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Abstract: The 1-day fast-sampling orbit phase of the Surface Water Ocean Topography (SWOT)
satellite mission provides a unique opportunity to analyze high-frequency sea-state variability and
its implications for altimeter sea state bias (SSB) model development. Time series with 1-day repeat
sampling of sea-level anomaly (SLA) and SSB input parameters—comprising the significant wave
height (SWH), wind speed (WS), and mean wave period (MWP)—are constructed using SWOT’s
nadir altimeter data. The analyses corroborate the following key SSB modelling assumption central
to empirical developments: the SLA noise due to all factors, aside from sea state change, is zero-mean.
Global variance reduction tests on the SSB model’s performance using corrected SLA differences
show that correction skill estimation using a specific (1D, 2D, or 3D) SSB model is unstable when
using short time difference intervals ranging from 1 to 5 days, reaching a stable asymptotic limit
after 5 days. It is proposed that this result is related to the temporal auto- and cross-correlations
associated with the SSB model’s input parameters; the present study shows that SSB wind-wave
input measurements take time (typically 1–4 days) to decorrelate in any given region. The latter
finding, obtained using unprecedented high-frequency satellite data from multiple ocean basins, is
shown to be consistent with estimates from an ocean wave model. The results also imply that optimal
time-differencing (i.e., >4 days) should be considered when building SSB model data training sets.
The SWOT altimeter data analysis of the temporal cross-correlations also permits an evaluation of the
relationships between the SSB input parameters (SWH, WS, and MWP), where distinct behaviors are
found in the swell- and wind-sea-dominated areas, and associated time scales are less than or on the
order of 1 day. Finally, it is demonstrated that computing cross-correlations between the SLA (with
and without SSB correction) and the SSB input parameters offers an additional tool for evaluating
the relevance of candidate SSB input parameters, as well as for assessing the performance of SSB
correction models, which, so far, mainly rely on the reduction in the variance of the differences in the
SLA at crossover points.

Keywords: ocean altimetry; sea state bias; SWOT; sea-state variability; decorrelation time scales;
temporal cross-correlations

1. Introduction

Satellite altimetry has evolved to become the primary means for global observations
of sea surface height (SSH) and long-term monitoring of the sea surface height anomaly
(SSHA). The latter, also referred to as the sea level anomaly (SLA), corresponds to the SSH
minus the reference mean sea surface [1,2]. Satellite altimetry also measures the significant
wave height (SWH) data, which, at the moment, is the only parameter characterizing
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surface waves that is measured globally and on a continuous basis. Additionally, satellite
altimetry measures the ocean surface backscattering coefficient, from which near-surface
wind speed (WS) can be derived using empirical algorithms [3–5]. In order to obtain
centimetric precision in the SSH, the raw radar-measured distance to the surface (i.e.,
the range) must be corrected for atmospheric propagation delays and several distinct
surface geophysical effects. Among the latter, the sea state bias (SSB) correction adjusts
the range measurement to compensate for known errors due to the presence of waves
on the ocean surface. Left uncorrected, altimetric sea level would lie below the true sea
level. This correction is commonly applied using empirically derived two-dimensional (2D)
SSB models involving two of the previously mentioned altimeter-derived measurements,
namely, SWH and WS [6–10].

The present altimeter constellation provides along-track measurements that are sparse
in time and space. Thus, interpolating SSH gridding algorithms are routinely applied to
merge multi-mission datasets, using an optimal interpolation routine requiring several
pre-processing steps and covariance characterization [11–13]. The European Union’s Earth
observation program, Copernicus, currently provides daily sea level maps and their along-
track sources with accuracy achieving 1–4 cm rms [14] through the Copernicus Marine
Service (CMEMS). These long records for SSH and SLA are extremely useful for studying
mesoscale eddies, large-scale ocean circulation variability, and sea level rise [15–17], and
they now cover the last three decades. Still, only the largest ocean mesoscale features
can be presently resolved [18–20] due to the effective spatio-temporal resolutions of the
altimetry gridded products (O(100 km) and O(10 days), respectively). These resolutions are
not adequate for capturing all processes acting at the sea surface, and they are especially
limiting in regions with energetic baroclinic turbulence. Such regions experience rapid
changes in smaller-scale SSH anomalies at time scales well below that of the shortest satellite
altimeter repeat orbit sampling periods (i.e., 10 days for altimetry reference missions) [21].

Operational constraints on mission orbit selection do not typically allow simultaneous
high spatial resolution and high temporal resolution. However, the newly launched
(16 December 2022) Surface Water Ocean Topography (SWOT) altimeter offers several new
opportunities to observe ocean variability at enhanced temporal and spatial resolutions.
Indeed, as of 26 July 2023, SWOT has settled into its main orbit (referred to as SWOT science
orbit) characterized by a 21-day revisit period, and its new interferometric altimeter offers
unprecedented spatial resolutions, potentially resolving 15–30 km wavelengths [22,23].
Moreover, during its early flying phase (referred to as the SWOT fast-sampling phase),
which lasted from 29 March to 11 July 2023, the SWOT satellite followed a 1-day repeat
orbit used for sensor calibration and validation. This unique orbit, characterized by very
sparse ground tracks, allowed for observation of rapidly moving small-scale ocean SLA
signals [23–25]. And it is expected that measurements from this specific phase can also
improve our general knowledge on the high-frequency variability (i.e., 1–10-day time
scales) in wind and sea-related parameters.

In the present study, SLA, SWH, and WS data are retrieved using SWOT’s on-board
conventional nadir radar altimeter rather than the SWOT innovative primary payload,
which consists in the Ka-band radar interferometer (KaRIn). The SWH and WS measure-
ments provided by nadir altimeters are in close agreement with in situ data, with accuracies
in the 10–40 cm range for SWH [26,27], as summarized by Woo and Park [28], and lower
than 1.5 m/s for WS [3,29–31]. Mean wave period (MWP) data are also included in the
present study, since MWP (combined with SWH and WS) can be used to provide alternative
three-dimensional (3D) SSB solutions to better describe SSB behavior and efficiently remove
the sea-state’s impact on raw altimeter range measurements [32,33]. Both the standard
2D SSB model (which relies on SWH and WS) and the 3D SSB model are available in
GDR-F reprocessed products for Jason-2/3 and AltiKa missions and are provided in SWOT
nadir products since launch. In the present study, MWP data are retrieved using ERA-5, a
numerical global ocean wave model.
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The present paper provides an analysis of the short time-scale (<10-day) variability
of metocean parameters obtained using SWOT nadir altimeter measurements from the
fast-sampling phase, followed by a discussion on the implications for SSB modelling. The
unique 1-day repeat observations are of interest because the high-frequency dynamics of
SWH, WS, and SLA time series are difficult to observe over large ocean basins. Instead,
they were previously only observed at specific locations using buoys, deep ocean moorings,
and/or tide gauges.

The objectives of the present study are threefold, as follows: (i) to quantify and analyze
the decorrelation time scales associated with the three input SSB model descriptors (SWH,
WS, and MWP) and the spatial variations in these time scales; (ii) to examine the temporal
cross-correlations among SSB descriptors, as well as between SLA and SSB descriptors, to
gain further insight into the relationships connecting all considered parameters; and (iii) to
use study findings to reconsider standard assumptions and approaches used in empirical
SSB modelling.

Standard techniques associated with time series analysis are applied, namely, the use
of autocorrelation functions (ACFs) and cross-correlation functions (CCFs). The present
paper is organized as follows. The considered datasets are described in Section 2 along with
the SSB modelling approach and key methodological aspects related to ACFs and CCFs.
The results are then presented in Section 3. Finally, Section 4 is devoted to implications of
said results for SSB modelling, as well as perspectives for future work.

2. Data, Corrections, and Methods
2.1. SWOT Nadir Altimeter Combined with ERA-5 Model

The SWOT mission, launched on 16 December 2022, carries two different radar al-
timeters. Its primary and innovative instrument, KaRIn, is not the focus of the present
study. Although KaRIn aims to measure ocean surface topography with unprecedented
spatial resolution and accuracy, its retrieval of both SWH and WS parameters is not yet
mature (as of the time of the present study) compared to the second SWOT system—the
Poseidon-3C nadir altimeter. The latter is a Jason-class dual-frequency (Ku/C) altimeter
that ensures continuity of data records and consistency in the measurement technique
with its predecessors for meteorology, operational oceanography, and climate applications.
In addition to differences in the altimetry technology with KaRIn, the Jason-class nadir
altimeter points straight down and collects data in one dimension while the two KaRIn
antennas cover a two-dimensional surface swath of over 120 km wide, with a +/−10 km
gap about the nadir, collecting SLA data with greater precision than the nadir altimeter
alone [34].

SWOT surveys the globe in a near-circular, non-sun-synchronous orbit at an altitude
of 890 km and an orbital inclination of 77.6◦. Because of the swath coverage, the number
of repeat observations at a given location during its nominal 21-day science orbit varies
with latitude, from two repeats at the Equator to four at the mid-latitudes to more than
six at the high latitudes [35]. This rather coarse temporal sampling does not allow for the
study of small-scale rapid ocean processes, the time scales of which are comparable to or
shorter than the sampling intervals. To satisfy scientific research team requests to resolve
these processes, SWOT spent about six months in the 1-day fast-sampling phase. The first
3.5 months of said orbit were used for engineering checkout and to calibrate the instrument
parameters. The second period (29 March–10 July 2023) was dedicated to scientific data
collection and studies [24]. The data analyzed in the present study were extracted from this
latter period.

The altimeter-based dataset of the present study included 1 Hz altimeter measurements
extracted from the SWOT Level 2 Nadir Altimeter Interim Geophysical Data Record (IGDR)
Version 1.0 dataset available at AVISO (Archiving, Validation, and Interpretation of Satellite
Oceanographic data) [36]. The nadir along-track measurements have a spatial sampling of
approximately 6 km at 1 Hz. The spatial coverage associated with SWOT fast-sampling
phase is sparse; it comprises only 28 passes, with ~1430 km (resp. 2860 km) between
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adjacent orbital ascending and descending nodes (resp., between adjacent orbital ascending
nodes) at the Equator [24].

Contrary to SLA measurements, the altimeter-derived records for the SWH (denoted
hereafter as SWH_alti) and WS (WS_alti) provided in the aforementioned dataset are
directly used as such. Note that the data used in the present study originates from the
processing of radar echo waveforms with an MLE4 retracking algorithm [37,38], which
is the standard method used to generate the long Jason data records. The following four
parameters were retrieved using MLE4: range, SWH, backscatter coefficient (sigma0),
and the antenna mispointing angle. Sigma0 (together with SWH) was used to infer the
wind speed with the Jason-1-based model [4], while the range was used within the SLA
computation.

