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Abstract: Floods, one of the costliest, and most frequent hazards, are expected to worsen in the
U.S. due to climate change. The real-time forecasting of flood inundations is extremely important
for proactive decision-making to reduce damage. However, traditional forecasting methods face
challenges in terms of implementation and scalability due to computational burdens and data
availability issues. Current forecasting services in the U.S. largely rely on hydrodynamic modeling,
limited to river reaches near in situ gauges and requiring extensive data for model setup and
calibration. Here, we have successfully adapted the Forecasting Inundation Extents using REOF
(FIER) analysis framework to produce forecasted water fraction maps in two U.S. flood-prone regions,
specifically the Red River of the North Basin and the Upper Mississippi Alluvial Plain, utilizing
Visible Infrared Imaging Radiometer Suite (VIIRS) optical imagery and the National Water Model.
Comparing against historical VIIRS imagery for the same dates, FIER 1- to 8-day medium-range
pseudo-forecasts show that about 70–80% of pixels exhibit absolute errors of less than 30%. Although
originally developed utilizing Synthetic Aperture Radar (SAR) images, this study demonstrated
FIER’s versatility and effectiveness in flood forecasting by demonstrating its successful adaptation
with optical VIIRS imagery which provides daily water fraction product, offering more historical
observations to be used as inputs for FIER during peak flood times, particularly in regions where
flooding commonly happens in a short period rather than following a broad seasonal pattern.

Keywords: VIIRS water fractions; national water model; flood forecasting; EOF analysis

1. Introduction

Floods are among the most devastating hazards in the world, causing extensive
damage to human lives, property, and agriculture. From 1980 to 2024, the U.S. experi-
enced 42 riverine and urban flooding events, resulting in a total cost of $200.7 billion and
738 deaths [1]. Future flood exposure and damage in the U.S. are expected to worsen due to
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anthropogenic climate change, population growth, and urban development [2–4]. Precipi-
tation extremes are expected to increase nonlinearly under a warming climate, intensifying
flood impacts [5]. Therefore, reliable real-time forecasts are essential for mitigating flood
damage, enabling timely response, and enhancing preparedness [6,7].

Hydrodynamic modeling is a widely used method for simulating flood inundation
behavior [8]. However, it demands significant data and computational resources, limiting
its practicality for real-time forecasting, especially when this has to be performed con-
sistently over large areas for rapid response [9–12]. The high data requirements include
boundary and initial condition data, topography and bathymetry data, details of any ex-
isting hydraulic structures, and friction coefficients for the energy loss mechanisms, all of
which impact modeling accuracy [13]. Furthermore, acquiring these data, often from costly
sources like in situ gauges, field surveys, and Light Detection and Ranging (LiDAR) data,
hinders scalability. Indeed, despite the operational flood inundation mapping offered by
the United States Geological Survey (USGS) Flood Inundation Mapper (FIM) [14], and the
National Weather Service (NWS) Advanced Hydrologic Prediction Service (AHPS) flood
inundation mapping system [15] at over 150 locations in the U.S., with a pre-simulating
library of inundation maps from hydrodynamic modeling, their coverages are limited
to areas near gauges. Efforts have been made to address the computational burden of
hydrodynamic models by developing surrogate modeling approaches suitable for real-time
forecasts [16]. For instance, Ivanov et al. [17] proposed a real-time urban flood forecasting
framework that decomposes the response of a high-fidelity model into a set of quantities
of interest (QoIs), such as water depth, which are estimated using pre-trained surrogate
models. This approach reduces computational costs and accelerates the flood simulation
process. However, access to high-performance computing facilities is still necessary to run
numerous simulations of the high-fidelity models and train the surrogates, which remains
a significant challenge.

The Height Above Nearest Drainage (HAND) approach is another well-recognized
approach capable of generating flood inundation maps, using terrain data to determine
relative heights with respect to the nearest stream cell [18]. Areas become inundated if their
relative heights fall below the water stages of the nearest stream cells [19,20]. In real-time
forecasting, hydrological models can provide streamflow forecasts at the stream cell, which
can then be converted to water stages using synthetic rating curves [21]. The HAND
approach is computationally efficient and cost-effective for estimating flood inundations
and thus is used by the Office of Water Prediction (OWP) at the National Water Center
(NWC) of NOAA, along with the National Water Model (NWM) [22]. However, the HAND
approach does not conserve volume, assuming an infinite water supply to flood all areas
below stream stages [9]. Its performance is highly sensitive to the quality of the base
topography data, especially in low-relief areas, where small errors in the water stages can
result in significant errors in the simulated flood maps. A recent study in the U.S. found
potential overestimations in flat terrain, even with the 10 m spatial resolution National
Elevation Dataset (NED 10 m) Digital Elevation Model (DEM) generated from the LiDAR
data and aerial photography [23]. Moreover, HAND-simulated flood inundations can be
sensitive to the friction coefficients in the synthetic rating curves, with tributaries requiring
higher coefficients to avoid flood underestimations [23].

In hydrology, the use of remotely sensed imagery for flood monitoring and hydrody-
namic model calibration has grown steadily since the 1970s, with the launch of Landsat-
1 [24]. Numerous remote sensing satellites, equipped with either optical (multispectral
or hyperspectral) or Synthetic Aperture Radar (SAR) sensors, have provided consistent
and repetitive observations of surface water with stable quality. Chang et al. [25] lever-
aged the capabilities of remote sensing imagery to introduce an innovative data-driven
framework for flood inundation forecasting, later named Forecasting Inundation Extents
using Rotated Empirical Orthogonal Function (REOF) analysis (FIER) [26]. FIER effectively
predicts flood signals by establishing relationships between historical satellite-observed
flood inundations and hydrological data (e.g., water level and streamflow), bypassing the
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aforementioned data requirements of hydrodynamic modeling and the HAND approaches,
thus ensuring scalability. In addition, it demonstrates computational efficiency, simulat-
ing flood inundations within seconds, adding substantial practical value for real-time
inundation forecasting.

