
Citation: Harmon, I.; Weinstein, B.;

Bohlman, S.; White, E.; Wang, D.Z. A

Neuro-Symbolic Framework for Tree

Crown Delineation and Tree Species

Classification. Remote Sens. 2024, 16,

4365. https://doi.org/10.3390/

rs16234365

Academic Editor: Ran Meng

Received: 30 September 2024

Revised: 16 November 2024

Accepted: 19 November 2024

Published: 22 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

A Neuro-Symbolic Framework for Tree Crown Delineation and
Tree Species Classification
Ira Harmon 1,* , Ben Weinstein 2, Stephanie Bohlman 3, Ethan White 2 and Daisy Zhe Wang 1

1 Department of Computer, Information Science and Engineering, University of Florida,
Gainesville, FL 32611, USA; daisyw@cise.ufl.edu

2 Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA;
ben.weinstein@weecology.org (B.W.); ethanwhite@ufl.edu (E.W.)

3 School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32611, USA;
sbohlman@ufl.edu

* Correspondence: iharmon1@ufl.edu

Abstract: Neuro-symbolic models combine deep learning and symbolic reasoning to produce better-
performing hybrids. Not only do neuro-symbolic models perform better, but they also deal better
with data scarcity, enable the direct incorporation of high-level domain knowledge, and are more
explainable. However, these benefits come at the cost of increased complexity, which may deter the
uninitiated from using these models. In this work, we present a framework to simplify the creation
of neuro-symbolic models for tree crown delineation and tree species classification via the use of
object-oriented programming and hyperparameter tuning algorithms. We show that models created
using our framework outperform their non-neuro-symbolic counterparts by as much as two F1
points for crown delineation and three F1 points for species classification. Furthermore, our use of
hyperparameter tuning algorithms allows users to experiment with multiple formulations of domain
knowledge without the burden of manual tuning.

Keywords: remote sensing; tree crown delineation; tree species classification; machine learning;
neuro-symbolics

1. Introduction

Remote sensing is central to conducting efficient forest inventories on large spatial
scales [1,2]. Making use of the large volumes of data produced by remote sensing requires
automated tools. The fundamental tasks of processing remotely sensed data aim to answer
two questions: Where are the trees, and what kinds of trees are they? These questions are
addressed by crown detection (or delineation) and species classification tasks. While some
forest parameters, such as leaf chemistry [3,4], can be estimated without identifying tree
species, knowing the species identity of trees allows for improved estimates of size and
carbon-related measurements as well as the ability to conduct biodiversity-based research
and conservation [5,6].

Remote sensing-based tree crown delineation and species classification are inherently
difficult problems. Crown boundaries can be hard to determine due to irregularly shaped
crowns and overlapping adjacent crowns, especially in dense forests [7]. Depending on
the resolution of the image, pixels that comprise the boundaries of trees may receive light
from one or more tree canopies as well as light from nearby objects, understory vegeta-
tion, or the ground [8]. Mixed pixels also make species classification more challenging [9].
Species classification is also complicated by variations in crown traits, like leaf chemistry or
crown leaf density, and their responses to environmental factors like soil nutrient or water
availability [10–12].

Species may also have high spectral similarity to other species, for example from
closely related species with similar shapes and crown densities [13,14]. The difficulty in
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separating species increases with the number of species in a forest. Generally, species
classification accuracy tends to be inversely related to the number of species considered
for classification [15,16]. Atmospheric contributions to the image, viewing geometry, and
shadows make both delineation and species classification more challenging [17–19].

Machine learning algorithms such as deep learning models are the state of the art in
automated forest inventory methods for both crown detection/delineation and species
classification [20–22]. Deep learning models are statistical models with potentially billions
of learned parameters, typically trained on labeled datasets. The performance of a deep
learning model on a task tends to improve as the number of learned parameters increases,
but the size of the dataset required for the model to be performant grows superlinearly
with the number of model parameters [23,24].

Convolutional neural networks (CNNs) are some of the most commonly used models
for image-based crown delineation and species classification [25]. These models typically
contain on the order of millions of parameters and require large datasets for training,
usually ranging from thousands to millions of images [23,26]. Amassing and labeling large
datasets is typically one of the highest hurdles to creating a useful model [24].

Another frequently cited drawback of deep learning models is their lack of explain-
ability [27,28]. These models are considered black boxes, where the reasoning behind their
inferences cannot be easily determined by the user. In many instances, explainability is not
required for the model to be useful, but there are situations where understanding the “why”
of a model’s predictions is important, particularly for critical decisions and to gain insight
into the problem being researched.

Symbolic models are models that represent real-world characteristics as variables linked
by a series of operations. Common examples of symbolic models include logical formalism,
such as propositional logic, first-order logic (FOL), and mathematical equations. Contrary to
deep learning models, it is easy for a human to understand the reasons behind these models’
predictions; however, these models do not typically generalize well. Moreover, it is easy
for humans to represent expert knowledge using logic formalisms, ensuring that the model
captures high-level concepts.