Regarding the SLA data exploited in the present study, estimates from the IGDR
reprocessed dataset are not directly used as such. Instead, the SLA values are updated
using the latest recommended barotropic corrections for SWOT [39] while keeping all
other range corrections unaltered. These updates concerned both the global tidal model
and the dynamical atmospheric correction (DAC) applied to generate a highly accurate
SLA. The FES2022C tidal model has an improved bathymetry and a globally enhanced
high-resolution mesh, which leads to significant improvements for both tidal elevations
and currents compared to the FES2014B version available for current SWOT products.
For the DAC, a specific version dedicated to the SWOT 1-day fast-sampling phase was
used. It better removes high-frequency ocean signals forced by atmosphere pressure at
this temporal sampling rate. The updated DAC consists of a 2-day filtered DAC, while the
operational DAC corresponds to a 20-day filtered DAC adapted to 10-day repeat orbits
(details are available on AVISO [40]). Finally, different versions of the SLA are analyzed
depending on the applied SSB corrections, and they are presented in Section 2.2.

Regarding the model estimates of the atmospheric wind- and sea-state parameters, nei-
ther the ECMWF model wind estimates nor the MF-WAM wave model mean zero-crossing
wave periods (T02) (which are available in the IGDR products) were used because of incon-
sistencies between the model parametrizations. Instead, both the WS and MWP estimates,
denoted here as WS_model and MWP_model, are taken from the ERA-5 dataset [41], as
well as a modelled SWH (SWH_model). ERA-5 is the most recent global reanalysis dataset
produced by ECMWF. It is the successor of the ERA-Interim and provides hourly reanalysis
data from 1950 to present. The full dataset is available from the Copernicus Climate Data
Store with a pre-interpolated resolution of up to 0.25◦ × 0.25◦ for atmospheric parameters
and 0.5◦ × 0.5◦ for wave parameters. The model data used in the present study are interpo-
lated onto SWOT nadir ground track locations using a bilinear interpolation in space and a
linear interpolation in time. Note that SWH data from some altimeters (namely, ERS-1/2,
ENVISAT, JASON-1/2, CRYOSAT-2, and SARAL) are assimilated into the ERA-5 reanalysis
using an optimal interpolation scheme, but SWOT is not one of them. ERA-5 data can,
therefore, be considered here as independent. Finally, for SWOT altimeter data quality
control, the in-house screening process from cal/val activities was applied to remove all
questionable measurements.

2.2. SSB Correction

A detailed review of ocean altimeter range measurement methods, including the
impacts due to the sea state range correction, can be found in Chelton et al. (2001) [1].
Briefly, the net SSB is predominantly made up of the electromagnetic range bias, which
stems from smoother wave troughs reflecting more radiant energy than rougher wave
crests [42]. This electromagnetic bias leads to a discrepancy between the desired mean
sea surface and the measured lower mean reflecting surface. Next, most altimetric range
retrackers are designed to locate the mid-power point of the leading edge of the radar time
return signal. This equates to measuring the median reflecting surface, rather than the
mean. The median reflecting surface is again lower than the mean reflecting surface because
of the known non-Gaussian distribution of surface heights over the illuminated footprint,
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leading to a skewness bias. Finally, SSB accounts for a final third effect, historically referred
to as the tracker bias, which combines contributions from each instrument’s design, the
signal processing, and the SSH’s computation [1,2]. These three effects (which must be
considered to satisfy the current altimetry needs) are difficult to isolate and describe within
a single consistent additive physical model, while empirical models simply estimate a net
SSB effect. Consequently, the SSB correction remains a relatively uncertain range error term.

The SSB estimation approach used by most authors consists of building empirical
models based on the satellite altimeter data itself [7–9,33,43,44]. SSB is, therefore, a singular
correction among all other range corrections in ocean altimetry. In essence, because there is
no observable SSB, it is extracted from SSH data (uncorrected for SSB), and then a range
adjustment is modelled using parametric [6,45] or nonparametric methods [7,8,33,43,44,46]
which depend on independent sea state measurements or estimates.

SSB was originally simply modeled as a percentage of the SWH with a coefficient
in the range of 2–5% [47], forming so-called one-dimensional (1D) SSB models, and then
expressed as a function of both the SWH and WS in 2D models. Two-dimensional models
are now commonly used to correct the range in operational SLA products. More recently,
the use of the mean wave period as a third predictor in 3D models shows some success
in improving the sea-state-related range bias description [32,33,48–50]. The wave period
provides information on wave steepness associated with the degree of the wave’s nonlin-
earity [51], while the local WS provides information on the wind-generated small-wave
roughness contributing to the electromagnetic bias via hydrodynamic modulation [52,53].

While SWH remains the main driver of the SSB description, the improvement gained
with 2D and 3D models points to the incompleteness of the SWH alone in describing the
SSB variability with the required accuracy, as well as the need for additional measures
linked to the wave field variability and nonlinearity.

The following three sets of SSB models are used in the present study and four SLA
estimations are considered: an SLA version uncorrected for SSB, denoted as SLA_uncorr,
and three SLA estimations for which the 1D, 2D, and 3D SSB models are, respectively,
applied and denoted as SLA_corr1D, SLA_corr2D (i.e., “standard” SLA), and SLA_corr3D.
The three SSB solutions are determined by Collecte Localisation Satellites (CLS) based on
the latest Jason-3 GDR-F version data. The 1D (BM1) model corresponds to −3.2% SWH. As
for the 2D and 3D SSB corrections, they are provided in GDR-F products for MLE4-based
SLA computation [54]. They are built based on a nonparametric approach called the local
linear kernel smoothing statistical technique, developed by Gaspar et al. [8], and later
improved by Tran et al. [9,33]. This approach has been used to develop all SSB models in
the form of 2D and 3D grids used for the Jason altimeter missions.

The main difficulty in empirical SSB determination lies in the extraction of sea-state-
related signals in SSH data, since the latter contains both oceanographic signals and
undesired signals, such as orbit errors, residual errors from geophysical and environmental
corrections, and instrumental noise. In order to cancel out these errors (or at least limit
their leakage into the SSB model because of artificial geographical correlations between
such SSH residual errors and the sea-state descriptors), SSB models have traditionally
been estimated using time-differenced SSH at specific locations along the satellite track [6].
Depending on the mission’s characteristics, these differences can be computed from a
collinear analysis of repeat cycles or from satellite pass crossovers. For Jason-like missions
with a repeat cycle of ~10 days, SSB models are based on collinear differences, while
missions with a higher repeat cycle are built using crossover differences [46,55]. The
differencing eliminates the time-invariant constituents, i.e., the geoid signal and the steady
part of dynamic ocean topography. In both cases, the SLA (uncorrected for SSB) differences
can be written as follows:

SLA_uncorr2 − SLA_uncorr1 = (SSB2 − SSB1) + ε

where the subscripts 1 and 2 distinguish data obtained at the same geographical location
but at the following two different times: t1 and t2; ε is assumed to be a zero-mean error term
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that includes all altimetric measurement errors but not SSB, plus the dynamic topography
variation between t1 and t2. Note that the time difference t2 − t1 is restricted to 10 days, a
duration in which the slower large-scale ocean circulation is assumed to remain relatively
constant, a result which has recently been questioned by Dibarboure and Morrow [21]. But
assuming this, the non-zero value of the SLA difference is, therefore, attributed to the SSB,
while contributions from other constituents are neglected [6]. Minimization procedures are
then used to express the SSB in terms of the considered sea-state descriptors (depending
on the considered model’s dimensions). Such model computation effectively reduces the
overall variance in the SLA differences, and this is interpreted as an effective removal of
SSB impacts.

In the nonparametric approach, minimization consists in solving a large linear system
of equations in which the SSB is the unknown parameter [8] to determine cycle-based 2D
or 3D grids. To account for seasonal changes in sea-state conditions, a sufficient amount
of individual cycle-based models must be considered that cover at least a 1-year period.
These models are then averaged to obtain the annual version. Additionally, to remove the
small contamination of the SSB model by the dynamic topography variation within 10 days
(rather than neglect it as it was previously done) [6], two intermediate annual solutions
are in fact computed. While the first one uses sea-state descriptors at t2 for computing the
relationship between SSB and its correlatives, the second one uses those observed at t1.
Lastly, the final model corresponds to the mean value of the two grid tables, as explained
in Tran et al. [9].

SSB models developed with collinear or crossover datasets are identical from a method-
ological point of view, but the advantage of a collinear dataset (over a crossover one) lies
in the abundance of data samples. At each cycle, ~450,000 samples for the former vs.
~7000 samples for the latter are available to feed the system of equations used to com-
pute the individual SSB models, which directly influences the robustness of the empirical
models. In practice, not all available data is used because inverting such a matrix would
require a prohibitive amount of computation time. For instance, in Gaspar et al. (1998) [7],
500 crossover points were randomly extracted for each cycle. In Gaspar et al. (2002), the
use of the least squares QR (LSQR) decomposition method [56] greatly reduced the com-
putation time, and all ~7000 valid crossover samples per cycle were used. Jiang et al. [50]
mentioned the use of 8000 samples when using a similar nonparametric approach but
with the least squares minimum-residual method (LSMR) [57], which further reduced the
computation time by 10–15% compared with the LSQR. For the Jason SSB models, CLS uses
~15,000 randomly selected collinear pairs to keep the computational burden reasonable.
As a result, only 3% of the data per cycle is used, and this selection can include redundant
information. Because the WS, SWH, and MWP are cross-correlated parameters, a trade-off
among three aspects should be found, as follows: (1) keeping a reasonable matrix size while
maintaining a large enough dataset to provide stable statistics, (2) avoiding redundancy by
selecting optimal independent sea-state correlatives and (3) limiting as much as possible
the impact of residual oceanic variability in the SSB computation process. All three aspects
need to be addressed to guarantee the robustness of SSB empirical models.

In the present study, the examination of the decorrelation time scales of SWH, WS and
MWP along with the analysis of their cross-correlations should help in building optimal
SSB training datasets. The selection of thinned datasets will likely remain compulsory,
especially when considering wide-swath altimeters such as KaRIn. During SWOT 21-day
science phase, ~40 M individual crossover points are generated per cycle, with a significant
amount of redundant information. This could overwhelm computation time needs for the
SSB model estimation. The present paper also further discusses the relationships between
the SSB correlatives and the SLA, and investigates their dependencies at short time scale.