Initially piloted in the Tonle Sap Lake floodplains in Cambodia, FIER utilized Sentinel-1
SAR intensity imagery, satellite altimetric water levels, and the El Niño index [25]. Subse-
quently, an operational flood inundation forecasting web application, named FIER-Mekong
(https://fier-mekong.streamlit.app/ (accessed on 17 September 2024)), was developed for
the entire floodplains of the Lower Mekong River Basin. This region poses challenges for
hydrodynamic modeling due to its highly complex hydraulic conditions. Furthermore,
the efficiency of HAND approach decreases in this region with flat terrain since it relies
on DEM to calculate the distance from each cell to the nearest drainage, making it highly
sensitive to DEM inaccuracies. Specifically, in areas of flat terrain where microtopography
plays a significant role in water movement, the absence of clear drainage pathways can
lead to misrepresentations of flood inundation extents. Therefore, small errors in DEM can
lead to substantial inaccuracies in HAND’s predicted flood extents. Hence, FIER-Mekong
also leveraged the Variable Infiltration Capacity (VIC) hydrological model, which is fed
by inputs including land cover, soil type, and metrological forcing (e.g., precipitation and
wind speed) to simulate discharge. The discharge is then converted to water level using a
water level-to-discharge rating curve. This enabled FIER-Mekong to generate daily flood
inundation forecasts within a couple of hours (including the time required for VIC sim-
ulation) on a 2.10 GHz 24-Core Intel Xeon Platinum processor, with lead times of up to
18 days. In addition, the application has been extended to forecast flood inundation depths
and the resulting damage to rice crops [26].

This study represents the first implementation of FIER in the United States, using
optical satellite images. The chosen test regions, the Red River of the North Basin (RRNB),
and the Upper Mississippi Alluvial Plain (UMAP), have recently experienced historic flood
events and continue to face significant flood risks, as highlighted by local media [27,28].
Primarily comprising croplands, these areas are highly vulnerable to crop production
losses. Nonetheless, the existing operational USGS FIM and NOAA AHPS systems do not
currently simulate flood inundations in these regions.

As a data-driven framework dependent on observed historical flood events captured
in satellite imagery for forecasting, FIER requires satellite imagery with a sufficient amount
of flood inundation observations. Unlike the floodplains of the Lower Mekong River Basin,
where flooding is governed by a seasonal monsoon lasting several months, flooding in
the RRNB and UMAP is primarily caused by spring snowmelt and rainfall, with a shorter
duration from late Spring to early Summer. More specifically, flooding in most of the
flood-prone regions globally does not follow the ideal sinusoidal patterns; rather, rainfall is
often concentrated in a short period, resulting in sudden peaks in streamflow lasting only
one or two months, while the rest of the year is almost dry. Since FIER is a data-driven flood
forecasting method which needs to be trained with satellite remote sensing images acquired
during the peak flow period, the 12-day repeat period of Sentinel-1 SAR imagery, used
in previous FIER frameworks, misses numerous flood inundation events (see Figure 1).
The blue lines in the top panel of Figure 1 show the USGS in situ streamflow data from
2017 to the end of 2020 at gauges located in (a) Drayton, North Dakota, along the Red
River of the North mainstem, and (b) New Madrid, Missouri, along the Mississippi River
mainstem. High streamflow mostly occurs from late spring to early summer, with a short
peak-streamflow period, particularly in the RRNB, leading to limited Sentinel-1 image
acquisitions during peak flood events, as indicated by the green triangles. The bottom
panel of Figure 1 highlights the limited number of Sentinel-1 image acquisitions, with only
about 10 images during periods of streamflow higher than the 95th percentile.

https://fier-mekong.streamlit.app/
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Figure 1. (top) The USGS in situ streamflow data (blue line, cumecs: m3/second) from 2017 to 2020 
at gauges located in (a) Drayton, North Dakota, along the Red River of the North mainstem, and (b) 
New Madrid, Missouri, along the Mississippi River mainstem. The green triangles mark all the 
epochs when Sentinel-1 images were acquired, while the orange dots mark the epochs of the VIIRS 
images used in this study. (bottom) The corresponding amount of data with less than 5% cloud 
coverage within each of the 10% USGS in situ streamflow percentile groups. 

Hence, we explored, for the first time, the feasibility of utilizing images captured by 
the Visible Infrared Imaging Radiometer Suite (VIIRS) optical sensors onboard the Suomi 
National Polar-orbiting Partnership (Suomi-NPP, launched in 2011), NOAA-20 (launched 
in 2017), and NOAA-21 (launched in 2022) weather satellites for constructing the FIER 
framework. The VIIRS imagery is known to be superior to the MODerate resolution Im-
aging Spectroradiometer (MODIS) imagery in flood detection [29,30] (see Section 3.1 for 
details). 

To overcome the abovementioned limitations of the previous FIER framework, which 
employed Sentinel-1 data, this study aims to propose a more versatile flood forecasting 
approach by the following contributions: 
- The VIIRS daily water fraction product is utilized to increase the amount of input 

data concurrent with peak streamflow periods, enabling FIER to be trained with 
more flood-relevant data compared to Sentinel-1. 

Figure 1. (top) The USGS in situ streamflow data (blue line, cumecs: m3/second) from 2017 to 2020
at gauges located in (a) Drayton, North Dakota, along the Red River of the North mainstem, and
(b) New Madrid, Missouri, along the Mississippi River mainstem. The green triangles mark all the
epochs when Sentinel-1 images were acquired, while the orange dots mark the epochs of the VIIRS
images used in this study. (bottom) The corresponding amount of data with less than 5% cloud
coverage within each of the 10% USGS in situ streamflow percentile groups.

