 170 m. During the 10 min of data acquisition, the
solar zenith angle varied slightly between 32.9◦ and 35.7◦. We conducted atmospheric
correction and analyzed the following results with the orange film buoy, the largest object in
the FMML dataset of this study. Before atmospheric correction, images acquired at different
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altitudes showed differences in the image value (Figure 5b). However, the images showed
consistent reflectance for all flight altitudes between 23 and 170 m above the ground after
atmospheric correction using the DROACOR method (Figure 5c). Reflectance retrieval by
atmospheric correction for the other FMML datasets, except for the orange film buoy, was
also conducted, and the results showed consistent reflectance regardless of the altitude.
The average deviation quantified the effect of the atmosphere on the observed data [35].
The average deviation for each band covering all seven altitudes ranged from 0.71 to 1.32%
(Table 6).
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Figure 5. Reflectance analysis of flight altitude through atmospheric correction. (a) A multi-spectral
image was obtained on 29 March 2023 (true color RGB; R: 668 nm; G: 560 nm; B: 475 nm; a 51 m flight
altitude). Images for atmospheric correction were acquired at altitudes of 23, 51, 70, 101, 127, 146,
and 170 m. (b) The image values for each altitude of the orange film buoy image before atmospheric
correction were compared. (c) The reflectance for each altitude of the orange film buoy image using a
DROACOR atmospheric correction processor were compared.

Table 6. Average deviations of reflectance outputs (units: reflectance) at various flight altitudes after
atmospheric correction.

Band wavelength (nm) 475 560 668 717 840 Mean

Average deviation (%) 1.15 1.32 0.86 0.71 0.82 0.97

3.2. Analysis of FMML Reflectance

Since we obtained consistent reflectance after atmospheric correction, as demonstrated
in Section 3.1, atmospheric correction was applied to subsequent datasets. Figure 6 shows
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the reflectance spectra of each marine litter within the FMML dataset used in this study.
We used two fragments consisting of hard plastic materials that tend to float in seawater:
transparent fragment plastic bottles and the white fragment basket. The former exhibited a
reflective shape similar to that of the seawater spectral signals because of their transparency.
The latter also showed a spectrum that partially resembled seawater, with a reflectance
ranging from 0.18 to 0.24 in the blue, green, and red edge bands but dropping sharply to
approximately 0.02 in the red and 0.04 in the NIR bands. For the film label, seawater did
not significantly affect the black and white plastic bags. However, the orange film buoy,
which naturally floats well in seawater, exhibited a reflectivity value of 0.4, particularly
in the red edge band. The white fiber fishing rope was used for the fiber label, and the
reflectance of the fishing rope fell between 0.17 and 0.19 in the blue and green bands but
dropped to less than 0.03 in the red and NIR bands. The reflectance of the white foam buoy,
a common floater in seawater, was notably high, exceeding 0.15 in the blue, green, and red
edge bands, but declining to approximately 0.02 in the red and NIR bands.
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3.3. Performance of CNN Models

To assess the classification accuracy of the FMML images, we developed and evaluated
three different CNN models, each trained with a different number of images. The total
number of images for the three CNN models (representing the number of images in the
FMML dataset) was used for training, validation, and testing during the classification.
During this process, 60% of the images were allocated for training, 20% for validation, and
20% for testing during cross-validation. A confusion matrix was used for analysis [45].
In the confusion matrix, the representation of “false” and “true” corresponded to the
presence or absence of FMML in the actual dataset. The overall performance of the model
results was evaluated for both processes using four parameters: accuracy, precision, recall,
and the F1 score. Accuracy (Equation (2)) represents the fraction of all processed images
that were correctly classified as containing or not containing FMML. In contrast, precision
(Equation (3)) represents the fraction of images classified as containing FMML belonging
to that class. In contrast, recall (Equation (4)) represents the fraction of correctly labeled
images within each class. The accuracy, precision, and recall values ranged from 0 to 1.
The F1 score (Equation (5)) represents the balance between precision and recall [46], and its
value increases according to the performance of the model [47]. The repeatability of the
method was tested by performing ten runs on randomly selected image sets.