2.3. Construction of SWOT Time Series

Time series, each associated with a specific location and presenting 1-day sampling,
were constructed through projection and linear interpolation of updated or unaltered (see
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Section 2.1) 1 Hz Level 2 SWOT nadir altimeter IGDR products onto a reference ground
track. The considered period covers an approximately 3.5-month period during the SWOT
fast-sampling phase, from 29 March to 10 July 2023, which corresponds to SWOT cycles 474
to 578. 105-day-long time series were constructed for nine parameters, namely, SWH_alti,
SWH_model, WS_alti, WS_model, MWP_model, SLA_uncorr, SLA_corr1D, SLA_corr2D,
and SLA_corr3D. SLA_corr1D and SLA_corr3D were not further processed, as they were
not used for computing ACFs and CCFs. In contrast, for the seven other parameters, only
the time series presenting more than 60 valid values (out of the available 105) were included
in the present analysis. Linear interpolation was performed to fill in the remaining missing
data. Out of the ~55,000 locations over the ocean included in the 28 passes of the SWOT
fast-sampling phase, ~20% of the locations were associated with “invalid” time series (i.e.,
those having fewer than 60 valid values), leaving a “valid” dataset of ~44,000 locations.

2.4. Autocorrelations and Cross-Correlation Computations

Estimating the decorrelation time scale (DT) of a parameter provides useful insight into
its temporal variability. Large (resp., low) DT express slow (resp., fast) temporal changes
and are associated with persistent (resp., ephemeral) phenomena. Most DT estimation
methods rely on autocorrelation functions (ACFs). ACFs measure the correlation (i.e.,
similarity) of a temporal series, X, with a delayed copy of itself as a function of the delay
(i.e., time lag), k. They are, therefore, well-suited for analyzing the temporal persistence of
a process. Other possible DT estimation methods rely on power spectral density [58,59],
detrended fluctuation analysis [58,60], or ordinal pattern probabilities [61]. In the present
study, an ACF-based approach was used, where the ACF of a time series, X, is defined as
follows:

ACF(X, k) =
σxx(k)
σxx(0)

with σxx(k) = 1
n

n−k
∑

t=1
(xt+k − x)(xt − x), where X is the mean value of the time series X, and

n is the number of samples in the X series. ACFs are independent of the initial time point
and, thus, only depend on the time lag, k. They are characterized by a maximal initial value
of 1 at lag 0 and then decrease with increasing time lag, k. The time scale over which an
autocorrelation function tapers is related to the decorrelation processes at hand, which, for
geophysical parameters, can depend both on external forcing and local dynamics.

Note that DT estimation depends heavily on the sampling interval and time duration
of the selected time series. The sampling interval should be sufficiently small (typically,
less than half of the actual DT, for Nyquist-related reasons [62–64]) and the time duration
sufficiently long (typically 20 to 50 times the actual DT [63–65]) to provide a reliable DT
estimate.

Several ACF-based definitions for DT can be found in the literature. The zero-crossing
and half-crossing are the most widespread definitions; they assign the DT to the time
delay associated with the first ACF zero-crossing (resp., the first ACF 0.5 crossing) and
are denoted as L0 (resp., Lhal f ) [66]. Because these definitions are very sensitive to long-
range correlations, which tend to produce slowly decaying ACFs, integral scales have
been introduced, as follows: L1 and L2 are defined as the discrete integrals of the ACF
and squared ACF, respectively [66–70]. Other decorrelation scale definitions, based on
Gaussian or exponential decay fits, require some a priori knowledge on the data generation
process. A detailed comparison among the L0, Lhal f , L1, and L2 estimations is provided in
Appendix A, along with the rationale supporting our choice of using L2 estimates in the
present study.

Cross-correlations between the selected parameters are examined in the present study
using cross-correlation functions (CCFs). The latter measure the correlation (or similarity)
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of a temporal series, X1, with a delayed copy of a temporal series, X2, as a function of the
delay, k, using the following formula:

CCF(X1, X2, k) =
σx1x2(k)
σx1 × σx2

where σx1x2(k) = 1
n

n−k
∑

t=1
(x1t+k − x1)(x2t − x2), x1 (respectively, x2) is the mean value of

the temporal series X1 (respectively, X2); σx1 (respectively, σx2) is the standard deviation
associated with the temporal series X1 (respectively, X2); and n is the number of samples
in the X1 and X2 series. To avoid spurious correlations caused by autocorrelations in
the original time series and/or shared trends, a prewhitening procedure is applied [71].
This procedure is standard in cross-correlations analysis. It allows for the identification of
meaningful relationships between the pairs of series (X1 and X2) (i.e., between the selected
parameters).

Prewhitening was applied to each and every considered pair of series (X1 and X2)
and consisted of (1) fitting an autoregressive integrated moving average ARIMA(p, d, q)
model to the original X2 time series; (2) retrieving the associated X2 residuals; and (3)
filtering the X1 original time series using the previously determined X2 ARIMA(p, d, q)
model parameters. Note that p and q are the orders associated, respectively, with the
autoregressive (AR) and moving average (MA) terms, while d is the differencing order
associated with the integrated (I) part. Cross-correlations were then computed between
the X2 residuals and filtered X1 to identify the potential time-lagged correlations. The
(p, d, q) orders of the X2 models were selected using the Akaike information criterion [72],
ensuring a trade-off between the goodness of fit and the simplicity of the model. The
ARIMA models’ identifications were undertaken using the auto_arima function from Python
package (pmdarima version 2.0.4).

3. Results and Discussions
3.1. Mean and Variance of SLA Differences with Respect to Time Lags

The SWOT 1-day sampling phase offers an unprecedented opportunity to precisely
assess assumptions used for SSB modelling, as well as to more accurately quantify and
compare the performances of the three available SSB corrections (1D, 2D, and 3D models).
Figure 1 summarizes these results. They are computed using the following four versions
of SLA time series: SLA_uncorr, SLA_corr1D, SLA_corr2D, and SLA_corr3D. For the
first time, statistical indicators derived from SLA differences are computed based on a
1-day repeat orbit dataset covering all ocean surfaces, with time intervals between SLA
observations ranging from 1 day to up to 50 days. The changes in SLA occurring for
time intervals below 10 days are especially interesting to evaluate both the current model
assumptions and performance. Note that, contrary to what is usually done at CLS, the
models’ performances are evaluated here using SLA variance reduction measurements
based on collinear differences rather than differences at crossover points.

The computation of the statistical indicators of interest was performed as follows.
First, four datasets of SLA time series were built, each associated with a certain SLA version
(identified with the respective suffixes “uncorr”, “1D”, “2D”, and “3D”). Then, within each
dataset, groups of SLA differences (DSLA) were extracted, each associated with a fixed
time interval equal to 1 day, 2 days, . . ., up to 50 days. This step led to a total of 50 subsets
per SLA version. Prior to computing the global statistical indicators (namely, the mean
and variance of each subset), two random selections were performed to ensure that all
subsets relied on the same number of SLA pairs. Indeed, in the absence of any particular
selection, subsets associated with smaller time intervals are naturally more populated than
those associated with larger time intervals. Statistics computed from such uneven datasets
could be affected by sampling biases. The two selections involved extracting, respectively,
1,981,813 and 15,000 SLA pairs per subset. The former size ensures the largest possible
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dataset, while the latter corresponds to a size commonly used by CLS for cyclic SSB model
estimations.

Remote Sens. 2024, 16, x FOR PEER REVIEW 9 of 34 
 

 

all subsets relied on the same number of SLA pairs. Indeed, in the absence of any particu-
lar selection, subsets associated with smaller time intervals are naturally more populated 
than those associated with larger time intervals. Statistics computed from such uneven 
datasets could be affected by sampling biases. The two selections involved extracting, re-
spectively, 1,981,813 and 15,000 SLA pairs per subset. The former size ensures the largest 
possible dataset, while the latter corresponds to a size commonly used by CLS for cyclic 
SSB model estimations. 

 
Figure 1. (a) Global means of the SWOT nadir SLA collinear differences as a function of the time 
interval considered for the SLA differences. The examined SLA types are SLA_uncorr (no SSB ap-
plied), SLA_corr1D (application of SSB = −3.2% SWH), SLA_corr2D (with J3 GDR-F 2D SSB table), 
and SLA_corr3D (with J3 GDR-F 3D SSB table); (b) same as in (a) but for the global variance; (c) 
global variance reduction as a function of the considered time interval obtained when one computes 
var(∆SLA_corr) minus var(∆SLA_uncorr). Negative values indicate an improvement in the SLA 
precision resulting from the application of the SSB correction. Higher reduction magnitudes indicate 
greater model skill. 

The global mean and variance values associated with each subset are reported in Fig-
ure 1a,b, respectively, as a function of the time interval. The results associated with the 
four versions of the SLA are displayed with thick solid lines for the ~2 M-large selection 
and thin dotted lines for the 15,000-large selection. For time intervals below 10 days, the 
mean differences associated with DSLA_uncorr were lower than 1 mm (resp., 3 mm) for 
the ~2 M-large (resp., 15,000-large) selection (Figure 1a). These results corroborate the gen-
eral assumption stating that ε can be considered as a zero-mean error term (cf. Section 
2.2). Note, however, that this assertion stands for a global estimation of ε, when all sea-
state conditions are covered. Because SSB computation is performed locally in the de-
scriptors’ space, it can be verified that in sparsely populated regions, ε values do not verify 
the zero-mean assumption. In practice, this characteristic entails that two SSB solutions 
per cycle are computed (which are then averaged), as described in Section 2.2. Finally, 
note that after SLA was corrected, the mean differences remained below 1 mm (for the ~2 
M-large selection), whatever the considered SSB correction, and for time intervals as large 
as 50 days. This confirms the consistency in both the SLA content and precision provided 
by the SSB correction. 

As expected, the global variance in DSLA increases with the time interval (Figure 1b). 
This is due to the increase in the contribution of the rapid mesoscale changes associated 
with western boundary currents, internal waves and tides, the development of sub-

Figure 1. (a) Global means of the SWOT nadir SLA collinear differences as a function of the time
interval considered for the SLA differences. The examined SLA types are SLA_uncorr (no SSB
applied), SLA_corr1D (application of SSB = −3.2% SWH), SLA_corr2D (with J3 GDR-F 2D SSB table),
and SLA_corr3D (with J3 GDR-F 3D SSB table); (b) same as in (a) but for the global variance; (c) global
variance reduction as a function of the considered time interval obtained when one computes
var(∆SLA_corr) minus var(∆SLA_uncorr). Negative values indicate an improvement in the SLA
precision resulting from the application of the SSB correction. Higher reduction magnitudes indicate
greater model skill.