Hence, we explored, for the first time, the feasibility of utilizing images captured by
the Visible Infrared Imaging Radiometer Suite (VIIRS) optical sensors onboard the Suomi
National Polar-orbiting Partnership (Suomi-NPP, launched in 2011), NOAA-20 (launched
in 2017), and NOAA-21 (launched in 2022) weather satellites for constructing the FIER
framework. The VIIRS imagery is known to be superior to the MODerate resolution
Imaging Spectroradiometer (MODIS) imagery in flood detection [29,30] (see Section 3.1
for details).

To overcome the abovementioned limitations of the previous FIER framework, which
employed Sentinel-1 data, this study aims to propose a more versatile flood forecasting
approach by the following contributions:
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- The VIIRS daily water fraction product is utilized to increase the amount of input
data concurrent with peak streamflow periods, enabling FIER to be trained with more
flood-relevant data compared to Sentinel-1.

- The NWM medium- and long-range streamflow forecast data are ingested into FIER
to demonstrate the potential of being an operational flood forecasting tool.

Accordingly, we extracted flood-relevant spatiotemporal patterns (see Section 4.1)
from historical daily composite VIIRS-observed water fractions [30] and constructed the
regression models (see Section 4.1) using USGS in situ streamflow data. NWM streamflow
forecasts served as inputs to generate the pseudo-forecasts of FIER water fraction, which
were validated against the concurrently observed water fractions. Forecasted FIER water
fractions thereby function as indicators of flood signals, with higher fractions indicating
increased water concentration and potential flooding.

Finally, given that flooding was ranked as the second most abiotic stressor (after
drought) contributing to crop production losses [31], we demonstrated a potential agricul-
tural application of FIER water fraction forecasts. This application, alongside other flood
risk management resources, can partly assist farmers in proactively mitigating forthcoming
flood damage.

2. Study Regions

The RRNB, a remnant of the glacial lake Agassiz in the late Pleistocene, is one of the
flattest areas in the world [32,33]. Flooding events here usually occur in late spring and
early summer due to increased streamflow from snowmelt and rainfall. The area is highly
vulnerable to flooding due to its flat terrain and the unique northward flow direction of
the Red River of the North, which consistently receives meltwater and ice from the south,
resulting in ice jams exacerbating flooding. In addition, the high clay content in RRNB soils
impedes water movement, increasing flooding risk [34]. Our focus was on the flood-prone
region in the RRNB, spanning from near Winnipeg, Canada, to Grand Forks, North Dakota,
U.S. This region experienced severe flooding incidents in the years 2011, 2019, 2020, and
2022, with the 2022 flooding event considered the worst in a decade [35–37].

The Mississippi River Basin is the fourth largest drainage system in the world, drain-
ing about 41 percent of the CONterminous United States (CONUS) [38]. We focused on the
flood-prone region extending from near Cairo, Illinois, to near Memphis, Tennessee, mostly
in the Upper Mississippi Alluvial Plain (UMAP). Similarly to the RRNB, the impermeable
soils and the flat terrains in the UMAP make the region susceptible to frequent flooding, pri-
marily triggered by rainfall and snowmelt. Recent years have experienced unprecedented
floods, some of the most significant in nearly a century. Notably, the 2011 and 2019 floods
were attributed to heavy storm rainfall and late spring snowmelt [39,40]. The flooding in
2019 was even regarded as the longest-lasting flood in almost a century [41].

Figure 2 (left column) shows the historical maximum inundated extents and permanent
water from 1984 to 2022, obtained from the Joint Research Center (JRC) of the European
Commission [42], on the top of dark gray polygons outlining our study regions. Indeed,
the historical maximum inundated extents (shown in light blue in Figure 2) represent the
areas that have been frequently flooded over the 38-year period from 1984 to 2022. The
inserts show their relative locations to the surrounding states. Despite flood susceptibility,
the stream sediments make their soils highly fertile and suitable for agriculture [43]. Most
of the lands in the regions are cultivated croplands according to the latest USGS land
cover data, USGS National Land Cover Database (NLCD) 2021 [44], as shown in Figure 2
(right column).
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(b) UMAP. The white dots show the locations of the USGS in situ gauges used in this study.
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3. Data
3.1. VIIRS-Observed Water Fractions

To apply FIER in water fraction forecasting, we extracted spatiotemporal patterns (see
Section 4.1) depicting changes in water fraction from historical multi-temporal observations
acquired by VIIRS. VIIRS provides images with a spatial resolution of 375 m and includes
five spectral bands ranging from visible to thermal infrared channels. The VIIRS imagery
is superior to the MODIS imagery in flood detection as it has a higher spatial resolution
(375 m versus 500 m) in the short-wave infrared channel, crucial for flood detection and
water fraction retrieval. Additionally, The VIIRS imagery offers a wider swath width and
more consistent across-scan spatial resolution, ensuring more comprehensive global daily
coverage and enhancing flood mapping quality [29,30].

We used the daily composite of 375 m resolution VIIRS-observed water fractions
produced by the operational VIIRS global flood mapping system [29,30,45]. Since VIIRS
is an optical sensor susceptible to cloud occlusion, we selected historical water fractions
from 2012 to 2020 with less than 5% of cloud cover in the study regions to enable FIER
to forecast cloud-free water fractions. The 5% threshold was set based on trial-and-error
experiments. Increasing it resulted in the extraction of more flood-irrelevant spatiotemporal
patterns, while decreasing it resulted in the exclusion of VIIRS water fraction data acquired
during peak flows, where the presence of minimal cloud extent is inevitable. This process
resulted in 1014 images for RRNB and 827 images for UMAP. To fill the cloud gaps, spatial
interpolation was applied. First, valid pixels (non-cloud pixels) near the gaps (cloud
pixels) were identified. Then, a radial search was performed, expanding outward until
adequate neighboring pixels were found within a specified distance. The missing data
were then filled in by considering the influence of these pixels, giving more weight to those
that are closer, resulting in a seamless and consistent interpolation process. Finally, the
spatiotemporal patterns were extracted from these images.