Neuro-symbolic models are deep learning model-symbolic model hybrids that are
more robust than either model on its own [29,30]. Neuro-symbolic models have been shown
to perform well with reduced datasets, proving useful in zero-shot and few-shot learning
scenarios, and function more transparently for the user [31]. Neuro-symbolic models also
have the advantage of incorporating ecological knowledge into algorithms based purely on
image data, analogous to how a field biologist uses their ecological knowledge—such as a
habitat in which species are likely to occur—in addition to organismal features, to identify
a species. This field of machine learning has been applied to several ecological problems.
Xu et al. applied a neuro-symbolic approach to the fine-grained image classification of
birds [32]. Sumbul et al. used a neuro-symbolic model for zero-shot learning in identifying
tree species [33].

There are several mechanisms for creating neuro-symbolic models from deep learning
models. Seo et al. used a regularization technique with a method similar to ensembling [34].
Hu et al. used posterior regularization and knowledge distillation [35]. Dilligenti et al. used
a similar technique called semantic-based regularization (SBR) to create neuro-symbolic
models [36]. In this work, we focus on SBR.

Semantic-based regularization works by adding a regularization equation in the form of
a fuzzy FOL expression to the model’s loss function. Fuzzy FOL uses continuous functions
as its operators, making it differentiable. This is a necessary property for loss functions in
models trained using backpropagation and is employed by most neural models [37]. During
training, the model is penalized for predictions that fail to satisfy the FOL encoded rule.

Although neuro-symbolic models are more robust, they also have their shortcomings.
Turning domain knowledge into a rule or equation that can be incorporated into a machine
learning model can be challenging, particularly for rules written in first-order logic. Once a
rule is formulated in FOL, it must be written in a programming language, usually the same
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language used to program the neural model. Furthermore, after a rule is written, depending
on the neuro-symbolic framework, there may be many hyperparameters that need to be
tuned. Hyperparameters are model variables that are set by the user rather than learned [38].
The number of hyperparameters varies with the model used, but they usually number in
the tens. Integrating FOL statements into the model introduces additional hyperparameters
that must be tuned. Usually, each rule has its own hyperparameters. When multiple rules
are involved, they may interact in unexpected ways, increasing the complexity of tuning.
Selecting values for rule hyperparameters that work effectively is a time-consuming task.

In this paper, we introduce an SBR-based neuro-symbolic framework paired with
hyperparameter tuning algorithms as one solution to alleviating some of the difficulties in
creating neuro-symbolic models. Our object-oriented approach provides rule templates
that enable users to quickly model rules in FOL using the inheritance paradigm of object-
oriented programming. Our framework includes three hyperparameter tuning algorithms—
random search, grid search, and Bayesian optimization—to ease the burden of finding
optimum rule parameters [39].

Throughout the remainder of this paper, we describe the architecture of our framework
and illustrate its use in two ecologically relevant scenarios: crown delineation and species
classification. For the crown delineation model, we use DeepForest, a popular individual
tree crown delineation model based on RetinaNet [40]. DeepForest is designed to detect
tree crowns in remote sensing RGB images. To demonstrate a species classification use
case, we use a model from reference [41], which is a well-cited paper by Fricker et al. The
Fricker model can process both RGB and hyperspectral remote sensing data, but in this
paper, we focus on RGB. We use data from the National Ecological Observatory Network
to train each model [42]. For the crown delineation model, we use data from Niwot Ridge,
an alpine forest in Colorado [43]. For the species classification model, we use data from the
Tea Kettle Experimental Forest, TEAK, a mixed-conifer forest in California [44]. Although
we use these models and data to demonstrate the use of our framework, the framework is
model-agnostic and can be applied to any neural model that can be written in Python.

2. Framework Architecture

Our framework was written in Python version 3.11.6 primarily using PyTorch 2.0.1
and PyTorch Lightning 2.1.0 [45,46]. Meta’s Bayesian optimization package Ax version 0.3.4
was used for Bayesian optimization [47]. We created our models using PyTorch Lightning,
whose predefined classes are easily extendable to any neural model. The code for our
framework is available for download on GitHub at https://github.com/ihmn02/forest_
ecology_neuro_symbolic_framework (accessed on 18 November 2024) and is released for
general use under MIT licensing. The majority of our code was written using the object-
oriented programming paradigm. The corresponding data used in each model is available
from NEON at https://www.neonscience.org/data (accessed on 30 October 2024) and can
be downloaded from Zenodo at https://zenodo.org/records/14194555 (accessed on 18
November 2024). A block diagram of the framework’s architecture is shown in Figure 1.

https://github.com/ihmn02/forest_ecology_neuro_symbolic_framework
https://github.com/ihmn02/forest_ecology_neuro_symbolic_framework
https://www.neonscience.org/data
https://zenodo.org/records/14194555
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Figure 1. Framework’s system overview.