The global mean and variance values associated with each subset are reported in
Figure 1a,b, respectively, as a function of the time interval. The results associated with the
four versions of the SLA are displayed with thick solid lines for the ~2 M-large selection
and thin dotted lines for the 15,000-large selection. For time intervals below 10 days, the
mean differences associated with DSLA_uncorr were lower than 1 mm (resp., 3 mm) for the
~2 M-large (resp., 15,000-large) selection (Figure 1a). These results corroborate the general
assumption stating that ε can be considered as a zero-mean error term (cf. Section 2.2).
Note, however, that this assertion stands for a global estimation of ε, when all sea-state
conditions are covered. Because SSB computation is performed locally in the descriptors’
space, it can be verified that in sparsely populated regions, ε values do not verify the
zero-mean assumption. In practice, this characteristic entails that two SSB solutions per
cycle are computed (which are then averaged), as described in Section 2.2. Finally, note that
after SLA was corrected, the mean differences remained below 1 mm (for the ~2 M-large
selection), whatever the considered SSB correction, and for time intervals as large as 50 days.
This confirms the consistency in both the SLA content and precision provided by the SSB
correction.

As expected, the global variance in DSLA increases with the time interval (Figure 1b).
This is due to the increase in the contribution of the rapid mesoscale changes associated with
western boundary currents, internal waves and tides, the development of sub-mesoscale
fronts, filaments and small-scale eddies, the displacement of larger eddies, meanders,
planetary waves, etc. [21]. The global variance is expected to increase up to a final plateau,
at which a maximum is reached. Such a plateau is not observed here, presumably due to
the 50-day limitation. The variance in the DSLA is also lower when SLA is corrected for
SSB, and it is increasingly lower when the SSB dimension increases, confirming that more
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SSB error is removed when additional descriptors are considered. This feature is more
clearly observed in Figure 1c, which presents the reductions in the variances obtained when
comparing uncorrected SLA differences with (1D, 2D, and 3D) corrected SLA differences.
Contrary to Figure 1a,b, Figure 1c only displays the results associated with the ~2 M-large
selection. A reduction in said diagnostic (i.e., negative values) indicates an improvement
in the internal consistency of SLA data, thus a more accurate estimate of SLA. Indeed, the
higher the reduction, the better the model, since a reduction in variance is interpreted as
variance explained by the applied SSB model [9,32,46,73].

Note that when the time interval is at its minimum value (1 day), the computed
variances in Figure 1b are low (~37 cm² for DSLA_uncorr and ~22–25 cm² for DSLA_corr)
yet non-zero, as they comprise both the 1 Hz altimeter noise and the 1-day rapid ocean
variability (as well as some residual SSB errors). As is evident from Figure 1c, the reduction
in variance increases within the first five days and then reaches an initial plateau between
~5 and 15 days. After the first 5 days, the relative improvement in the performance could
roughly be considered as stable for all three SSB versions. The presence of two distinct
behaviors before and after 5 days points to a disparity in the contributions to the reduction
in variance before versus after 5 days. Such differences could be related to the notion of
dependent/independent observations through temporal persistence and/or temporal cross-
correlations. While temporal persistence designates the presence of correlations between
two observations of a given variable separated by a certain time delay, temporal cross-
correlations refer to the presence of correlations between the observations of two different
variables taken either at the same time or separated by a certain time delay. If the temporal
persistence of a specific SSB descriptor is long, two observations of such a descriptor
separated by a short time interval cannot be considered as independent. Likewise, if two
SSB descriptors present cross-correlations—a fortiori time-lagged cross-correlations—then,
the two SSB descriptors cannot be considered independent. In the present case, it is likely
that, if one or both types of correlations exist, they are associated with time scales on the
order of a few days. The analysis of such correlations and the potential implications for
SSB modelling have not been investigated so far. The fast-sampling SWOT nadir dataset
provides a unique opportunity to address these points using satellite- and model-based
data. The temporal decorrelation scales of the SSB descriptors are analyzed in Section 3.2,
while the temporal cross-correlations among the SSB descriptors are examined in Section 3.3.
Finally, the temporal cross-correlations between the SLA and SSB descriptors are reported
in Section 3.4. Such analyses should help tentatively explain the two distinct features
observed for the variance reductions, namely, a rapid increase (in absolute values) from 0
to 5 days and the subsequent overall stabilization between 5 and 15 days. It should also
provide insight into whether the cross-correlations among the SSB descriptors should be of
concern for SSB modelling. Should the observed correlations be removed in some way?
Should SSB modelling approaches be revised?

3.2. Temporal Decorrelation Scales for SWH, WS, and MWP

The present section reports on results associated with the DT for each of the five SSB
input-related parameters under study, namely, SWH_alti, SWH_model, WS_alti, WS_model,
and MWP_model. As previously mentioned in Section 2.4, DTs were estimated based on
ACF, using L2 definition (see Appendix A). In principle, ACFs (and, therefore, ACF-based
DT estimates) are only defined for stationary time series. Therefore, prior to computing
ACFs and DT, the stationary/non-stationary character of the selected time series was
assessed. The main sources of time series non-stationarity include (1) the presence of a
deterministic trend, (2) seasonal effects (associated with constant periods, typically 1 year),
and (3) unit roots. In the present study, the presence of a deterministic trend was ruled out
through visual inspection of the time series and the absence of any a priori argument in favor
of a deterministic trend. Second, the analyzed SWOT 3.5-month time period (29 March to
10 July 2023) is too short to account for seasonal effects. Finally, the presence of a unit root
was tested using the most common method, namely, the augmented Dickey–Fuller (ADF)
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test [74,75]. The ADF results are summarized in Table 1. The ADF test was conducted using
all of the time series of all selected input parameters, and the results were compared to a
significance level of 5%; if the p-value is less than 0.05, the ADF null hypothesis stating
the presence of a unit root is rejected; therefore, the time series is considered stationary.
Otherwise, the null hypothesis cannot be rejected, implying non-stationarity.

Table 1. Percentages of the time series classified as stationary/non-stationary for the five considered
SSB input-related parameters, according to the ADF test run with a 5% significance level.

Are the Considered Time Series Stationary?
Yes No

SWH_alti 87.3% 12.7%
SWH_model 83.2% 16.8%

WS_alti 90.0% 10.0%
WS_model 89.8% 10.2%

MWP_model 90.4% 9.6%

Table 1 provides the percentages of the time series among the valid dataset categorized
as stationary (and, therefore, associated with a so-called differencing order d = 0)/non-
stationary (d = 1). A vast majority (~80–90%) of the time series are stationary for all five
SSB input-related parameters. It is likely that those classified as non-stationary are, in fact,
stationary long-memory time series associated with 0 < d < 0.5. This is because the ADF
test has low power in distinguishing such series from unit roots since it only considers
d = 0 and d = 1 hypotheses. Moreover, long-range correlations (typical of stationary long-
memory time series) have been identified in both wind speed [60,76] and significant wave
height records [58,59,61], while fractional-ARIMA models (which allow for long-memory
time series to be explicitly modeled) were used to forecast wind speed data [76,77]. To
assure the long-memory stationary character of the ~10–20% “ADF-non-stationary” time
series, the fractional differencing order d should verify 0 < d < 0.5. Unfortunately, the low
number of samples per time series (i.e., 105 here) prevents any reliable estimation of the
fractional differencing order d using methods such as the Geweke and Porter-Hudak’s and
the Sperio’s estimation methods [78,79].

Hereafter, it is therefore assumed that the stationary character and, thus, the ACF-
based DT computation also hold for the minority of “ADF-non-stationary” time series.
Moreover, the integral DT scales used in the present study are well-suited for time series
exhibiting long-range correlations. Note that a published ACF-based analysis on wind
speed data [80] relied on a similar stationarity assumption.

Figure 2 shows examples of the ACFs of time series taken at two different locations
from SWOT nadir pass 28 (locations are shown in Figure 2a). The time series were selected
among the two altimeter-derived parameters (SWH_alti and WS_alti) and the three model-
based estimates (SWH_model, WS_model, and MWP_model). Although each time series
is 105-day-long, the ACFs are displayed with 0- to 20-day time delays (Figure 2b,c), as
most of the ACF tapering occurs within the first few days. The selected parameters
(SWH, WS, and MWP) can, in principle, vary at different time scales, with the largest
variations often observed at seasonal scales. However, as mentioned before, the study time
series are too short to account for seasonal effects. The horizontal dashed black lines in
Figure 2b,c indicate the 95% significance confidence interval, which serves to assess the
significance of the correlation values. Any correlation value that falls outside (resp., within)
the 95% confidence interval is considered significant (resp., not significant, as it may not be
differentiated from random correlations). After 10 days, it is clear that all five parameters
are no longer autocorrelated at both locations.
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Figure 2. (a) Map showing the two locations from SWOT nadir pass 28 (40◦S and 20◦N) associated
with the ACFs shown in (b,c); (b) autocorrelation functions (with associated 95% confidence intervals
as dotted lines) of the five considered SSB input-related parameters at the 40◦S location; (c) same as
in (b) but for the 20◦N location.

The ACF of the surface WS is, perhaps, the easiest to grasp (among the three sea-state
descriptors), as it provides direct insight into the time scales governing wind variability.
The determination of such time scales allows for the wind variability to be characterized
as “fast” or “slow” relative to other components of the climate system. They are also
useful for characterizing the WS statistical predictability, as they provide a measure of
wind persistence [60,76,77]. The ACFs of the SWH and MWP are, perhaps, more difficult
to comprehend, since both parameters are controlled by two wave categories with different
characteristics: wind waves and swell. The former are locally generated short-wavelength
waves with more chaotic characters, and they travel less rapidly than the surface wind.
They are strongly wind-forced and are affected by factors such as wind duration, fetch, and
speed. In contrast, swells are usually generated remotely by storms or prevailing winds,
such as trade or westerly winds, which blow over long fetches and long durations [81–83].
They are long-wavelength waves with a smoother appearance and can propagate thousands
of kilometers across the ocean without extracting energy from wind and with little energy
loss [51,84,85]. Numerous studies [83,86–91] indicate that, in most ocean basins, the sea
state is a mixed superimposition of local wind seas and at least one swell system; the latter
originating from a remote region and propagating in a direction different from the local
wind. Factors influencing wind/wave field variability are, thus, intricate; while wind-sea
variations reflect short-scale wind changes, the swell variability reflects wind changes over
an extended spatio-temporal domain.

For a more global view of the ACF structure of the selected parameters, one can display
ACF maps at specific time delays rather than plot the ACFs as a function of the time delay
at a few specific locations. By doing so, it is found that the geographical distribution of
the ACF structure associated with WS_alti is in good agreement with results published
by Monahan [80]. Monahan provided maps of the wind speed ACFs at +1 day, +2 days,
and +3 days, derived from scatterometry SeaWinds data (see Figure 1, right panel, in
that study). Similar to the present study, Monahan assumed stationarity for the surface
vector winds. Regions that present an autocorrelation value that remains close to 1 after
3 days (such as the Arabian Sea, in red in both Figure 1, right, in ref. [80] and Figure A3
in Appendix B of the present study) have long DTs, while the high latitudes show rapidly
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decreasing autocorrelation values (from yellow at +1 day to green at +3 days in both of the
aforementioned figures).