3.2. USGS In Situ Streamflow Data

To identify flood-relevant spatiotemporal patterns associated with streamflow vari-
ations, we used in situ streamflow data from USGS National Water Information System
(NWIS) (https://maps.waterdata.usgs.gov/mapper/index.html (accessed on 17 September
2024)). These patterns were extracted from the historical VIIRS-observed water fractions
and used to build regression models, which will be explained in more detail in Section 4.1,
correlating them with streamflow variations. The USGS NWIS currently provides updated
data at 10,977 sites across the entire U.S. For this study, we selected the gauges where
streamflow data exhibited a Pearson correlation coefficient (CC) > 0.5 with the temporal
patterns extracted from the VIIRS-observed water fractions. CC was used as the selec-
tion criterion since it is a straightforward statistic that reduces process complexity and
computational burden, facilitating FIER implementation for larger areas.

In addition, we have ingested streamflow data into FIER as an effective flood indicator,
and selected flood-relevant temporal modes based on the correlation analysis, which
showed satisfactory results (i.e., FIER-forecasted water fraction maps), making the use of
other statistics unnecessary. Setting 0.5 as the correlation threshold is a trade-off between
including more flood-relevant modes (by not setting the threshold too low) and avoiding
the exclusion of significant modes (by not setting threshold too high). After applying the
correlation analysis, one gauge (for RRNB) and two gauges (for UMAP) were selected
among all USGS gauges within the regions of interest. The locations of the selected gauges
are shown as white dots in Figure 2, with detailed information provided in Table 1.

https://maps.waterdata.usgs.gov/mapper/index.html
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Table 1. Details of the selected USGS streamflow gauges and corresponding NWM reach IDs.

Study Area RRNB UMAP

FIER framework
building

USGS

Gauge ID 05092000 07024175
07030050

Gauge name
Red River of the North

at Drayton, North
Dakota

Mississippi River at New
Madrid, Missouri

Hatchie River at Rialto,
Tennessee

Input data for FIER
forecasting NWM reach ID 7077522 7469392

14073444

3.3. NWM Streamflow Forecasts

We used the NWM streamflow forecasts [46], at the reaches where the selected USGS
streamflow gauges are located (see Table 1), as inputs to the FIER framework to forecast wa-
ter fractions. The NWM, launched by NOAA in 2016, is a hydrologic modeling framework
that provides operational streamflow forecasts with various lead times at approximately
2.7 million river reaches throughout the U.S., encompassing the entire CONUS, Puerto
Rico, Hawaii, and the Virgin Islands. The core of the NWM is the Weather Research
and Forecasting hydrologic model (WRF-Hydro), which uses meteorological forcing data
from various sources depending on the region and the temporal range of the forecasts.
WRF-Hydro employs the Noah-MP Land Surface Model (LSM) to simulate land surface
processes. Separate water routing modules perform diffusive wave surface routing and
saturated subsurface flow routing on a 250 m grid, along with Muskingum–Cunge channel
routing to the water drainage network, based on the National Hydrography Dataset [22,46].

The two study regions are both located within the CONUS, where the NWM provides
hourly short-range forecasts, and 6-hourly medium- and long-range forecasts. Given their
longer lead times (up to about a week for medium-range and a month for long-range),
we used the medium- and long-range forecasts for this study instead of the short-range
forecasts (up to 18 h). The medium- and long-range forecasts are forced with meteorological
outputs from the Global Forecasting System (GFS) and Climate Forecast System (CFS),
respectively, and are produced as ensemble forecasts. We calculated the daily averages
of medium- and long-range forecasts issued at 00:00 am for all the available ensembles,
with lead times of up to 8 days and 30 days, respectively, serving as inputs for FIER
to generate water fraction forecasts. Using daily averaged NWM forecasts provides a
broad representation of daily hydrological conditions while avoiding the complexities of
managing uncertainties in individual ensemble forecasts.

3.4. Land Cover and Crop-Relevant Data

To demonstrate the potential application of FIER water fractions in agriculture, it is
important to understand the crop calendar in the study regions. This information provides
insights into whether floods could pose a threat to crop growth. Considering the varied
calendars of different crops, we looked into the United States Department of Agriculture
(USDA) Cropland Data Layer (CDL) for the years 2021 and 2022. The predominant crops in
the RRNB and UMAP were found to be spring wheat and soybeans, respectively, covering
about 30 to 40% of the study areas (see Figure 3). According to the crop calendar in the
USDA Country Summary [47], the planting periods for spring wheat and soybeans span
from April to May, and May to June, respectively.
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4. Method
4.1. Overview of FIER

FIER, a data-driven framework, synthesizes future flood signals from satellite images
based on the relationship between the observed historical floods and hydrological data.
It first decomposes the historical multi-temporal satellite images into several significant
modes of spatial and temporal patterns using the Rotated Empirical Orthogonal Function
(REOF) analysis, a Principal Component Analysis (PCA) approach [48], and the Monte
Carlo significant test [49]. The extracted temporal patterns are called Rotated Temporal
Principal Components (RTPCs), and the extracted static spatial patterns are called Rotated
Spatial Modes (RSMs), labeled as RSM-01 (RTPC-01) for the first mode, RSM-02 (RTPC-02)
for the second mode, and so forth. We have set 99% as the variance threshold, meaning
that PCA selects the smallest number of components (in this case, spatial and temporal
modes) needed to capture 99% of the total variance in the data.

Next, a correlation analysis is performed between each mode of RTPCs and hydro-
logical data. Each RTPC mode is paired with its most strongly correlated hydrological
data using a neural network regression model, chosen for its flexibility in fitting func-
tion [50]. The optimal models are automatically determined via grid search with K-fold
cross-validation to prevent overfitting [51]. The regression models are trained using in situ
observations (USGS streamflow) to ensure the trained model used for synthesis in the next
step is not affected by the inherent uncertainties/biases in hydrological model outputs
(i.e., simulated streamflow).