3. User Workflow

We will touch upon the specifics of the framework as we go through an overview of
the user workflow. There are four stages to the workflow: creating rules, modifying the
original model and loss function, model tuning, and training and evaluation.

3.1. Creating Rules

First, the user must decide what rules they want to incorporate into the model. Each
rule must be converted into an FOL statement, and each statement must be converted into
an FOL object. In FOL, the simplest element of a statement is an atom. Atoms are composed
of predicates or functions and their terms. Terms are the arguments of the functions or
predicates. Predicates return only true or false, while functions can return any value within
a specified range. We will build our atoms using functions. These functions, contained
within the statements, may be networks from the deep learning model or defined by the
user. Probabilistic FOL operators such as AND, OR, NOT, and IMPLIES are used to connect
functions, forming a meaningful rule.

Probabilistic FOL operators are continuous and have a range of [0, 1] unlike normal
binary operators, which are discrete [48]. Because the operators are continuous and dif-
ferentiable, they do not break the backpropagation algorithm used to train the neural
networks [37]. See [48] for an introduction to probabilistic FOL.

Starting with natural language, most concepts can be converted into FOL. The simplest
and most common statements take the following form:

∀x P(x) ⇒ Q(x) (1)

This formula reads as follows: for all x, P of x implies Q of x, where P and Q are functions
of x. For example, suppose the user is training a species classification model on RGB and
LiDAR data from a mature forest containing two species of trees—red maples and white
pines. The user knows that in this forest, all red maples have a crown height of 40 meters
or less, so any trees taller than 40 meters must be white pines. The user can write an FOL
statement for this rule as follows:

heightGreaterThan40(x) ⇒ whitePine(x) (2)

where x is an RGB instance from the dataset with its corresponding CHM. heightGreaterThan40
and whitePine are functions, in this case, neural networks that predict a real number be-
tween 0 and 1 for a given instance from the dataset. A tree much taller than 40 m would
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produce a prediction near 1 and a tree less than 40 m would produce a prediction closer
to 0. If the instance is white pine, the function whitePine should predict a value close to 1,
otherwise, it should predict a value close to 0.

Atoms can be linked by operators. In probabilistic FOL, there are several implemen-
tations of operators, but in all cases, the operators are implemented as functions. In this
work, we use the Łukasiewicz t-norm version of the operators given in Table 1 [49].

Table 1. Łukasiewicz operators and their implementation.

Operation Symbol Implementation
(Łukasiewicz t-Norm)

AND x ∧ y max(0, x + y − 1)
OR x ∨ y min(1, x + y)
NOT ¬ x 1 − x
IMPLIES x ⇒ y min(1, 1 − x + y)

The truthfulness of an FOL expression is then calculated by substituting the output
from each function into the FOL operator and then evaluating the expression. The process
of assigning values to the terms of an FOL expression is called grounding. A true expression
will evaluate to 1 and a false expression to 0. An expression can have any value between 0
and 1. Using the Łukasiewicz t-norm, the example rule is evaluated as follows:

min(1, 1 − heightGreaterThan40(x) + whitePine(x)). (3)

Each rule is assigned a real number λ ∈ [0, ∞) that represents the importance of
the rule.

Our framework provides templates for basic FOL expressions. These templates are
classes that the user can modify to fit their needs using inheritance. There are templates
for rules of the following forms: ∀x P(x) ⇒ Q(x), ∀x P(x) ⇒ ¬Q(x), ∀x P(x) ⇒
Q1(x) ∨ Q2(x) ∨ . . . ∨ QN(x), ∀x P1(x) ∨ P2(x) ∨ . . . ∨ PN(x), ∀x ¬P(x) ⇒ Q(x), and
∀x P(x) ⇐⇒ Q(x). The rule classes have methods for each FOL operation and an eval
method to evaluate the rule. The atoms of the expression are the arguments of the eval
method. The rule objects include a generic_interface method to simplify linking the model
and the rule object. In the generic interface, the user should create variables that map the
predictions from the model to named variables in the rule object. Table 2 lists the name of
each class and its expression. Classes for new expressions can be added using inheritance.

Table 2. Predefined expression classes and their corresponding FOL.

Class Name FOL

Rule_p_imp_q ∀x P(x) ⇒ Q(x)
Rule_p_imp_not_q ∀x P(x) ⇒ ¬ Q(x)
Rule_p_imp_disj_q ∀x P(x) ⇒ Q1(x) ∨ Q2(x) ∨ . . . ∨ QN(x)
Rule_disj_p ∀x P1(x) ∨ P2(x) ∨ . . . ∨ PN(x)
Rule_not_p_imp_q ∀x ¬ P(x) ⇒ Q(x)
Rule_p_iff_q ∀x P(x) ⇐⇒ Q(x)

3.2. Modifying the Original Model and Loss Function

Assuming that the user has an existing deep learning model that they want to make
neuro-symbolic, the next step involves model modification. Continuing with the example
from Step 1, let us assume we have a classifier capable of identifying tree species from RGB
images as our original model. We will call the RGB image xi and its corresponding label yi.