Accuracy =
(TP + TN)

N
(2)
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Precision =
TP

(TP + FP)
(3)

Recall =
TP

(TP + FN)
(4)

F1 score =
(2 ∗ TP)

(2 ∗ TP + FP + FN)
(5)

where TP is true positive, where images with FMML are well classified; TN is true negative,
where images without FMML are well classified; FP is false positive, where images without
FMML are misclassified; FN is false negative, where images with FMML are misclassified;
and N is total number of images of FMML.

Table 7 lists the performances of the three CNN models for the FMML. We created
12,540 images through drone surveys and image pre-processing, including manual se-
lection and image augmentation. The datasets were separated into three trained CNN
models. CNN-1 and -2 were trained using randomly selected images from the entire dataset,
whereas CNN-3 was trained using all the images. Each CNN model produced different
results based on the training data. The CNN-1 model, trained with 1000 images from each
label, yielded a precision of 0.57 and an F1 score of 0.54. The CNN-2 model, trained with
1500 images from each label, yielded a precision of 0.73 and an F1 score of 0.73. Meanwhile,
the CNN-3 model, trained with the highest number of images, exhibited a precision of 0.90
and an F1 score of 0.89.

Table 7. Performance of evaluation of three CNN models using test set for FMML.

Model
Training Image Number

Precision Recall Accuracy F1 Score
Film Fiber Fragment Foam

CNN-1 1000 1000 1000 1000 0.57 0.51 0.51 0.54
CNN-2 1500 1500 1500 1500 0.73 0.72 0.73 0.74
CNN-3 4908 2880 1908 2844 0.90 0.88 0.90 0.89

Figure 7 shows the confusion matrix results for the CNN-3 model. Among the four
classification labels, foam had the highest precision value at 95.4%, whereas fragment had
the lowest recall value at 73.0%. The three performance evaluation indicators are presented
in Table 8.

3.4. CNN Model Evaluation Using Grad-CAM

We visualized images from the FMML dataset, which consisted of four labels with
complex combinations, including colors and types, using Grad-CAM on the CNN-3 model
(Figure 8) to evaluate how the CNN model performed. In Figure 8, the left image represents
the class activation map, and the right image represents the Micasense multi-spectral
image of band five. The class activation map represents the high-intensity visuals (red and
yellow) that reflected the area of interest to our model at the time of prediction. Each image
was obtained from confident (Figure 8a–d) and unconfident (Figure 8e–h) detections of
each label, depending on the heatmap outcomes. The heatmap generated by the Grad-
CAM emphasizes crucial areas in the input image that have a significant impact on the
final prediction of the network. The heatmap outcomes in Figure 8a–d show the clear
visibility of the images for each label. The confident detection demonstrated that our model
visualized the correct heatmap corresponding to the characteristics of the dataset images.
For instance, Figure 8a,c represent the confident detection achieved despite the turbid
seawater conditions and high flight altitude, respectively. In contrast, sun glint and the
movement of seawater led to unconfident detections and the visualization of incorrect
heatmap outcomes. In contrast, the heatmap outcomes in Figure 8e–h show the obscured
visibility of the labeled images. The sun glint and movement of seawater led to unconfident
detections and the visualization of incorrect heatmap outcomes. Figure 8e represents
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unconfident detections owing to the influence of sun glint, which led to misinterpretation.
Figure 8h shows that the movement of seawater around the white foam buoy generated
an incorrect heatmap pattern. Consistent with our findings, previous studies have shown
that potential adverse factors, such as fog, sun glint, and shadow, lead to unconfident
detections [48–50].