Flood-related modes are selected based on their fitted regression models, with a Nash–
Sutcliffe Efficiency (NSE) higher than 0.6. NSE penalizes overestimation or underestimation
in simulations, making it particularly useful in hydrology, where capturing both the mag-



Remote Sens. 2024, 16, 4357 10 of 27

nitude and trend of streamflow or precipitation is crucial. The forecasted hydrological
data are then input into the trained regression models to estimate future RTPCs, represent-
ing future flood-relevant temporal patterns. Finally, future flood signals are synthesized
by summing the product of each mode of forecasted RTPCs and RSMs, similarly to the
“synthesis process” in PCA. Figure 4 summarizes the FIER process, with further details
available in Chang et al. [25,26].
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4.2. FIER Water Fraction Forecasting

To forecast water fraction, historical VIIRS-observed water fractions were first decom-
posed by the REOF analysis. Then, we used the USGS in situ streamflow data to identify
the flood-relevant modes and build the regression models. These models were then fed
with streamflow forecasts from NWM to estimate future RTPCs, which were combined with
corresponding RSMs to synthesize future water fractions. However, since only modes corre-
lated with the hydrological data (i.e., the in situ streamflow data from USGS) were used for
synthesizing water fractions through FIER, the synthesized water fraction did not maintain
their original scale of 0 to 100%. To address this, we applied quantile mapping, a common
bias correction method, to restore the water fractions as accurately as possible [52,53]. This
method aligns model estimations with observations by matching quantiles. The quantile
mapping was conducted pixel by pixel across the study areas. For each pixel, Cumulative
Distribution Functions (CDFs) were created for both historical FIER-synthesized water
fractions (using historical USGS in situ streamflow) and VIIRS-observed water fractions.
These CDFs allowed us to convert water fraction values into quantiles. Utilizing these
CDFs, the quantiles of FIER-synthesized water fraction forecasts were determined. Then,
the VIIRS-observed water fractions corresponding to the same quantiles were used as the
“corrected” FIER-synthesized water fraction forecasts. Figure 5 summarizes this quantile
mapping process.
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in the flowchart represent forecasted water fraction data and the corresponding extracted quantiles.

5. Results and Discussion
5.1. Flood-Relevant Spatiotemporal Patterns and FIER Regression Models

Figures 6 and 7 show (a) streamflow-related RSMs, (b) corresponding RTPCs along
with USGS in situ streamflow data, and (c) the neural network regression models in the
RRNB and UMAP, respectively. In the RSMs, the reddish pixels represent the flooded areas
observed by VIIRS. It is expected that as the streamflow data (and consequently RTPCs)
increase, the FIER water fraction forecasts in these reddish areas will exhibit higher values.
Additionally, the distribution of these reddish pixels aligns closely with the historical
maximum inundation extents shown in Figure 2a.

The Monte Carlo test identified six significant modes in the RRNB. Among these, mode-
01 and mode-02 were selected based on the correlation coefficient criteria and subsequently
coupled with USGS in situ streamflow data at gauge 05092000, located in the mainstem of
the Red River of the North. In the UMAP analysis, eight significant modes were identified,
and mode-01, mode-02, mode-04, and mode-05, which met the correlation threshold, were
selected. Mode-01, mode-02, and mode-04 were coupled with USGS in situ streamflow data
at gauge 07024175 in the Mississippi River mainstem, while mode-05 was coupled with in
situ streamflow data at USGS in situ gauge 07030050 in a Mississippi River tributary. The
choice of the gauges is justified by the alignment of reddish pixels distributions in the RSMs
with the river reaches where these gauges are located (see Figures 6a and 7a). Then, the
gauge with the highest correlation to RTPCs was chosen to build the regression model. The
neural network regression models exhibited high quality, with Nash–Sutcliffe Efficiency
(NSE) ranging from 0.6 to 0.95 (see Figures 6c and 7c). Table 2 presents the structures of the
neural network regression models.
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Table 2. Structures of the fitted neural network regression models of each streamflow-related mode
for FIER water fraction forecasting in the RRNB and UMAP along with corresponding selected gauges
and NSEs.

Streamflow-Related
Mode

Selected Input USGS
In Situ Gauge

Number of Hidden
Layers

Number of Neurons in
Each Hidden Layer NSE

RRNB

Mode-01 05092000 4 15 0.86
Mode-02 05092000 4 30 0.72

UMAP

Mode-01 07024175 5 45 0.94
Mode-02 07024175 3 45 0.87
Mode-04 07024175 5 20 0.89
Mode-05 07030050 5 50 0.62
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To demonstrate the advantage of using daily VIIRS water fractions over the Sentinel-1
dataset (used in previous FIER efforts), we compared the performance of Sentinel-1-based
FIER by replicating the processes applied to VIIRS water fractions. This included compar-
ing extracted RTPCs, RSMs, and the skills of the corresponding regression models. For
Sentinel-1 inundation extent forecasting, we extracted streamflow-related spatiotemporal
patterns from historical multi-temporal Sentinel-1 VV-polarized Ground Range Detection
High-resolution (GRDH) intensity imagery. The VV-polarization was chosen considering
its superior surface water mapping capabilities [54,55]. Sentinel-1A images acquired on
high-streamflow dates from 2021 to 2022 were used to generate observed inundation extents
for evaluating FIER forecast accuracy. In the RRNB, streamflow at selected gauges above
the 95th percentile from 2012 to 2020 was considered high, providing eight reference images.
However, only one reference image met the 95th percentile standard in UMAP. Thus, we
adjusted the high-streamflow standard threshold to the 80th percentile, yielding 13 refer-
ence images. To manage the computational demands of Sentinel-1 imagery retrieval and
preprocessing, we leveraged the publicly available cloud-based Google Earth Engine (GEE)
data catalog and GEE-based Application Programming Interface (API). The Hydrologic Re-
mote Sensing Analysis for Floods (HYDRAFloods), a GEE API-based, open-source Python
application (https://servir-mekong.github.io/hydra-floods/ (accessed on 17 September
2024)), developed by the NASA SERVIR Coordination Office (SCO), was used for im-
age mosaicking, slope correction [56] using the Multi-Error-Removed Improved-Terrain
Digital Elevation Model (MERIT DEM) [57], and the Gamma-Map speckle filtering [58].
The permanent water bodies were masked using the Joint Research Centre (JRC)’s Global
Surface Water Data [42] to account for SAR intensity variations caused by winds. The
preprocessed images were exported as GeoTIFFs with a 30 m spatial resolution, from which
the spatiotemporal patterns were extracted. FIER Sentinel-1 inundation extent forecasts
also maintain this 30 m spatial resolution.