There are many ways to create neuro-symbolic models from vanilla deep neural net-
works; one of the most straightforward is semantic-based regularization. That is the method
we use in this paper. As the name implies, SBR adds rules written as statements of FOL to
the model’s loss function. See [36,50,51] for a more comprehensive discussion of SBR.
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Functions that make up the atoms of an FOL expression must be added to the model.
These functions can be learned or user-defined [36]. In this work, we use user-defined
functions but learned functions can be readily used with our framework. Each new network
is designed to perform a specific task such as identifying trees that have a crown height of
greater than 40 m. The addition of the learned functions effectively turns the model into a
multi-task learning deep neural network. Figure 2 shows a diagram of a modified model
and the training process. In the diagram, functions f (x) are added to the original network,
and their predictions are used in the FOL expressions. The user can arbitrarily add many
functions. In the case of our toy example, the dataset would need to be augmented with the
CHM model aligned with the RGB images. This can be done by appending a CHM raster
of the same width and height to the RGB image as an additional layer.

Figure 2. Model modifications needed to create a neuro-symbolic model.

How new networks are added to the model depends on model implementation. In the
code provided, we use the PyTorch Lightning LightningModule class as the backbone of
each model. Then, new networks are added using PyTorch’s nn.Module class. A description
of its use can be found in [52]. There are no restrictions on the architecture of the additional
networks. However, the output of the final layer must be a real number between 0 and 1 or
must be able to be decomposed into a real number between 0 and 1 if the output has more
than one dimension.

New loss terms must be added to the original model’s loss function. Loss terms must
be added for the new networks. A loss term must also be added to complete the SBR
implementation. The additional term penalizes the model if it fails to make predictions
that make all rules true. We’ll use the notation from [51]. The SBR loss term takes the
following form:

H

∑
h=1

λh · (1 − Φh( f (χ))) (4)
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where H is the number of rules, λh denotes the user-assigned importance of rule Φh, Φh
denotes the average evaluation of rule h when grounded using the data in the training
batch, and f denotes the set of functions comprising the following rules:

f ={ f1, f2, . . . , fT}. (5)

For our example, rule Φ is as follows:

Φ( f (χ)) =
1
|χ| ∑

x∈χ

min(1, 1 − heightGreaterThan40(x) + whitePine(x)) (6)

and x denotes the grounding of the argument for each function for all values in a training
batch. The final loss function should have the following form:

Ls(y, ŷ) + k1

H

∑
h=1

λh · (1 − Φh( f (χ))) (7)

where Ls denotes the typical loss, which includes terms for loss from networks and regular-
ization, and the summation term is the loss incurred from the SBR rules.

3.3. Model Tuning

Hyperparameter tuning is the selection of values for the model’s non-learned parame-
ters. The values selected can have a heavy impact on the model’s predictive performance,
training time, and other performance measurements. Once the model and loss function
are updated, the hyperparameters can be tuned. The process is usually conducted on a
validation set—a set of hold-out data separate from the test and training set. To begin the
tuning process, the user must decide what variables to tune. Neural networks typically
have many hyperparameters such as the learning rate, an L2 regularization constant, and
the number of layers used in the network. Because the focus of this work involves the
creation of neuro-symbolic models, we focus on the hyperparameters that relate to the
rules, in our case λh. After a variable is selected, the user must define the upper and lower
bounds of the search space. Selecting bounds is usually done through a combination of
intuition and trial and error. Once the user decides on bounds for the search space, one or
more metrics must be chosen to gauge the model’s performance as the search parameters
are varied. Common metrics include F1, accuracy, and total loss. The user also selects an
optimization algorithm such as the Adam optimizer or plain stochastic gradient descent.
The optimizer selected will also be used during the training process. Searching through
the parameter space is an iterative process. Each iteration is known as a trial. The user
decides the number of trials to run prior to starting the hyperparameter tuning algorithm.
Our framework includes three algorithms for hyperparameter tuning, random search, grid
search, and Bayesian optimization. Random search randomly selects points within the
search space with a uniform distribution. Random search is shown to provide good results,
especially for high-dimensional search spaces, which require a great deal of time to train.
Random search provides near-optimum results with as few as 60 trials [53].

Rather than picking random points within the search space, grid search searches the
space systematically using an even spacing between search points. The granularity of the
search is determined by the number of trials.