Remote Sens. 2024, 16, x FOR PEER REVIEW 13 of 21 
 

 

Table 7 lists the performances of the three CNN models for the FMML. We created 
12,540 images through drone surveys and image pre-processing, including manual selec-
tion and image augmentation. The datasets were separated into three trained CNN mod-
els. CNN-1 and -2 were trained using randomly selected images from the entire dataset, 
whereas CNN-3 was trained using all the images. Each CNN model produced different 
results based on the training data. The CNN-1 model, trained with 1000 images from each 
label, yielded a precision of 0.57 and an F1 score of 0.54. The CNN-2 model, trained with 
1500 images from each label, yielded a precision of 0.73 and an F1 score of 0.73. Mean-
while, the CNN-3 model, trained with the highest number of images, exhibited a precision 
of 0.90 and an F1 score of 0.89. 

Table 7. Performance of evaluation of three CNN models using test set for FMML. 

Model 
Training Image Number 

Precision Recall Accuracy F1 Score 
Film Fiber Fragment Foam 

CNN-1 1000 1000 1000 1000 0.57 0.51 0.51 0.54 
CNN-2 1500 1500 1500 1500 0.73 0.72 0.73 0.74 
CNN-3 4908 2880 1908 2844 0.90 0.88 0.90 0.89 

Figure 7 shows the confusion matrix results for the CNN-3 model. Among the four 
classification labels, foam had the highest precision value at 95.4%, whereas fragment had 
the lowest recall value at 73.0%. The three performance evaluation indicators are pre-
sented in Table 8. 

Table 8. Precision, recall, and F1 score of four labels in CNN-3 model. 

CNN-3 Precision Recall F1 Score 
Fiber 0.86 0.92 0.89 
Film 0.91 0.96 0.93 
Foam 0.95 0.90 0.93 

Fragment 0.88 0.73 0.80 

 

Figure 7. A confusion matrix of the CNN-3 model (x-axis: recall; y-axis: precision). The green box
indicates correct classification by the model, and the red box indicates incorrect classification.

Remote Sens. 2024, 16, x FOR PEER REVIEW 14 of 21 
 

 

Figure 7. A confusion matrix of the CNN-3 model (x-axis: recall; y-axis: precision). The green box 
indicates correct classification by the model, and the red box indicates incorrect classification. 

3.4. CNN Model Evaluation Using Grad-CAM 
We visualized images from the FMML dataset, which consisted of four labels with 

complex combinations, including colors and types, using Grad-CAM on the CNN-3 model 
(Figure 8) to evaluate how the CNN model performed. In Figure 8, the left image repre-
sents the class activation map, and the right image represents the Micasense multi-spectral 
image of band five. The class activation map represents the high-intensity visuals (red and 
yellow) that reflected the area of interest to our model at the time of prediction. Each im-
age was obtained from confident (Figure 8a–d) and unconfident (Figure 8e–h) detections 
of each label, depending on the heatmap outcomes. The heatmap generated by the Grad-
CAM emphasizes crucial areas in the input image that have a significant impact on the 
final prediction of the network. The heatmap outcomes in Figure 8a–d show the clear vis-
ibility of the images for each label. The confident detection demonstrated that our model 
visualized the correct heatmap corresponding to the characteristics of the dataset images. 
For instance, Figure 8a,c represent the confident detection achieved despite the turbid sea-
water conditions and high flight altitude, respectively. In contrast, sun glint and the move-
ment of seawater led to unconfident detections and the visualization of incorrect heatmap 
outcomes. In contrast, the heatmap outcomes in Figure 8e–h show the obscured visibility 
of the labeled images. The sun glint and movement of seawater led to unconfident detec-
tions and the visualization of incorrect heatmap outcomes. Figure 8e represents unconfi-
dent detections owing to the influence of sun glint, which led to misinterpretation. Figure 
8h shows that the movement of seawater around the white foam buoy generated an in-
correct heatmap pattern. Consistent with our findings, previous studies have shown that 
potential adverse factors, such as fog, sun glint, and shadow, lead to unconfident detec-
tions [48–50]. 

 
Figure 8. Visualization of FMML using Grad-CAM on CNN-3 model. (a–d) Confident detections of 
FMML dataset labels. (e–h) Unconfident detections of FMML dataset labels. 
Figure 8. Visualization of FMML using Grad-CAM on CNN-3 model. (a–d) Confident detections of
FMML dataset labels. (e–h) Unconfident detections of FMML dataset labels.