Figures 8 and 9 show the extracted streamflow-related (a) RSMs, (b) corresponding
RTPCs along with USGS in situ streamflow data, and (c) the neural network regression
models in RRNB and UMAP, respectively. In these RSMs, bluish pixels indicate flooded ar-
eas observed in the historical Sentinel-1 SAR intensity images. Thus, the FIER-synthesized
SAR-like intensities in these areas will decrease with higher RTPCs (and streamflow), re-
flecting the lower intensities in the synthesized SAR-like images due to specular reflectance
over flooded regions. This pattern is consistent with the historical maximum inundation
extents shown in Figure 2.

In RRNB, mode-04, mode-07, and mode-08 were selected and coupled with USGS in
situ streamflow data at gauge 05092000 on the Red River mainstem. In UMAP, mode-01
and mode-05 were selected and coupled with data from gauge 07024175 on the Mississippi
River mainstem, while mode-04 was coupled with data from gauge 07026040 in the Mis-
sissippi River tributaries. The selection of gauges is justified as the bluish pixels in these
RSMs are mostly distributed along the river reaches where the selected gauges are located
(see Figures 8a and 9a). The neural network regression models exhibit a wide range of
NSEs from 0.35 to 0.9 (see Figures 8c and 9c). The relatively lower NSEs are likely due to
the limited number of historical Sentinel-1 images available for peak-flow periods, which
hinders the extraction of sufficient flood-relevant spatiotemporal patterns for effective cou-
pling with streamflow data. Table 3 shows the structures of the neural network regression
models. The low NSE values for Sentinel-1 FIER compared to VIIRS water fraction (see
Tables 2 and 3) further confirms that the insufficient number of Sentinel-1 images during
peak-flow periods, as shown in Figure 1, has significantly impacted the performance of
FIER, emphasizing the advantage of employing VIIRS daily water fraction product.

https://servir-mekong.github.io/hydra-floods/
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Figure 8. The extracted streamflow-related (a) RSMs, (b) RTPCs along with USGS in situ streamflow
data, and (c) neural network regression models for FIER Sentinel-1 inundation extent forecasting in
the RRNB.
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Figure 9. The extracted streamflow-related (a) RSMs, (b) RTPCs along with USGS in situ streamflow
data, and (c) neural network regression models for FIER Sentinel-1 inundation extent forecasting in
the UMAP.
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Table 3. Structures of the fitted neural network regression models of each streamflow-related mode
for FIER Sentinel-1 inundation extent forecasting in the RRNB and UMAP along with corresponding
selected gauges and NSEs.

Streamflow-Related
Mode

Selected Input USGS
In Situ Gauge

Number of Hidden
Layers

Number of Neurons in
Each Hidden Layer NSE

RRNB

Mode-04 05092000 1 45 0.36
Mode-07 05092000 5 20 0.64
Mode-08 05092000 5 50 0.52

UMAP

Mode-01 07024175 3 10 0.85
Mode-04 07026040 5 30 0.44
Mode-05 07024175 4 50 0.46

5.2. FIER Water Fraction Forecasts and Skill Evaluation

To evaluate the accuracy of the FIER water fraction forecasts, we generated pseudo-
forecasts using the historical NWM medium-range (with 1- to 8-day lead times), and
long-range (with 10-, 15-, 20-, 25-, and 30-day lead times) streamflow forecasts as the inputs.
These are referred to as the FIER medium-range and long-range water fraction pseudo-
forecasts, respectively. Additionally, we produced FIER water fraction pseudo-nowcasts
using the USGS in situ streamflow data, representing the optimal results that FIER can
produce when there are no errors in the input streamflow data. We used the skills of these
pseudo-nowcasts as a baseline for evaluation.

We computed the absolute errors (AEs) of the FIER water fraction pseudo-nowcasts
and pseudo-forecasts in historically flooded areas (excluding the permanent water bodies,
see Figure 1) by comparing them with observed water fractions during high-streamflow
(streamflow > 95th percentile of historical streamflow from 2012 to 2020) between January
2021 and August 2023. This analysis involved 95 images with 413,484 pixels in the RRNB
and 48 images with 619,403 pixels in the UMAP. In both regions, AEs < 10%, 20%, and
30% accounted for approximately 62–68%, 68–73%, and 73–77% of the pixels for UMAP
and RRNB, respectively, indicating that the skills of FIER medium-range pseudo-forecasts
closely align with those of FIER pseudo-nowcasts (see Figure 10). However, FIER long-
range pseudo-forecasts showed reduced accuracy, with AEs < 10%, 20%, and 30% covering
around 58–61%, 61–62%, and 65–66% of the pixels for UMAP and RRNB, respectively (see
Figure 8a).

Further analysis of over 100,000 pixels with high water fractions (water fraction > 80%)
revealed that in FIER water fraction pseudo-nowcasts, about 61–82%, 75–88%, and 80–90%
of these high-water fraction pixels have AEs < 10%, 20%, and 30%, respectively, in both
UMAP and RRNB. This indicates that FIER performs better during peak-flow periods
(water fraction > 80%) than in dry periods, highlighting that FIER is well suited for flood
forecasting. Despite using USGS gauge station data to generate pseudo-nowcasts, NWM
forecasts tend to be biased. Nevertheless, 70–80% of high water fraction pixels in FIER
medium-range forecasts exhibit AEs of less than 30%, which is slightly lower than the
skill of the FIER pseudo-nowcasts. However, the accuracy of FIER long-range pseudo-
forecasts decreases, with only approximately 30–40% of high water fraction pixels showing
AEs < 30% (see Figure 10b).