Unlike random search and grid search, Bayesian optimization is a closed-loop search
algorithm; the results of previous trials are used to choose the next points for evaluation.
The algorithm attempts to learn which areas of the search space are likely to provide
optimum results. Bayesian optimization requires at least 50 trials or more to work well.
As the volume of the search space grows, more trials are needed to produce good results.
See [54] for a detailed explanation of Bayesian optimization.

After selecting the desired tuning parameters, the model is evaluated for the indicated
number of trials. After the last trial, a sorted list of the chosen model parameters and their
associated performance is printed in descending order and saved to a CSV file.
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3.4. Training and Evaluation

The user can manually enter the best hyperparameters found in the previous step
prior to training and testing the model on the test set.

4. Use Cases
4.1. Individual Tree Crown Delineation

We demonstrate the use of our framework for crown delineation using DeepForest, a
popular open-source crown delineation model based on RetinaNet, a CNN [40,55]. Using
our framework we will do the following:

1. Create two rules.
2. Modify the model and loss function to use SBR.
3. Find optimum values for the rule lambdas.
4. Evaluate the effectiveness of each rule.

We trained the model on data from Niwot Ridge (NIWO), an alpine forest in Colorado,
USA. Niwot is located at a latitude of 40.05425º and a longitude of −105.58237º. Its mean
annual precipitation is 1005 mm and the mean annual temperature is 0.3 °C. The site
elevation ranges from 2975 m to 2583 m. The tree canopy cover varies from continuous at
lower elevations and on south- and east-facing slopes, to open forests with isolated trees at
higher elevations. Understory coverage is limited, especially at higher elevations. The mean
canopy height is 0.2 m (all canopy height values listed here include bare ground, and the
prevalence of bare ground at Niwot Ridge is why this value is so small). The dominant tree
species are conifers, primarily lodgepole pine, subalpine fir, and Engelmann spruce [43,56].

4.1.1. Data

The data were collected in 2018 by the National Ecological Observatory Network
(NEON). NEON is a program funded by the US federal government and is tasked with
monitoring environmental health at over 80 sites across the continental United States, Alaska,
and Puerto Rico [42]. Part of their mission is to monitor forest health, carbon fluxes, and biodi-
versity changes through field surveys and remote sensing. NEON annually overflies forests
located at their sites during periods of peak greenness using their Airborne Observation
Platform (AOP) [42]. The NEON AOP is an aircraft outfitted with RGB, hyperspectral (HSI),
LiDAR, and GPS sensors. The HSI data have a resolution of 1 m and RGB imagery data have
a resolution of 0.1 m. The canopy height model (CHM) data produced by the LiDAR sensor
has a spatial resolution of 1 m2 per pixel. NEON’s hyperspectral data are atmospherically
corrected and all data are orthorectified and aligned to a uniform spatial grid.

We trained our crown delineation model using a combination of RGB and CHM
data. The original data were sourced from NEON’s L3 data products, specifically 1 km2

mosaicked tiles. We decomposed rasters larger than 500 pixels in any dimension down to
400 × 400 pixels or less rasters with 5% overlap. A map showing the geolocation of the
training and evaluation plots used is shown in Figure 3.

An example evaluation plot is shown in Figure 3 (bottom). Each evaluation plot
is 400 × 400 pixels or has an area of 1600 m2. The number of trees per evaluation plot
ranges from 5 to 292. The training plot is 2511 × 4132 pixels with an area of 103,975 m2.
The plot has 12,412 trees. See [57,58] for a detailed description of the data collection and
preparation methodology.

The dataset contains a single class—tree. We split the data into training, validation,
and test sets. The sizes of these sets are 10,757, 1655, and 1624 annotations, respectively. The
distribution of the crown area (derived from the crown delineations) and the height-crown
area allometry (the relationship between each tree’s crown area and its height, derived
from the canopy height model) are shown in Figure 4.

We will use the information contained in these graphs to craft two rules for the site.
We appended the CHM rasters as a fourth layer to the RGB images. The training data were
augmented using geometric transformations.
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Figure 3. (Top) A map of the geolocations of plots used in the training and test sets at Niwot. Red
dots indicate the locations of plots used for the test set, while the yellow dot marks the location of the
plot used for the training set. The black boundary outlines the extent of NEON’s sampling area for
the NIWO site. (bottom) Ground truth and DeepForest predicted bounding boxes for plot number 8
at NIWO after training the model with optimal rule parameters found using random search. The
ground truth bounding boxes are depicted in green, and the DeepForest predictions are in orange.
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Figure 4. The left image shows the crown area distribution of the training set at Niwot Ridge. The
dashed black line is the mean of the distribution. The right image is a plot of the height-crown area
allometry for the Niwot training set. The green line denotes the fitted log-linear height-crown function.