Now turning to the ACF-based DT computations, global maps of the DT estimates
are provided in Figure 3 for SWH_alti (Figure 3a), WS_alti (Figure 3b), and MWP_model
(Figure 3c). Because of the spatial coverage associated with the SWOT fast-sampling phase,
the displayed results are evidently scarce. For all three parameters, most DTs range from
1 to 4 days, with minimal values (<2 days) associated with the mid-latitude regions in
the Southern Hemisphere (between 30◦S and 60◦S) or located beyond 60◦N/S. Maximal
values (up to 10–14 days) are uncommon but found in different areas depending on the
considered parameter (namely, the Arabian Sea for SWH and WS, the North Atlantic Ocean
for SWH and MWP, and the mid-latitude Pacific Ocean for all three parameters). The
particularly high DT levels for wind speed observed in the Arabian Sea are attributed to
the steady southwesterly wind speeds occurring in that region during the June–September
southwest monsoon [92–94]. Overall, the DTs associated with SWH_alti are larger than
those associated with the other two sea-state descriptors, and the mean and median DT
values for the former parameter amount to ~2.5 days and ~2.1 days, respectively, while
the ones associated with the latter two parameters are lower, at ~2.1 days and ~1.8 days,
respectively. Finally, the distributions of the DT values in days (illustrated by the histograms
in Figure 3) are more similar and skewed for both WS and MWP than the larger and more
even DT distribution associated with SWH.
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To make further sense of the spatial DT variations, the dependence of the DT values
on the mean metocean conditions is analyzed. For each time series, the mean metocean
values (mean SWH_alti, mean WS_alti, and mean MWP_model) and the computed DTs
are associated. Figure 4 presents 2D binned plots of the DTs of SWH_alti as functions of
the (mean SWH, mean WS) (Figure 4d), (mean SWH, mean MWP) (Figure 4e), and (mean
MWP, mean WS) (Figure 4f). The associated density plots are shown in Figure 4a–c. Overall,
Figure 4 suggests that the SWH_alti DTs can be roughly divided into two subsets: regions
of high wind and rough sea-state conditions (WS > 9 m/s, SWH > 3 m, and MWP > 6.5 s)
are associated with low DT values (<2 days), while regions with more moderate conditions
(WS < 9 m/s, 1 m < SWH < 3 m, and MWP < 6.5 s) display larger DT values (> 2 days).
Note that the DTs of WS_alti and MWP_model show similar dependence on the mean
metocean conditions. The overall finding is relatively intuitive: high wind and rough
sea areas (which are more subject to phenomena that can disrupt temporal correlations)
present less persistent wind/wave states than moderate wind/wave regions. A refined
interpretation of the precise DT geographical variations is next presented based on an
analysis of the metocean processes at play.
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pertaining to a specific bin is color-coded. (d–f) Same as in (a–c), except the decorrelation time scale
values (rather than the number of their occurrences) are color-coded.

The sparse spatial coverage associated with the SWOT fast-sampling phase naturally
limits the full exploitation of the geographical patterns observed in Figure 3. But since
the Earth’s large-scale atmospheric circulation is organized around dominant zonal wind
belts, the average latitudinal variations in DT (with their associated standard deviations)
are computed, using 3◦ latitudinal bands. In addition to the three parameters already
reported in Figure 3 (SWH_alti, WS_alti, and MWP_model), the latitudinal DT variations
of SWH_model and WS_model are included, and all five zonal statistics are provided in
Figure 5. An overall DT latitude-dependency is clear and common for all three SSB descrip-
tors; latitudes between 30◦S and 60◦S and beyond 60◦N/S are associated with low (<2 days)
average DT values and very low dispersions (<1 day), while the tropical areas present
higher (>2 days) average DT values and very large dispersions (up to 5 days). It is also
found that the altimeter-based and model-based estimates are in close agreement for SWH
and WS in their essential features. This finding is consistent with the overall agreement
found between altimeter-based and model-based DT estimates shown in Appendix A.

In an attempt to ascribe the DT latitudinal variations observed in Figure 5 to metocean
processes, the mean wind/wave latitudinal variations are shown in Figure 6 (with their
associated standard deviations). In agreement with previous observations, the DT varia-
tions are anticorrelated with the mean wind/wave variations (rough winds and sea-state
conditions are associated with low DTs, while moderate conditions present higher DTs).
The latitudinal variations reported in Figure 6 are consistent with general knowledge of
global atmospheric circulation and seasonal metocean conditions. Despite the Earth’s
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atmospheric circulation varying from year to year, its large-scale structure remains fairly
constant over time and is characterized by several zonally oriented strong or weak prevail-
ing wind patterns with systematic recurrences of local wind regimes. From the Equator
moving poleward, these wind patterns include the calm-wind doldrums within ± 10◦; the
tropical Easterlies, or trade winds, located between 10◦ and 30◦; the Westerlies, with the
strongest features peaking at around 50◦; and the Polar Easterlies beyond 60◦.
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The average wind/wave distributions vary from one season to the next and are
characterized by an asymmetrical phase opposition between the two hemispheres; the
intensity of the wind and sea-state conditions is weaker in the Northern Hemisphere
than in the Southern Hemisphere at corresponding latitudes, but presents a larger WS
seasonal variability. Within the period considered here (end of March to mid-July), a clear
Southern Hemisphere dominance is observed, especially in the extratropics (Figure 6). The
highest wind and wave conditions, peaking at respectively ~11 m/s and ~4 m, occur at
the mid-latitudes between 30◦S and 70◦S (Figure 6), with the onset of the intense storm
activities characterizing the austral winter. These storm activities will reach their maximum
intensity in July–August, a few weeks after our observation window. Secondary maxima
at ~8 m/s for WS and ~2.4 m for SWH are observed at mid-latitudes in the Northern
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Hemisphere (Figure 6). Both the global and secondary wind/wave maxima are associated
with storm patterns of the Westerlies (in their respective hemispheres), where small-scale
weather systems (e.g., mid-latitude depressions and passage of atmospheric fronts), or
extra-tropical/polar cyclones occur chaotically. At most latitudes, maximal WS values
occur when the considered hemisphere experiences winter, while minimal ones occur in
the summer. In the Northern Hemisphere, peak conditions occur during boreal winter
(January) in both the North Pacific and North Atlantic Oceans. Considering the observation
period at hand, the secondary maxima in WS and SWH are attributed to the decreasing
seasonal activities of the Westerlies in the North Pacific and North Atlantic. The decrease
starts in March and is expected to reach a minimum in July/August. These Westerlies blow
from West to East, and steer extra-tropical cyclones in this general direction. They generate
the local wind waves forming the circumpolar wind sea belt in the Southern Ocean. As for
the extensive northwest gales originating from the main continents at mid-latitudes during
boreal winter, they are the primary cause of the seasonal wind-wave generation in the
Northern Hemisphere. Ebuchi et al. [95] reported for instance that strong winds blowing
constantly from Siberia toward the west coast of Japan usually last longer than a day, hence
generate numerous wind-wave events in the Sea of Japan. The Westerlies in the Southern
Hemisphere are more consistent throughout the year and more intense as they find no
interruption by land in the East–West direction. It is often assumed that the associated high
wave conditions are a result of the extended fetch. Young [96] rather pointed out that the
high wind speeds and the duration of the storms are more important factors. Finally, Zhang
et al. [97] highlighted that not only the highest SWH are all situated in the Westerlies of the
Southern Hemisphere, but MWP also displays a maximum value in this particular region.
Said MWP maximum amounts to ~7.3 s in the present dataset (Figure 6); wave periods are
greater since waves have time to build up and generate longer swells. As can be seen from
Figure 6, the higher consistency of the Westerlies in the Southern Hemisphere results in
lower wind/wave latitudinal dispersions compared with the Northern Hemisphere.

During the observation period associated with the present study, the major wind-
sea-dominated regions are the extratropical storm areas and the Southern Westerlies
regions [83,88]. Such regions are associated with highly correlated WS and sea-state param-
eters (Figure 6). On the contrary, in swell-dominated areas (roughly ±25◦), the wind and
wave fields display fewer similarities (Figure 6).

Three well-defined tongue-shaped zones of swell dominance, commonly referred
to as “swell pools”, are located in the eastern tropical areas of the Pacific, Atlantic, and
Indian Oceans. The west coast of the Americas is notably influenced by long period swells
originating from both hemispheres, while the swell zone in the Atlantic Ocean is associated
with shorter periods compared with the Pacific and Indian Oceans [96]. Swell generated in
the Southern Ocean has a particularly significant impact on much of the world’s oceans.
Although it mainly propagates from west to east, part of it propagates for large distances
away from the area in which it was generated and penetrates the adjacent Pacific, Atlantic,
and Indian Ocean basins. However, because of the narrower geometry of the Atlantic
Ocean, swells generated in the Southern Ocean do not appear to influence wave conditions
all the way up to the North Atlantic [96].

WS, SWH, and MWP show an overall progressive decrease from the Southern high
latitudes to the Equator, but only WS presents a local maximum in the subtropical region
(Figure 6). This local maximum is associated with the trade-wind belts and is absent from
both wave fields as they are less coupled with wind in swell-dominated areas. More
precisely, swells coming from the Southern Ocean have larger heights and longer periods
than local wind waves and, therefore, “mask” the locally trade-wind generated events. The
net result is that SWH and MWP fields vary far more smoothly than WS does. In contrast
with the high latitudes, the equatorial area is associated with low SWH (Figure 6). In this
region, the swell energy weight is almost permanently close to 100% [83,86,87,89,98,99]
since swells originating from both the Northern and Southern high latitudes commonly
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reach the equatorial region. The area is also dominated by the doldrums and their associated
low WS fields.

In light of the wind and wave conditions occurring during the 3.5-month observing pe-
riod, the DT geographical distributions associated with the SSB descriptors (Figures 3 and 5)
can be better interpreted. A direct correspondence between the DT values of WS, which
mostly range from 1 to 4 days, and the locally active weather systems (organized around
dominant zonal wind belts) can be drawn. Note that storms that are too short-lived or
diurnal variations are not accounted for in the present dataset. DT values associated with
the WS in the Southern Hemisphere Westerlies are slightly lower than those observed
in the Northern Hemisphere Westerlies, and they exhibit a stronger spatial homogeneity
(Figures 3b and 5), consistent with the overall homogeneity of the Southern Hemisphere
Westerlies wind belt. The DT values of WS in this region mirror the rapid displacement
of relatively strong events, the regularity of their passage at fixed locations and their low
seasonal variability. In contrast, in the Northern Hemisphere, the DT features associated
with the WS are reminiscent of weaker, hence, more irregular events associated with slower
dynamics and a larger variety in the types of events. In trade winds areas, the prevailing
winds give rise to weak/moderate, hence, irregular meteorological events resulting in
larger DT values and greater spatial variability (Figures 3b and 5). In contrast with the
tropical Pacific and Atlantic Oceans, the large DT values observed in the Northern Indian
Ocean (Figure 3b) are ascribed to the unique two-season weather pattern characteristic of
the southwest monsoon, which, during the observed period, results in steady southwesterly
wind speeds [92–94].