Remote Sens. 2024, 16, 4347 14 of 20

Table 8. Precision, recall, and F1 score of four labels in CNN-3 model.

CNN-3 Precision Recall F1 Score

Fiber 0.86 0.92 0.89
Film 0.91 0.96 0.93
Foam 0.95 0.90 0.93

Fragment 0.88 0.73 0.80

4. Discussion

Despite the high spatial resolution of the drone’s multi-spectral images, it was very dif-
ficult to directly classify the FMML as having various colors and types. Thus, we developed
a classification model for this study with the CNN models to apply it to the multi-spectral
imagery. We found that our model was successful in distinguishing FMML of different
types with the same color, and our model also demonstrated a high accuracy in the current
dataset. Nevertheless, the model’s performance may be limited by the diversity of the
FMML training dataset. While the results are promising, we cannot confidently assert
that the model would maintain an equally high accuracy when applied to datasets with a
broader range of categories or different domains. This limitation highlights the need for
further testing and validation using more diverse datasets to ensure the model’s generaliz-
ability and robustness across various contexts. To advance a deep learning model for FMML
classification, future work may increase the number of FMML categories and investigate
geographical and environmental conditions (e.g., turbidity and water movement) across
different regions of the world. This may lead to different outcomes. Moreover, long-term
monitoring could provide insights into seasonal variations in marine litter distribution and
help trace the destination of FMML, thereby improving our understanding of its movement.
In this study, we only considered the four different types of FMML (film, fiber, fragment,
and foam) classification and used five multi-spectral band spectra (blue, green, red, red
edge, and NIR). This Section describes FMML classification using reflectance, two differ-
ent CNN model comparisons based on RGB and multi-spectral imageries with the same
parameter, and a qualitative evaluation of our CNN model.

4.1. FMML Classification Using Reflectance

Our results show the reflectance spectra of different types and colors within the FMML
dataset, including fragment, foam, fiber, and film types. Dataset labels were established
based on the National Coastal Litter Monitoring Program of the MOF. We used an automatic
processor, called DROACOR, for atmospheric correction to calculate the reflectance of the
FMML, with each item of FMML exhibiting a unique reflectance shape. Using panel data
directly for reflectance retrieval is a valid approach as long as the panel data are acquired
in similar atmospheric conditions, e.g., before or after data acquisition. Our results show a
good agreement between the two reflectance retrievals (Figure 5b,c). Using the panel for
sensor calibration, as performed in DROACOR, instead of as a reflectance reference, offers
several advantages. An absolute sensor calibration can be applied to a long series of data
acquisitions, eliminating the need for repeated panel measurements. Additionally, temporal
changes in solar illumination and atmospheric conditions can be better accounted for with
absolute calibrated data and appropriate physical modeling, as within DROACOR. This is
especially useful for analyzing dark objects such as shaded areas, suspended sediments, or
water bodies [51,52].

It is important to note that the reflectance results’ interpretation process can be influ-
enced by seawater [53], potentially resulting in variations in the reflectance of the actual
objects. The reflectance of the FMML with similar colors showed remarkable similarities.
However, our findings highlight the potential of material-based classification and that the
types of plastics had different reflectance spectra [54]. Moreover, the outstanding accuracy
in classifying white objects, including fiber rope, film plastic bags, and a fragment basket,
as demonstrated in the confusion matrix of the CNN-3 model, offers compelling evidence
that the model’s performance is not solely dependent on color. Notably, the transparent
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fragment plastic bottles and black film plastic bags exhibited the lowest reflectance within
the FMML dataset. This outcome is likely attributable to their direct interaction with
seawater. The transparent fragment plastic bottles showed a higher reflectance in the blue
and green bands, consistent with the reflective properties of seawater. Conversely, the
black film plastic bags resulted in a reduced reflectance, which was attributed to light
absorption according to the color. These reflectance results within the FMML dataset em-
phasize the significance of color and type properties when utilizing deep learning models
alongside multi-spectral images. Therefore, each FMML reflectance value obtained from a
multi-spectral sensor is crucial to effectively leverage deep learning.