4.1.2. Creating Rules

DeepForest delineates crowns using rectangular bounding boxes. These bounding
boxes are sometimes larger than the crowns of the trees they detect, which may reduce the
performance of the model. We will create rules intended to reduce DeepForest’s tendency
to use oversized bounding boxes. We will use two of the rules developed in [58]. As shown
in Figure 4, the mean ITC area at Niwot is 400 pixels, which corresponds to approximately
4 m2. The distribution is right-skewed, with 60% of the crowns being smaller than the
mean. Based on this observation, we formulated the following rule: a detected object is
classified as a tree if and only if the area of its bounding box is less than 4 m2. Despite the
use of if-and-only-if, the rule is not as strict as it sounds in natural language. We can control
how strictly the rule is enforced by varying the value of the rule’s lambda. This allows
us to use a simple rule like this even though we know that there are trees with crowns
> 4 m2. We also create a second rule, similar to the first, more tightly related to how we
think about limits on crown area biologically, by using the height-crown area allometry
model shown in Figure 4. As described in [59,60], we fit a power function to map the height
to the crown area for the trees at Niwot and use the CHM to predict the crown area given
the crown height. We use the predicted crown area to create the following rule: a detected
object is a tree if and only if its bounding box area is less than or equal to the area predicted
by the crown height allometry model. We apply both rules at the same time and use the
results of our evaluation to choose the better rule. In order to implement each rule, we
create two user-defined functions. The first function quantifies how much the bounding
box area for a detected object deviates from the site mean. If a bounding box is less than
400 pixels the function’s output tends toward 1. If the bounding box of a detected object is
greater than 400 pixels, its output tends toward 0. We use the sigmoid function to ensure
differentiability and write the function as follows:

f1( f0(x)) =
1

1 + exp(−0.5 · (400 − Abbox( f0(x)))
(8)

where f0(x) is DeepForest’s predictions for x, and Abbox is a function that calculates the area
of a prediction’s bounding box. For Niwot, our fitted power function for the height-crown
area allometry is as follows:

Aitc(h) =0.32658 · h0.87992. (9)

To create our second function, we substitute the site mean area with Aitc to give
the following:
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f2( f0(x)) =
1

1 + exp(−0.5 · (Aitc(maxCHM(x))− Abbox( f0(x))))
. (10)

We use the function maxCHM to extract the maximum value of the CHM for prediction
f0(x). We rename our functions to make the FOL more intuitive. Let f0 be isTree(·). Let f1
be bboxAreaLTMean(·). Let f2 be bboxAreaLTEHCA(·). Using the functions, we can write
our rules in FOL as follows:

∀x bboxAreaLTMean(isTree(x)) ⇐⇒ isTree(x) (rule 1) (11)

and

∀x bboxAreaLTEHCA(isTree(x)) ⇐⇒ isTree(x) (rule 2). (12)

4.1.3. Model and Loss Function

DeepForest is built from RetinaNet [40]. RetinaNet is a deep CNN with a feature
pyramid network for scale invariance, a specialized loss function, and residual connections
between layers. The network has 32.1 million learned parameters [55]. RetinaNet is well-
suited for object detection. The network predictions include bounding box coordinates for
detected objects as well as the object’s class. To complete the model, we add the additional
terms to the loss function as described in Section 3.2. As in [58], we delay the application of
the rules to the latter epochs of training to give the model time to learn purely from the
dataset. We accomplish this by multiplying the rule loss by a function as follows:

π(t) =

{
1.0 − max{π0, α0.029·t}, 0.029 · t > πs

0, otherwise
(13)

where π0 and α are constants < 1, t denotes the training step number, and πs is a constant
that controls at what steps the rules are applied. The loss function then becomes as follows:

Ltot =Ls + π(t) · Lrules (14)

where Ltot denotes the summation of all the loss terms, Ls denotes the total standard loss,
and Lrule denotes the sum of the loss from all rules. This method was chosen empirically to
improve model performance [35].

4.1.4. Hyperparameter Tuning and Training

Let λ1 and λ2 be the hyperparameters associated with rules 1 and 2, respectively. We
optimized the values of λ1 and λ2 to achieve the best F1 score on the validation set. We
set the bounds for each λ to be between 0.01 and 9.0. Empirically, large values of λ tend to
degrade model performance. All model hyperparameters are shown in Table 3.

To define F1 for an object detection model, first, we define the intersection over the
union score or IoU. IoU is used as a measure of overlap between two bounding boxes.
Given bounding box A and bounding box B, an IoU of 0 represents no overlap and an IoU
of 1 represents full overlap. IoU is calculated as follows:

IoU =
Aarea ∩ Barea

Aarea ∪ Barea
. (15)

For a DeepForest prediction to be counted as a true positive (TP), the prediction must
overlap a ground truth bounding box with an IoU of ≥ 0.4. Prediction bounding boxes
that fail to meet this requirement are counted as false positives (FPs). If a ground truth
bounding box does not have a matching prediction, it is counted as a false negative (FN).
Using these definitions, we define precision as follows:

Prec =
TP

TP + FP
(16)
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and recall as follows:

Rec =
TP

TP + FN
. (17)

Then, F1 is as follows:

F1 =
2 · Prec · Rec
Prec + Rec

. (18)

We tuned the model using three search algorithms: Bayesian optimization, grid search,
and random search. We used the default settings for Bayesian optimization from the Ax
package. We allowed 64 trials for each algorithm. Since model initialization produces
variation in the results, we seeded the random number generator with 15 different seeds
and reported the average of the results. The model was tuned and trained on one node of a
high-performance computing cluster, using 16 GB of RAM, one NVIDIA A100 GPU, and
one CPU.