Now turning to the DT distributions associated with wave fields (Figures 3a,c and 5),
their large similarities with the ones associated with WS (Figures 3b and 5), especially south
of 30◦N, evidence the significant influence of WS over SWH and MWP through atmo-
spheric forcing. Still, large DT disparities between wind and wave fields are observed
in some regions. For instance, the North Atlantic Ocean exhibits wave field conditions
associated with significantly higher persistence than wind (Figure 3). These disparities
suggest that SWH variability is partly controlled by swell variability, which can itself have
little similarity with the local wind pattern [100–102]. The results presented here also
agree with a study limited to the Norwegian Sea, which showed that, statistically, the
persistence of wave fields decreases with increasing wave height [103]. Examples from this
study include wave fields with SWH > 12 m and lasting only a few hours and those with
SWH > 3 m and lasting up to 8 days. Finally, a large anomaly occurring in spring 2023 in
the North Atlantic Ocean climate [104] might explain the differences observed between
the Atlantic and Pacific Oceans in the DTs of the wave fields (Figure 3a,c). Irregular rapid
ocean warming in the eastern equatorial basin from March to June associated with unusual
stagnant and weaker-than-average surface winds throughout the east and central Atlantic
were observed and indicated the onset of an Atlantic Niño event [105,106]. This unusual
weakening of both the mid-latitude westerly flow and the tropical–subtropical easterly
trade winds in the Atlantic Ocean compared with the Pacific area may have had a minor
impact on wind DTs (Figure 3b) and a significant one on the wave field DTs (Figure 3a,c),
provided that the swell energy contribution is different in the two basins.

In summary, presented satellite-based results are in close agreement with numerical
models and are largely consistent with expected global wind/wave systems distributions
and their interactions. High-latitude rough seas have less wind/wave persistent character-
istics because they are wind-coupled areas characterized by strong and variable winds. By
contrast, regions with weak/moderate wind fields are swell-dominated areas, characterized
by low SWH and a larger swell variability, resulting in longer-lasting features with higher
DT dispersion ranges.

3.3. Cross-Correlations Between SWH, WS, and MWP

Most of the metocean variables examined in the present study are correlated, to some
extent, through relationships that may not always be instantaneous. Swells generated
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remotely by storms may take several days to reach a given location and influence the local
dynamics. Considering time-lagged cross-correlations might, thus, be useful to better grasp
the mixed wind/sea influences at a particular location and to identify potential regionally
varying behaviors. The analysis conducted next surely has limitations, since wind seas and
swells were not considered separately. Still, examining the cross-correlations among the
sea-state descriptors may help future SSB modelling efforts related to (i) estimating region-
specific SSB models or (ii) accounting for the observed correlations within an adapted SSB
estimation approach.

As mentioned in Section 2.4, a prewhitening procedure was applied to each considered
pair of series (X1, X2) prior to computing the cross-correlations. The cross-correlations
were then computed between the X2 residuals and X1 filtered series. Note that, as ex-
pected, similar results were obtained when (X2 residuals, X1 filtered) or (X1 residuals, X2
filtered) series were used to compute (X1, X2) cross-correlations. In addition, only the
cross-correlations associated with successful prewhitening were analyzed; the Ljung–Box
test [107], set with a significance level of 5%, was used to determine whether the X2 residu-
als were autocorrelated. X2 residuals failing the Ljung-Box test were excluded from the
analysis; they represent only 2.4% to 4.1% of the entire valid dataset depending on the
selected X2 parameter.

For each (X1, X2) combination, the cross-correlation values associated with positive
time delays relate the similarity between the non-delayed X1 series and the X2 series
delayed with a positive lag. In other words, the correlations associated with positive time
delays inform whether X1 is a predictor of X2, whereas the correlations at negative lags
indicate whether X2 is a predictor of X1. Be aware that the presence of correlations between
two parameters does not necessarily imply causality; for instance, a third parameter might
be needed to explain the observed correlations. Hereafter, the correlations among SWH, WS,
and MWP are analyzed through the computation of the following three cross-correlations
combinations: (WS_alti, SWH_alti), (SWH_alti, MWP_model), and (WS_alti, MWP_model).

Figure 7 presents examples of the CCFs computed at the two locations from SWOT
nadir pass 28 shown in Figure 2a. The horizontal dashed black lines in Figure 7 indicate
the 95% significance confidence interval. Similarly to the ACF case, it was computed as
± 1.96√

n−k
, where n is the total number of observations and k is the lag. In the present case,

the confidence interval amounts to approximately ± 0.2 in the time delay range of interest
(between −10 days and +10 days). Most of the significant cross-correlations (i.e., the cross-
correlation values falling outside the confidence interval) occur at lags 0 and +1 day, as
shown in Figure 7. For instance, significant positive correlations associated with (WS_alti,
SWH_alti) combination are observed at lags 0 and +1 day on both selected locations of pass
28. For the 40◦S location (Figure 7a), a large (WS, SWH) correlation (i.e., 0.46) was observed
at lag 0 and a moderate one (0.30) at lag +1 day, meaning that increased WS is associated
with higher SWH both immediately and, to a lesser extent, 1 day after the increase in WS.
This finding is attributed to atmospheric forcing. After 1 day, the correlation rapidly decays
and becomes non-significant. (SWH_alti, MWP_model) combination presents relatively
similar features, i.e., significant positive correlations at lags 0 and +1 day at both locations,
while (WS_alti, MWP_model) only showed significant correlations at 40◦S, with a negative
(rather than positive) correlation at lag 0 and a positive correlation at lag +1 day.

The presence of significant correlations at lags 0 and +1 day is confirmed at the global
scale for all three combinations as summarized in Table 2, where the percentages of locations
exhibiting significant (positive or negative) correlations at lags −2 days, −1 day, 0 day,
+1 day, and +2 days are provided for all three combinations. Large percentages (>72%)
of significant correlations at lag 0 and moderate percentages (between ~36% and 46%) at
lag +1 day are found for the three combinations. The other three time delays presented in
Table 2 (namely, −2 days, −1 day, and +2 days) are associated with low (<10%) percentages.
In a nutshell, WS can be seen as a short-term (up to +1 day) predictor of both SWH and
MWP, while SWH is a short-term (up to +1 day) predictor of MWP. Again, note that the
predictive character of SWH on MWP does not necessarily imply causality; it is likely that
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SWH and MWP present correlations due to a third-party influencing variable rather than
through a direct causal relationship.
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Figure 7. Cross-correlation functions (with the associated 95% confidence intervals as dotted lines) of
the three considered SSB input-related parameters combinations at the (a) 40◦S and (b) 20◦N locations
from SWOT nadir pass 28, as shown in Figure 2a. For each of the three (X1, X2) combinations, the
correlations associated with positive time delays inform on whether X1 is a predictor of X2, whereas
the correlations at negative lags indicate whether X2 is a predictor of X1.

Table 2. Percentages of locations associated with significant correlations (i.e., falling outside the 95%
confidence interval) for the three considered SSB input-related parameters combinations at lags of
−2 days, −1 day, 0 day, +1 day, and +2 days. Percentages above 10% are highlighted in bold.

−2 Days −1 Day 0 Day +1 Day +2 Days

(WS_alti, SWH_alti) 3.4% 8.2% 88.1% 36.5% 5.4%

(SWH_alti, MWP_model) 4.6% 7.9% 89.7% 43.5% 5.1%

(WS_alti, MWP_model) 3.4% 6.8% 72.7% 45.7% 7.8%

The cross-correlation maps associated with lags 0 and +1 day for the three selected
combinations are presented in Figure 8. They unveil, for each considered time delay and
combination, the geographical variations in the cross-correlation values. For clarity reasons,
the non-significant correlations (excluded by means of the 95% confidence interval) were
removed from all maps, leaving an empty [−0.2, 0.2] range. Overall, the maps associated
with lag 0 (Figure 8a–c) present a vast majority of significant correlations (>72% according
to Table 2), hence, do not exhibit large gaps (“missing” points) in correlation values. The 0-
lag correlations are also mostly positive for (WS_alti, SWH_alti) (Figure 8a) and (SWH_alti,
MWP_model) (Figure 8b), and mostly negative for (WS_alti, MWP_model) (Figure 8c), and
they all exhibit a clear latitudinal dependency.

For (WS_alti, SWH_alti) combination (Figure 8a), the highest correlation values (from
0.5 to 0.75) are observed in wind-sea areas like the Westerlies. In such regions, SWH is
mainly composed of wind-wave height, which itself directly depends on wind strength
and duration. As a result, SWH variability is directly governed by variations in the local
atmospheric conditions. In contrast, moderate correlations (from 0.2 to 0.5) are found
in swell-dominated tropical areas, where the local WS and total SWH variations are less
coupled.
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Table 2 at time delays equal to (a–c) 0 day and (d–f) +1 day. Non-significant correlations (i.e., falling
within the 95% confidence interval) were removed from all maps, leaving an empty [−0.2, 0.2] range.

Regarding (SWH_alti, MWP_model) combination (Figure 8b), features similar to the
ones associated with the 0-lag (WS_alti, SWH_alti) map are observed; the highest correlation
values (from 0.5 to 0.75) occur at mid-latitudes as well as along relatively long segments
equatorward, while moderate correlations (from 0.2 to 0.5) are found in swell-dominated
areas. Increases in SWH values are, therefore, associated with simultaneous increases in
the MWP values, especially in wind-sea-dominated regions. The relationship connecting
SWH and MWP is not straightforward as they are spectral parameters influenced by swell
and wind-sea contributions. A fixed wave height can be associated with a wide range of
periods. This is evident from scatter diagrams presented by Haselsteiner et al. [108] in
their attempt to construct contours on joint distributions. More precisely, Haselsteiner et al.
showed that for a SWH value equal to 1 m, the wave period varies from roughly 2 s to
13 s, while for a 4 m-high wave it ranges from 6 s to 11 s. Still, the results shown here are
in good agreement with the statistical modelling presented in [108], which shows that an
increasing wave steepness (i.e., height/wavelength) is associated with joint increases in
SWH and MWP values.