Since the FIER framework relies on NWM streamflow forecasts to generate the water
fraction forecasts, errors in NWM streamflow forecasts can propagate into FIER water frac-
tion forecasts. Table 4 shows the Relative Root Mean Squared Errors (RRMSEs) of NWM
streamflow forecasts at selected river reaches on the high-streamflow dates, averaged
across the lead times. The average RRMSEs of NWM long-range streamflow forecasts are
about two to three times greater than those of NWM medium-range streamflow forecasts,
contributing to the lower accuracy of FIER long-range water fraction pseudo-forecasts.
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However, improving FIER forecast accuracy is possible by bias-correcting NWM stream-
flow forecasts, particularly long-range ones, using USGS in situ streamflow data before
integrating them into the FIER framework.
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Table 4. Averaged RRMSEs of the NWM medium-range and long-range forecasts over the lead times
at the selected river reaches on the high-streamflow dates.

RRNB UMAP

NWM
Reach ID

NWM Forecasting Range NWM
Reach ID

NWM Forecasting Range

Medium Long Medium Long

7077522 2.24 ± 0.37 (%) 6.46 ± 0.72 (%) 7469392 2.73 ± 0.54 (%) 6.77 ± 0.87 (%)
--- --- --- 14073444 6.92 ± 1.41 (%) 15.48 ± 0.75 (%)

Figure 11 compares the historical observed water fractions with FIER water fraction
pseudo-nowcasts and 8-day FIER medium-range water fraction pseudo-forecasts on the
highest streamflow dates in 2022 and 2023 in the RRNB. Results for 2021 in the RRNB
are omitted due to the absence of flooding, as it was the driest year on record since 1885.
The UMAP results for 2021, 2022, and 2023 are shown in Figure 10. Notably, FIER water
fraction forecasts are cloud-free (Figures 11c and 12c), providing a comprehensive view
of floodwater distribution in advance. Overall, FIER water fraction pseudo-nowcasts
agree well with the historical observed water fractions. The 8-day FIER medium-range
water fraction pseudo-forecasts also agree with the observed water fractions on the peak
streamflow date of 2021 and 2022, though they display lower values than the observed
water fractions on the peak streamflow date in 2023. This discrepancy may be due to errors
in the 8-day NWM medium-range streamflow forecast, which could be improved through
bias correction methods such as those proposed by Sanchez Lozano et al. [59], and the
Stream Analysis for Bias Estimation and Reduction (SABER) method [60,61].

Furthermore, FIER, like other data-driven approaches, relies on the assumption that
historical relationships will persist into the future. FIER uses REOF analysis to decompose
historical flood inundation extent maps into spatial modes linked to specific hydrological
variables, ensuring stable relationships for forecasting. However, unprecedented extreme
events may bring in new spatial modes induced by different hydrologic phenomena, such
as abnormal precipitation patterns or intense hurricane events. Although the current
version of FIER cannot extrapolate the forecasts in the case of unobserved extreme events,
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its highly adaptable framework allows for quick recalibration with data from new events,
enabling the model to be responsive to evolving hydrological dynamics. Future work aims
to enhance FIER’s capabilities by simulating extreme events to broaden its training and
improve forecasting under diverse flood scenarios.
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To more comprehensively assess the performance of FIER, we used three additional
accuracy criteria: Cross Entropy (CE) [62], Fractions Skill Score (FSS) [63], and Struc-
tural Similarity Index (SSI) [64] for each flooding event in both study areas, as shown in
Figures 11 and 12. CE quantifies the difference between the observed and forecasted proba-
bility distributions by considering each pixel’s water fraction percentage as a probability.
CE ranges from 0 (indicating a perfect match) to +∞ (indicating a complete mismatch).
In contrast, FSS and SSI both measure the spatial similarity between the observed and
forecasted water fractions: FSS ranges from 0 (lowest spatial match) to 1 (highest spatial
match), while SSI ranges from −1 (lowest similarity) to +1 (highest similarity). The accuracy
metrics are calculated using the following formulas:

CE = − 1
N

N

∑
i=1

(Oi.log Fi + (1 − Oi).(1 − log(1 − Fi))) (1)

FSS = 1 − ∑N
i=1(Fi − Oi)

2

∑N
i=1 (F i

2 + Oi
2
) (2)

SSI(F, O) =
(2µFµO + C1)(2σFO + C2)(

µ2
F + µ2

O + C1
)(

σ2
F + σ2

O + C2
) (3)

where Oi, Fi, and N represent the observed water fraction from VIIRS for the i-th pixel,
the forecasted water fraction by FIER for the i-th pixel, and the total number of pixels,
respectively. Additionally, µF, µO, σ2

F, σ2
O, and σFO denote the mean of the forecasted

water fraction, the mean of the observed water fraction, the variance of the forecasted
water fraction, the variance of the observed water fraction, and the covariance between
the observed and forecasted water fractions, respectively. Constants C1 and C2 are used to
stabilize the formula when denominators are small, set at 0.01 and 0.03, respectively. The
evaluation metrics of FIER for the peak flood samples in the RRNB and UMAP (shown in
Figures 11 and 12) are summarized in Table 5. Although FIER’s overall performance in
peak-flooding events is satisfactory, the inherent bias of the 8-day medium range NWM
forecast led to lower FSS and SSI scores and higher CE values compared with the FIER
pseudo-nowcast, particularly on 10 March 2023 in the UMAP and 1 May 2023 in the
RRNB. Moreover, it should be noted that CE penalizes discrepancies between the wa-
ter fraction values of the observations and forecasts while FSS and SSI both emphasize
spatial alignment. Consequently, for example, in the UMAP, the FIER-synthesized water
fraction with the lowest CE does not necessarily exhibit the most accurate spatial pattern
(i.e., highest FSS and SSI).

Table 5. Quantitative accuracy assessment for each flooding event shown in Figures 11 and 12 for
UMAP and RRNB.