Table 3. Crown delineation model hyperparameters and species classification model hyperparameters
for tuning.

Parameter DeepForest (Crown Delineation)
Value

Fricker (Species Classification)
Value

Variables {λ1, λ2} {λ1, λ2}
Bounds λ1 ∈ [0.01, 9.0], λ2 ∈ [0.01, 9.0] λ1 ∈ [0.01, 20.0], λ2 ∈ [0.01, 20.0]
α 0.995 N/A
Batch size 1 32
Epochs 7 5
IoU Threshold 0.4 N/A
Search
Algorithms

Bayesian Optimization, Grid Search, Random
Search

Bayesian Optimization, Grid Search, Random
Search

L2 constant N/A 1 × 10−3

Learning Rate 1 × 10−3 1 × 10−4

Number of
Trials

64 64

Optimization
Algorithm

Stochastic Gradient Descent Adam Optimizer

π0 0.7 N/A
πs 9.88 N/A
Search Algo.
Evaluation
Metric

Validation F1 Validation F1

k1 1.0 1.0

4.1.5. Results

All three search algorithms improved the model’s performance over the non-neuro-
symbolic model. The average change in F1 score for each model in comparison to the
non-neuro-symbolic version of DeepForest is shown in Table 4. Bayesian optimization and
grid search gave nearly identical results, improving F1 by approximately two F1 points.
Random search gave the best result, improving model performance by 2.14 F1 points.

Table 4. Average change in the test F1 compared to the non-neuro-symbolic model.

Model Bayesian
∆F1

Grid
∆F1

Random
∆F1

DeepForest (crown delineation) +2.03 +2.04 +2.14
Fricker (species classification) +1.11 +0.8 +3.02



Remote Sens. 2024, 16, 4365 13 of 23

The bottom image in Figure 3 shows an example output of the model after training
using optimal rule hyperparameters found using the random search algorithm. Ground
truth bounding boxes are in green and the model’s predicted bounding boxes are in orange.

Figure 5 shows a density map of the points in the search space selected by each
search algorithm. The figure highlights the differences in the search algorithms’ strategies.
Bayesian optimization attempts to focus its search on areas of the plane that are likely to
give optimum results, as can be seen by the high point density in the region near the λ1
axis of its graph. Grid search evenly distributes its points across the plane and random
search chooses points at random, as reflected by the graph’s lack of structure.

Figure 5. Contour plots of the points selected by each algorithm for all seeds.

Despite the differences in the search strategies, the rate of improvement as a function
of trial number did not significantly vary between methods. As shown in Figure 6, after
29 trials, each method was within 0.5 points of the validation F1’s maximum range, sug-
gesting that all the search algorithms were able to find optimum parameters with as few as
29 trials.

Figure 6. The left graph displays the distribution of validation scores as a function of the number of
trials for each search method. The right graph illustrates the distribution of test F1 scores, also as a
function of the number of trials for each method. The test F1 score was determined by evaluating the
model on the test set, using the hyperparameters associated with the highest validation score at the
specified trial index. The black horizontal lines on the test F1 graph indicate the upper and lower 95%
confidence intervals for non-neuro-symbolic DeepForest. The dashed red line denotes the mean test
set F1 score of the non-neuro-symbolic model.

Figure 7 shows a plot of the validation F1 scores as a function of the rule lambdas. The
plot indicates that optimum results are achieved when λ2 is near zero. This suggests that
λ1 represents the more effective of the two rules tested.
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Figure 7. A contour plot of the validation F1 scores over the search space.

5. Tree Species Classification

To demonstrate the use of our framework for a tree species classification use case, we
conduct the following:

1. Create two rules.
2. Modify a tree species classification model and loss function for SBR.
3. Find optimum values for the rule lambdas.
4. Evaluate the effectiveness of each rule.

We use the model and data from [41] and two rules developed in [61]. The data are
from TEAK, a mixed conifer forest in California USA close to the Nevada border. TEAK
is located at a latitude of 37.00583º and a longitude of −119.00602º. It has a mean annual
precipitation of 1223 mm and a mean annual temperature of 8 ºC. The average canopy
height is 35 m. The elevation ranges from 2086 to 2734 m. The dominant tree species are red
fir, white fir, Jeffrey pine, and lodgepole pine. Sixty-five percent of the study area is mixed
conifer forest. The remaining area is covered by regions dominated by a single species,
specifically red fir or lodgepole pine. Forest structure varies from closed-canopy forests to
open stands with isolated trees. Understory density ranges from none at higher elevations
to dense understory in some lower elevation areas. Citation [41] provides more information
on the site.