As for (WS_alti, MWP_model) combination (Figure 8c), its associated 0-lag map
differs from the maps of the two previous combinations; large negative cross-correlation
values are found in tropical regions, while weaker negative correlations and/or non-
significant correlations (“missing” points) are observed at mid-latitudes. Finally, a minority
of regions exhibit positive (WS, MWP) correlations. These are mostly closed seas regions
including the Mediterranean, North, Baltic, Black and Caspian Seas and the Persian Gulf
in Europe and Asia, the Caribbean Sea in America and the Arafura Sea in Oceania. The
dominance of negative correlations is, at first sight, in apparent contradiction with the
other two 0-lag maps; how can MWP be negatively correlated with WS and positively
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correlated with SWH, while SWH is itself positively correlated with WS? In fact, the
regions that exhibit the highest positive (WS, SWH) correlations (such as the high latitude
regions in red in Figure 8a) are associated with non-significant or positive (WS, MWP)
correlations (high latitude regions lacking points or in yellow/green in Figure 8c). Overall,
the relationship between WS and MWP depends on a complex spectral distribution of
wave components. In regions of intense wave growth such as the mid-latitudes, the wave
spectrum depends on a variety of waves, from ripples to swells. These waves evolve rapidly
through the continuous transfer of energy from wind to surface waves and nonlinear wave-
to-wave interactions, as well as other transformative processes such as white capping
and wave dispersion (related to swell propagation to other regions). The associated rapid
evolution of the wave spectrum (and, therefore, of MWP estimates) is difficult to relate to
a WS change as the latter sets off a cascading process. Different attempts to statistically
describe (WS, MWP) relationship in regions of intense wave growth have been published
in the literature [109,110]. Regarding now swell-dominated regions, the high (WS, MWP)
observed correlation values are indicative of a simpler relationship, where increasing winds
are almost systematically followed by an “immediate” decrease in MWP. In such regions,
wind-sea and swell contributions to the wave spectrum are more distinctly separated; wave
spectra typically display bi-modal features where an intense low-frequency primary peak
is associated with swell components while a moderate high-frequency secondary peak is
related to wind waves. As wind speed increases, a transfer of energy from the atmosphere
to the high-frequency part of the spectrum occurs. This energy transfer is associated with
capillary wave generation and wave-to-wave interactions, which result in the formation
of a larger family of gravity-capillary waves, inducing a shift of the average wave energy
toward higher frequencies, thus a decrease of MWP. Note that T02 definition (used for
MWP in the present study) is more dependent on the high-frequency components than
other wave period definitions [111–113], resulting (in swell-dominated areas) in a clear
(WS, MWP) relationship, as follows: increasing WS values are associated with decreasing
MWP estimates.

Now turning to the +1 day-lag maps (Figure 8d–f), the ones associated with the first
two combinations (Figure 8d,e) show weaker significant positive correlations (around 0.25)
compared with their corresponding 0-lag maps, especially in the mid-latitudes. Regarding
(WS, SWH) combination (Figure 8d), the observed correlations are again attributed to
atmospheric forcing; although the +1 day-delayed response of waves is less widespread and
less intense than the immediate (0 day) response, increased wind speeds on a specific day
tend to result in higher waves on the day after. (WS, SWH) correlation gaps (associated with
non-significant correlations) are preferentially observed around the Equator, where calm
winds lead to very weak atmospheric forcing. Overall, SWH variability is predominantly
influenced by swell variability rather than wind variability. As for the third (WS_alti,
MWP_model) combination (Figure 8f), the +1 day-lag map mostly presents significant
correlations of opposite sign (i.e., positive) compared with the 0-lag map. These are also
limited to the mid-latitudes. The change in sign from the 0 day-lag to the +1 day-lag map is
indicative of the overall unobvious relationship between WS and MWP.

In summary, the analysis of the temporal cross-correlations among the SSB descrip-
tors follows known metocean relationships [114–116]. The present study, which relies
on newly available altimetry and model-based data, is largely consistent with previous
analyses, which were essentially model-based [83,91,108,117,118] or derived from buoys
measurements [119,120].

3.4. Cross-Correlations Between SLA and SSB Descriptors

The last aspect covered in the present paper is an analysis of the cross-correlations
between SLA and SSB descriptors. For this particular study, the selected SLA time series
are restricted to SLA_uncorr and SLA_corr2D, as the latter is the standard version provided
to altimetry users. The following six cross-correlations combinations were examined:
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(SWH_alti, SLA_uncorr), (WS_alti, SLA_uncorr), (MWP_model, SLA_uncorr), (SWH_alti,
SLA_corr2D), (WS_alti, SLA_corr2D), and (MWP_model, SLA_corr2D).

Table 3 presents, for each combination, the percentage of significant cross-correlations
at lags −2 days, −1 day, 0 day, +1 day, and +2 days, while Figure 9 displays the cross-
correlation maps at 0-lag associated with the different combinations. Again, non-significant
correlations (excluded by means of the 95% confidence interval) were removed from all
maps, leaving an empty [−0.2, 0.2] range. As expected, for all considered combinations, the
highest percentages of significant correlations are found at lag 0, meaning that the correla-
tions between SLA and SSB descriptors are mostly immediate. The significant correlations
observed at other lags (close to lag 0) are ascribed to inertia in the coupled atmosphere–
ocean system. The largest percentage of significant cross-correlation values at lag 0 is
observed for (SWH_alti, SLA_uncorr) combination (98.4% in Table 3) and is associated
with the average largest absolute cross-correlation value (see the histogram in Figure 9a),
both elements confirming that SWH is the main driver of the SSB. SWH is followed by
WS and then MWP as the SSB descriptors, since the latter two exhibit increasingly smaller
percentages of correlations (82.5% and 32.8% in Table 3) and increasingly smaller average
absolute cross-correlation values (see the histograms in Figure 9b,c). Unsurprisingly, the
cross-correlations are negative for (SWH_alti, SLA_uncorr) combination, which is related
to the negative value of the SSB correction.

Table 3. Percentages of locations associated with significant correlations (i.e., falling outside the 95%
confidence interval) for the six considered (SSB input-related parameter, SLA) combinations at lags
−2 days, −1 day, 0 day, +1 day, and +2 days. Percentages above 10% are highlighted in bold.

−2 Days −1 Day 0 Day +1 Day +2 Days

(SWH_alti, SLA_uncorr) 6.2% 9.9% 98.4% 7.6% 6.2%

(SWH_alti, SLA_corr2D) 6.1% 10.9% 31.8% 10.7% 7.9%

(WS_alti, SLA_uncorr) 6.0% 11.6% 82.5% 23.1% 8.0%

(WS_alti, SLA_corr2D) 5.9% 7.3% 23.4% 10.2% 7.4%

(MWP_model, SLA_uncorr) 4.9% 22.6% 32.8% 12.0% 6.1%

(MWP_model, SLA_corr2D) 5.4% 10.2% 22.0% 8.5% 6.7%

As expected, adjusting SLA measurements using the 2D SSB correction model results
in drops in both (i) the fraction of locations associated with significant cross-correlations
(Table 2: from 98.4% to 31.8% for (SWH, SLA); 82.5% to 23.4% for (WS, SLA); and 32.8% to
22.0% for (MWP, SLA)) and (ii) the absolute average cross-correlation values (Figure 9a,d,
Figure 9b,e, and Figure 9c,f: from −0.56 to −0.23 for (SWH, SLA); −0.40 to −0.12 for (WS,
SLA); and −0.24 to 0.11 for (MWP, SLA), respectively). These drops indicate that the SSB
correction successfully removes or weakens most of the existing correlations between SLA
and SSB descriptors. Note that despite the MWP not being explicitly included in the 2D
SSB correction, this correction still removes or weakens part of the existing correlations
between SLA and MWP. This finding is likely attributed to the co-variability of the three
SSB descriptors reported in Section 3.3: correcting SLA using SWH and WS indirectly
corrects SLA for some of the MWP-related bias. For a proper evaluation of the ability of
an SSB model to remove (MWP, SLA) correlations, SLA_corr3D (rather than SLA_corr2D)
should be exploited. Finally, even after correcting SLA with the 2D SSB correction, a
small dependency on the latitude remains (Figure 9), with larger cross-correlation values
observed at the mid- and high-latitudes. The weaker yet persisting latitude-dependent
correlations between sla_corr2D and the three SSB descriptors indicate that the applied SSB
correction is perfectible. Deriving an SSB solution directly from SWOT nadir data is likely
to improve the results presented here.
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Overall, the results in the present section demonstrate that computing the cross-
correlations between SLA and SSB descriptors can serve as an additional tool for evaluating
(i) the relevance of potential SSB descriptor candidates and (ii) the performances of SSB
corrections. Note that the relevance of a particular SSB descriptor candidate not only
depends on its intrinsic capability to retain/describe SSB-related features but also on
whether said candidate is correlated with the other prospective SSB descriptors and, hence,
whether it provides redundant or new information.

4. Conclusions and Implications for SSB Modelling

SWOT 1-day fast-sampling phase data was exploited to evaluate assumptions currently
used in SSB modelling. It was demonstrated that (i) ε can, indeed, as it is currently assumed,
be considered as a zero-mean error term, and (ii) the DT associated with the three standard
SSB descriptors (SWH, WS, and MWP) typically range from 1 to 4 days, with significant
regional variations. The latter finding suggests that the formation of SSB databases through
optimally time-differenced data points should be revisited whenever possible to ensure
(as it is currently assumed) that the selected time-differenced data points originate from
independent sea states. At the moment, the satellite-based observations feeding SSB
models are typically separated by less than 10 days, but no lower limit on the selected time
differencing intervals is applied. Provided that the orbit’s repeat cycle of the mission at hand
allows for it, future SSB models should rely on truly independent sea state observations, i.e.,
data points separated by, for instance, a minimum of 4 days. It could also be envisaged that
SSB databases include time-differenced data points associated with regionally varying time
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intervals; larger time intervals could be required in regions associated with more persistent
features, and lower ones in regions exhibiting lower DTs.

The geographical distributions of the DT of SWH, WS, and MWP are also consis-
tent with the general knowledge on global wind/wave circulation patterns. In short,
high-latitude, rough wind/wave areas are associated with lower DT and, thus, less per-
sistent features, because they are wind-coupled regions subject to strong and variable
winds. In contrast, sea-state conditions in regions of weak/moderate wind fields are swell-
dominated/low-SWH areas and depend more on swell variability. As a result, they exhibit
longer-lasting features due to the oceanic system’s inertia and higher DT dispersion ranges.