FIER Pseudo-Nowcast 8-Day FIER Medium-Range Pseudo-Forecast

Study Area Date CE FSS SSI CE FSS SSI

UMAP
2021-04-05 0.88 0.78 0.75 0.86 0.79 0.79
2022-03-09 0.84 0.83 0.83 0.74 0.84 0.84
2023-03-10 0.63 0.75 0.73 1.06 0.71 0.71

RRNB
2022-05-05 1.20 0.79 0.74 1.21 0.79 0.73
2023-05-01 0.60 0.76 0.71 0.81 0.66 0.66

5.3. Showcaing the Potential of Flood Warning in Agriculture Using FIER

Nitrogen is typically the most limiting nutrient for crops, while oxygen is essential for
the respiration process [65]. However, flooding can cause soil waterlogging, diminishing
soil nitrogen contents and creating hypoxic (oxygen-deficient) or anoxic (oxygen-absent)
conditions [66]. When soil becomes waterlogged, nitrogen is easily lost due to denitrifi-
cation, nitrate leaching, and runoff [66], along with reduced soil nitrogen mineralization
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rates [67]. Moreover, oxygen availability could be limited to near the soil surface due to hin-
dered diffusion in water-filled pores, which negatively affects crop growth and production
yields [66,68].

Fortunately, the application of “enhanced efficiency fertilizers” can aid crops in sur-
viving soil waterlogging by controlling the nitrogen release rate and reducing nitrogen
losses [66,69]. Recent studies have shown that these fertilizers reduce nitrogen losses and
increase crop yields during wet years and in saturated soil conditions [70]. Additionally,
slow-release solid oxygen fertilizers (e.g., CaO2 and MgO2) applied to flooded soils can
alleviate hypoxic stress in the root zone and enhance crop yields [71,72].

One potential application of FIER water fraction forecasts is advising farmers on when
and where to apply fertilizers to mitigate crop yield losses caused by forthcoming floods.
Spring wheat and soybeans are the dominant crops in the RRNB and UMAP with planting
periods from April to May and May to June, respectively (see Section 3.4). Figures 13 and 14
illustrate the average FIER medium-range water fraction pseudo-forecasts for the next 1 to
8 days in the fields of these dominant crops in the RRNB and the UMAP, respectively. These
forecasts could have been generated before the peak flood during the planting periods.
With this information, farmers could anticipate the timing and location of potential crop
flooding, enabling more precise and cost-effective fertilizer application. This could help
farmers decide whether to apply fertilizers, or delay planting in fields expected to be
flooded or have higher water fractions in the coming days.
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6. Conclusions

Despite the growing need for real-time flood inundation forecasting, traditional meth-
ods like hydrodynamic modeling and HAND approaches face challenges in the U.S. due to
computational burden and data accessibility issues. This study introduces FIER, a data-
driven rapid flood inundation forecasting framework, which, for the first time, uses VIIRS
optical sensor-derived water fractions and the NWM streamflow forecasts in flood-prone
regions in the U.S., specifically the RRNB (Red River of the North Basin) and UMAP (Upper
Mississippi Alluvial Plain), where inundation forecasting services are currently lacking. By
utilizing the daily VIIRS water fraction product, FIER benefits from more historical data
captured during their relatively shorter peak flow periods. In contrast, Sentinle-1 does not
provide a sufficient number of observations.

In this study, FIER utilizes the NWM medium-range and long-range streamflow
forecasts to produce water fraction forecasts with lead times of up to 8 and 30 days,
respectively. We assessed FIER’s performance by comparing its forecasts with historical
observed VIIRS water fractions. The results show that FIER’s accuracy is comparable
to previous studies for nowcasts, with approximately 90% of high water fraction pixels
exhibiting AEs < 30%. The accuracy of FIER medium-range water fraction pseudo-forecasts
is slightly lower, with 70–80% of pixels exhibiting AEs < 30%. However, long-range
water fraction forecasts exhibit notably lower accuracy, due to larger errors in the NWM
long-range streamflow forecasts. In addition, the current FIER framework overlooks
local snowmelt and direct rainfall, potentially introducing forecast errors. Finally, the
quantile mapping method, which relies on pixel-by-pixel CDFs derived from historical
FIER-synthesized and VIIRS-observed water fractions, may be less effective for pixels
frequently obscured by clouds. Improvements could include bias correction of NWM
forecasts, incorporating additional data sources to consider non-fluvial water sources, and
refining the quantile mapping process with more observed water fractions.



Remote Sens. 2024, 16, 4357 24 of 27

In practical applications, FIER water fraction forecasts can potentially help farmers
optimize fertilizing and planting practices, mitigating crop losses by proactively identifying
flood-prone areas. Furthermore, by utilizing the downscaling methodology developed
by [29,73], the 375 m FIER water fraction forecasts can be combined with high-resolution
DEMs (e.g., 30 m SRTM DEM) to generate a corresponding high-resolution water depth
forecast. This would aid in more accurate damage assessment and resource allocation [74].

Lastly, we highlight the potential for expanding the implementation of FIER to other
flood-prone regions in the U.S., including ungauged basins. The global, continuously up-
dated VIIRS-observed water fraction enables FIER to obtain spatiotemporal flood patterns
in any flood-prone region. For the ungauged basins, the NWM retrospective streamflow
data, archived on Amazon Web Services (https://registry.opendata.aws/nwm-archive/
(accessed on 17 September 2024)), can substitute for USGS in situ streamflow data in
building the regression models. Applying bias correction techniques to the NWM retro-
spective streamflow data, such as the SABER method [60,61], could enhance the accuracy
of streamflow data and subsequently FIER water fraction forecasting in these regions.

Supplementary Materials: The following supporting information can be downloaded at: Web
application: https://fier-biascorrected-nwm-viirs.streamlit.app/ (accessed on 17 September 2024).
Code: https://github.com/satellitehydrology/FIER_VIIRS_Process (accessed on 17 September 2024).
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