4.2. Model Comparison Between RGB and Multi-Spectral Imagery Bases

We initially hypothesized that the multi-spectral images would outperform the RGB
images in marine litter detection due to their broader spectral information. While RGB
images excel in the shape-based identification of specific objects, the diverse nature of
marine litter necessitates a more comprehensive approach. In this study, we aimed to test
this hypothesis and evaluate the effectiveness of multi-spectral images in distinguishing
various colors and types of marine litter.

To identify the contribution of red edge and NIR bands to the classification of FMML,
we compared the performance of the CNN model trained from RGB images. Three mod-
els were generated using the same training options and image numbers by exclusively
extracting the RGB bands (R: 668 nm; G: 560 nm; B: 475 nm) from the dataset used in
this study (Table 9). Compared to the RGB-3 model, the precision, recall, and F1 score of
the CNN-3 increased by 11.11%, 8.64%, and 11.25%, respectively (Table 7). These results
indicate that the CNN-3 model can classify each label of the FMML better than the RGB-3
model. Therefore, our findings suggest that the multi-spectral image model yields superior
results. The deviation in the accuracy assessment values among the three models using
only the RGB images was minimal. None of the RGB models showed any difference in the
overall evaluation index, even when the number of trained images was changed. Therefore,
our findings emphasize the superiority of multi-spectral images, which can capture a broad
range of colors and types of litter. Additionally, they contribute to the accurate identification
of FMML, thereby enhancing the performance of deep learning models. The comparison of
deep learning models using RGB and multi-spectral images provides significant insights
and important results, demonstrating the need for red edge and NIR bands. The RGB
imagery demonstrates proficiency in tasks where color information is sufficient for feature
extraction, and its limitations become apparent in tasks that require a deeper understanding
of spectral information.

Table 9. Performance evaluation of three CNN models using RGB image of test set for FMML.

Model
Training Image Number

Precision Recall Accuracy F1 Score
Film Fiber Fragment Foam

RGB-1 1000 1000 1000 1000 0.74 0.74 0.74 0.74
RGB-2 1500 1500 1500 1500 0.77 0.76 0.76 0.76
RGB-3 4908 2880 1908 2844 0.81 0.81 0.82 0.80

4.3. Qualitative Evaluation of CNN Model

CNN models provide visual interpretability of their results, which is a significant advan-
tage of techniques like Grad-CAM [43]. In medical imaging, Grad-CAM has been effectively
applied to various tasks, demonstrating its utility in visualizing important regions for model
decisions [55]. Figure 8a–d visually represent the model’s focus areas quite well, particularly
for confident detections where the heatmaps correctly highlighted the characteristics of each
label. This visual feedback is crucial for validating the model’s decision-making process and
ensuring that its focus aligns with expert knowledge. However, Grad-CAM also revealed limi-
tations in our model’s performance under challenging environmental conditions. Unconfident
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detections, as shown in Figure 8e–h, demonstrated that factors such as sun glint, water move-
ment, and turbidity could lead to incorrect heatmap patterns and potential misinterpretations.
These findings align with previous studies highlighting the impact of adverse environmental
factors on detection accuracy [48–50]. While Grad-CAM proves valuable for marine debris
analysis, offering both high accuracy and interpretability for confident detections. However, it
also reveals areas for improvement, particularly in handling complex environmental condi-
tions. This dual insight into the model’s strengths and weaknesses is crucial for enhancing the
reliability of AI-assisted environmental monitoring systems and guiding future improvements
in model performance.