The SLA variance reductions found using differences in SLA adjusted using various
SSB models, namely, 1D, 2D, and 3D corrections, are shown to increase steadily over the
first five days and then reach a first plateau between ~5 and 15 days. Although a meticulous
interpretation of the distinct behaviors observed before versus after 5 days is beyond the
scope of the present study, such behaviors could tentatively be related to autocorrelations
and/or cross-correlations among SSB descriptors. The present study showed that they are
associated with decorrelation time scales on the order of a few days.

As expected, current SSB models rely on SSB descriptors that are often highly cor-
related with each other. The present study provides a precise quantification of these
correlations and shows that the associated time scales are below or on the order of 1 day.
Many of the observed correlations among SSB descriptors were attributed to atmospheric
forcing with distinct behaviors occurring in swell and wind-sea-dominated areas. WS was
found to be a short-term (up to +1 day) predictor of both SWH and MWP, while SWH ap-
pears to be a short-term (up to +1 day) predictor of MWP. Note that the predictive character
of SWH over MWP does not necessarily imply that the two parameters are related through
a direct causal relationship. Instead, it is likely that they present correlations because of
their respective correlations with WS and other explanatory variables.

The correlations among SSB descriptors, although expected, were never precisely
quantified before. Strong linear correlation between input model descriptors is commonly
referred to as multicollinearity. Known issues related to multicollinearity can be generalized
to predictive variables exhibiting nonlinear correlations (as it is the case for SSB descriptors),
and include the development of models characterized by:

- Unnecessary complexity involving “excess” predictive variables;
- Bias and unreliability due to the redundancy of information comprised in the training

dataset, which leads to overfitting;
- Instability when correlations among the predictive variables are period-dependent,

since the developed models are then particularly sensitive to the considered dataset
period.

Multicollinearity and impacts on SSB modelling can be investigated in future works to
assess whether these issues affect SSB models. To overcome these potential issues, several
methods could be envisaged, among which:

- Principal component analysis (PCA), which reduces the dimensionality associated
with predictive variables by transforming the initial set of predictive variables into a
new set of variables made of linear combinations of the original ones;

- Variable inflation factors, which evaluate the level of multicollinearity in a set of
predictive variables, helping to select those that are the least correlated with each
other;

- Regularization techniques, such as Lasso and Ridge regularizations, which rely on
the addition of a penalty term to encourage the simplicity of the models, preventing
overfitting;

- Classification approaches based on a partitioning of the sea-state conditions. Such ap-
proaches would allow for regionalizing the choices of SSB descriptors, thus producing
class-specific SSB models, as tentatively conducted in [121,122].
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The latest innovations in altimetry instruments and concepts, including delay-Doppler
(SAR) altimetry and wide-swath interferometry (as SWOT KaRIn instrument), which both
rely on synthetic Doppler aperture, have sparked a renewed interest in precise descriptions
of the SSB, with the intention to further reduce its impact on mission error budgets. Syn-
thetic Doppler aperture radars benefit from the satellite movement to create a synthetic
antenna; they are, thus, affected by any surface movement, in addition to the other “clas-
sical” effects associated with conventional altimetry. As an example, SAR altimeter SSH
and SWH estimates are affected by orbital wave velocities (induced by all sea-state con-
ditions, not only swells) [123–130]. In addition, the finer along-track resolution provided
by SAR altimetry (compared with conventional altimetry) introduces a high sensitivity to
swell period and direction [131–133]. Methods specifically designed to correct altimetry
measurements for these new effects are under active development [130,134–137]. Overall,
the number of metocean variables required to extensively describe the processes at hand
increases, resulting in the necessity to include a greater number of SSB descriptive variables.
The push to consider and include new metocean variables to provide a finer description of
the SSB makes the cross-correlations subject a particularly pressing one. We suggest that
future works could focus on precisely assessing the impacts of multicollinearity on SSB
modelling.

Finally, it was shown that computing the cross-correlations between SLA and SSB
descriptors could serve as an additional tool for evaluating (i) the relevance of potential
SSB descriptor candidates and (ii) the performances of SSB corrections. The former aspect
can be assessed by computing the percentage of locations associated with significant (SSB
descriptor candidate, SLA) correlations and the magnitude of said correlations, while the
latter relies on the comparison of (SSB descriptor candidate, SLA) correlations before and
after SLA is corrected for SSB (provided that the SSB model involves the SSB descriptor
candidate). Note that the relevance of a particular SSB descriptor candidate also depends,
as previously indicated, on whether said candidate provides redundant or new information,
i.e., whether it is correlated with the other respective SSB descriptors. Finally, note that
since the correlations between SLA and SSB descriptors are roughly limited to 0-day lags, it
is reasonable to consider, as it is currently done, that SSB modelling does not require input
from preceding days to provide an accurate description of the SSB.

We wish to stress that the unique nature of the SWOT 1-day repeat orbit dataset
allowed for the exploration of new aspects related to the SSB. This dataset may be revisited
or further exploited in the future to better inform the SSB or other related topics. Note that
the 3.5-month observation period may not be long enough to confidently generalize all of
the study’s results. Consequently, future 1-day repeat orbits—if any—would surely be of
paramount interest to the SSB community. In the present case, the study’s DT results could
not have been obtained based on 10-day (or more) repeat orbit datasets, as such orbits do
not provide adequate temporal sampling to resolve average DT levels ranging from 1 to
4 days. For similar reasons, the time scales associated with cross-correlations (~few days)
among SSB descriptors, on the one hand, and between SLA and SSB descriptors, on the
other hand, could not have been resolved using 10-day (or more) repeat orbit datasets. Still,
as the most widespread and most intense cross-correlations were shown to be “immediate”
(i.e., occurring at 0-day lags), future works based on 10-day (or more) repeat orbit datasets
could focus on computing the 0-day cross-correlations and would still provide useful
information regarding both (i) the relevance of potential SSB descriptor candidates and
(ii) the performances of SSB corrections.
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Appendix A

To support the choice of using L2 estimates in the present study as estimates of the DT,
a proper comparison of the L0, Lhalf, L1, and L2 definitions (introduced in Section 2.4) was
conducted. We remind the reader that L0 (resp., Lhal f ) assigned the DT to the time delay
associated with the first ACF zero-crossing (resp., the first ACF 0.5 crossing), while L1 and
L2 are defined as the discrete integrals of the ACF and squared ACF, respectively. More
precisely, the L1 integral is here (as it is usually done) computed between 0 and L0, while
L2 is computed up to the largest (final) ACF time delay value.

First, the L0, Lhal f , L1, and L2 definitions lead to analogous results whether the
altimeter- or the model-based parameters are used (namely, SWH_alti versus SWH_model;
and WS_alti versus WS_model). Figure A1 shows a comparison of the “matching” between
the DT of the SWH computed with the altimeter-based (SWH_alti) and the model-based
(SWH_model) time series for the L0 (Figure A1a), Lhalf (Figure A1b), L1 (Figure A1c), and
L2 (Figure A1d) definitions. The SWOT altimeter- and ERA5 model-based parameters were
previously shown to provide very close values [138], hence—as expected—comparing DTs
obtained with the altimeter- and model-based parameters provide high Pearson correlation
coefficients; all four definitions are associated with coefficients above 0.86, indicated as
“Corr(x,y)” at the top of each of the four plots. The best altimeter versus model match
is found using the L1 and L2 definitions, both exhibiting a linear correlation coefficient
equal to 0.94. Very similar results were obtained for WS_alti versus WS_model: the Pearson
correlation coefficients amount to 0.83 for L0; 0.92 for Lhalf; 0.91 for L1; and 0.93 for L2. As
a result, so far, L2 appears to be the best-suited definition for computing DT (the altime-
ter/model match obtained with L2 is equal or superior to those found with the other three
definitions).

Now turning to the global maps of the DTs, those associated with SWH_alti computed
using the four considered DT definitions are presented in Figure A2. They show roughly
similar geographical patterns (the color scales of the four maps were adjusted to find
the best match). The greatest correspondence in terms of both geographical distributions
and value ranges is found between the L1 (Figure A2c) and L2 (Figure A2d) maps, with
values ranging (on average) from 1 to 4-5 days. Unsurprisingly, the L0 (Figure A2a) and
Lhal f (Figure A2b) maps are associated with, respectively, larger (~1–15 days) and smaller
(~1–2 days) values, since the first ACF half-crossing (Lhal f ) always precedes the first ACF
zero-crossing (L0).

http://www.aviso.altimetry.fr
http://www.aviso.altimetry.fr
https://doi.org/10.24400/527896/A01-2023.019
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the top left corner) and the bisector in blue.

Regarding the distribution of the DTs on their respective ranges (illustrated in Figure A2
by histograms below each map), L1 (Figure A2c) and L2 (Figure A2d) are, again, the closest
match, with a roughly bell-shaped distribution centered at around ~1.8 day. The observed
undulations on the L0 histogram (Figure A2a) are attributed to the non-monotonous
behavior of the ACF around the zero-crossing axis, which results in the first zero-crossing
L0 discretized values. As for Lhal f , its histogram (bottom of Figure A2b) presents a step-like
feature at around 1 day, which is absent from both the L1 and L2 histograms (Figure A2c,d).
The absence of discretization and abrupt changes in the L1 and L2 histograms is attributed
to the stability of the L1 and L2 definitions, which, contrary to L0 and Lhal f , do not rely on
a single point of the ACF, but rather an integral. These results suggest that the L1 and L2
definitions should be the preferred choices when computing DTs. Similar conclusions were
drawn when analyzing the DTs of the other SSB input-related parameters considered in the
present study.

Overall, L2 appears to be the best-suited definition for computing the DT. The altime-
ter/model matching obtained with L2 is equal or superior to those found with the other
DT definitions, and the stability of the L2 definition prevents any discretization or abrupt
changes in its distribution. As a result, only L2 DTs are presented in the main text of the
present study.
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Appendix B

As mentioned in Section 3.2, one can display global maps of the ACFs at specific time
delays rather than plot the ACFs as a function of the time delay at a few specific locations,
the former type of figure offering a more global view of the ACF structure. Figure A3
provides such maps for WS_alti at +1 day (Figure A3a), +2 days (Figure A3b), and +3 days
(Figure A3c). These maps are very consistent with those published by Monahan [80],
derived from scatterometry SeaWinds data (see Figure 1, right panel, in [80]). The regions
associated with high autocorrelation values (close to 1) after 3 days are associated with long
DTs. As mentioned in the main text, the high DT values observed in the Arabian Sea are as-
cribed to the unique two-season weather pattern characteristics of the southwest monsoon,
which leads to steady southwesterly wind speeds during our observation window [92–94].
Note that, similar to the present study, Monahan assumed stationarity for the surface vector
winds. He also mentioned that the wind speed ACF maps are, for the most part, seasonally
invariant, suggesting that it is reasonable, at least regarding WS, to generalize the results
obtained in the present study (based on a 3.5-month window) for all seasons.
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