Figure 9 shows a multi-spectral image of band five of the well-classified and misclas-
sified cases in the confusion matrix results of the CNN-3 model. These results represent
a qualitative evaluation based on the confusion matrix. We analyzed the classifications
included in the FMML dataset using the following resulting images: The results of the
correct classifications are shown in Figure 9a,f,k,p, with the FMML displayed in a green
circle. The green circles represent the well-classified FMML while the red circles represent
the misclassified FMML of each category. The model of this study, which was trained
differently at various flight altitudes and with various seawater influences, with various
sizes, colors, and shapes of the FMML in the images, showed results as a quantitatively
good classification model. Nevertheless, there are five reasons for this misclassification.
First, there were cases where the shapes were similarly or incorrectly classified. Second,
misclassification was caused by the model not showing many different colors. Third, the
size of the FMML in the images caused misclassification of the image if it was too small.
Fourth, external factors, such as sun glint and foam caused by the background of the image
and not the influence of the FMML, resulted in misclassification. Fifth, one image of FMML
in this study had an incorrect labeling mistake upon image preprocessing. As shown in
Figure 9b, it is a fiber, but it is detected as a film, and many sun glints in the resulting image
are thought to have hindered correct classification. In Figure 9c, a white fiber fishing rope
exists in the image, but it was included in the dataset without confirming whether a white
foam buoy was included in the image processing stage. Therefore, it was misclassified as a
white foam buoy. In the case of Figure 9d, the size of the white foam buoy in the image
was small; therefore, it was misclassified. In the case of Figure 9e, the image of the black
film plastic bags did not clearly show the characteristic points owing to the color; therefore,
it was confirmed that the wrong classification was made. In the case of Figure 9g,h, the
images are similar in shape to the white foam buoy and transparent fragment plastic bottles,
confirming that they were misclassified as foam and fragment. As shown in Figure 9i,j,l,
the size of the object in the image is too small to be misclassified. In addition, the objects
in Figure 9i,j appear to be small and more affected by the land. In the case of Figure 9m,
the shape of the transparent fragment plastic bottles in the image appears to be similar
to that of the rope; therefore, it appears that the misclassification occurred because of the
morphological characteristics. In the case of Figure 9n, it was confirmed that the shape of
the transparent fragment plastic bottles, along with the effect of sun glint, caused them
to be misclassified, as they showed a form similar to that of the white film plastic bags.
In Figure 9o, it was confirmed that the characteristics of the seawater shown in the im-
age were noticeably more significant than the characteristics of the FMML. Accordingly,
misclassification was confirmed. Therefore, our findings showed that carefully controlled
drones and manually removed images need to be considered during the image acquisition
process that in which external factors (i.e., sun glint and seawater quality) have a high
impact through the qualitative evaluation of well-classified and misclassified cases.
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5. Conclusions

In this study, our CNN model was developed for different sizes, types, and colors of
FMML classification from drone imagery with a multi-spectral sensor. The main findings
of this study are as follows:

(1) The atmospheric correction of multi-spectral images captured at seven flight altitudes
revealed a significant reduction in atmospheric signals, showing only a reflectance
deviation of 0.71 to 1.31%.

(2) The FMML reflectance revealed distinct spectra variations in the different colors
and types for each FMML. We trained and tested three CNN models to classify
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the reflectance of each FMML. As a result, by leveraging these characteristics, we
successfully developed the CNN-3 model with an accuracy and F1 score of 0.90 and
0.89, which showed the highest performance. We confirmed that the CNN model
trained by reflectance classified different colors and types of FMML well.

(3) We qualitatively analyzed the results of the CNN-3 model using Grad-CAM and
visually represented the results obtained from the CNN-3 model. Most of the results
were well classified, despite the conditions of turbid water and high-altitude images.

The novel findings presented in this study represent a significant advancement in
marine litter detection, with three key contributions: (1) the atmospheric correction of
multi-spectral images improved the reflectance accuracy across different flight altitudes,
(2) the optimized CNN-3 model effectively classified FMML by leveraging distinct spectral
characteristics, and (3) the application of Grad-CAM enhanced visualization, enabling the
precise identification of FMML colors and types, even under challenging environmental
conditions. These results highlight the potential of combining drone-based multi-spectral
sensors with deep learning techniques to achieve accurate and efficient marine litter mon-
itoring. The classified FMML data generated in this study offer critical insights that can
support strategies to reduce marine litter and mitigate its impacts along coastal regions.
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