5.1. Data

The remote sensing data were collected in 2017 by NEON. NEON surveys its sites
annually during periods of peak greenness. Like the data used for crown delineation, the
HSI data have a resolution of 1 m and RGB imagery data have a resolution of 0.1 m. The
canopy height model produced from the LiDAR data has a spatial resolution of 1 m2 per
pixel. The NEON remote sensing data were augmented with field survey data collected by
the authors of [41] using sites established by [62]. NEON’s HSI data are atmospherically
corrected and all data are orthorectified and aligned to a uniform spatial grid. See [41] for a
more detailed summary of the data collection and preparation methodology.



Remote Sens. 2024, 16, 4365 15 of 23

In this work, we used RGB and CHM data for species classification, although HSI
data are more often used for this task. RGB data are more readily available outside of
NEON sites, and the RGB-based classification is more prone to errors, allowing for a better
demonstration of our methods. Nevertheless, our methods are applicable to HSI data as
well. The dataset contains eight classes: white fir, red fir, incense cedar, Jeffrey pine, sugar
pine, black oak, lodgepole pine, and dead. The dead category is composed of standing
dead trees of any species. The top image in Figure 8 shows a map of TEAK and the bottom
image shows a plot where tree species are identified.

Figure 8. (Top) A map of TEAK. The zoomed-in region in the lower right corner shows ground truth
tree species labels. (bottom) Model predictions for the zoomed-in region above were generated using
optimum hyperparameters found using the random search algorithm. Ground truth crown locations
(from [41]) are indicated by circles. Colors within the circles are ground truth species identities.
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Crowns from each tree were broken into patches of 15 × 15 pixels. Geometric trans-
formation data augmentation was used to increase the size of the training set using the
following transformations: horizontal flips, vertical flips, and 90-degree rotations. Table 5
shows the number of trees and pixel patches of each class.

Table 5. Dataset tree crown and patch count by tree species.

Species Tree Count Patch Count

white fir 119 2908
red fir 47 851
incense cedar 66 1853
Jeffrey pine 164 4384
sugar pine 68 2740
black oak 18 111
lodgepole pine 62 895
dead (any species) 169 3520

Total 713 17,262

We append the CHM raster to RGB images as a fourth layer. The CHM is removed
prior to passing the data through the main network. Post data augmentation, we create a
training set composed of 111,355 patches, a validation set of 12,373 patches, and a test set
of 1796 patches. The test set patches were not augmented. Figure 9 shows the distribution
of tree crown heights in the training set for each species. We will use this information to
craft two rules.

Figure 9. The box and whisker plot of the crown height distribution for each species. Note that black
oak and lodgepole pine are the shortest species.

5.2. Creating Rules

We will use the observed crown heights to help improve the model’s overall perfor-
mance. We extend rules 1 and 2 from [61], which are based on the differences in crown
height distributions. Rule 1 states that trees taller than 46.0 m are unlikely to be black
oak. Rule 2 states that trees taller than 53.2 m are unlikely to be lodgepole pine. Note
from the distributions that the majority of black oaks are less than 46 m in height and the
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majority of lodgepole pines are less than 53.2 m. We implement these rules by first creating
our functions:

f1(x) =
1

1 + exp(−(1 × 103(−maxCHM(x) + 46.0)))
(19)

and
f2(x) =

1
1 + exp(−(1 × 103(−maxCHM(x) + 53.2)))

. (20)

Both f1 and f2 are built on the sigmoid function, so both are differentiable. For f1,
when the CHM values of x are less than 46.0 m, the output of the function tends toward
1, and when the values of x for the CHM are greater than 46 m, the output tends toward
0. We rename f1 and f2 to make our FOL more readable. Let f1 be chmGT46 and let f2 be
chmGT53. We then implement our rules in FOL as follows:

∀x chmGT46(x) ⇒ ¬ isBlackOak(x) (rule 1) (21)

and
∀x chmGT53(x) ⇒ ¬ isLodgepolePine(x) (rule 2). (22)

The functions isBlackOak and isLodgepolePine come from the original classifier whose
function we will call f0. We use the components of the original classifier’s final prediction
that correspond to the indices of the black oak and lodgepole pine classes respectively.

5.3. Model and Loss Function

The model comes from [41]. It is an eight-layer fully convolutional neural network
with a softmax output layer. It has 684,000 learned parameters. We modify the loss function
by adding a term for the rule loss as described in Section 2.

5.4. Hyperparameter Tuning and Training

The hyperparameters associated with rule 1 and rule 2, λ1 and λ2, respectively, are
the variables we tuned the model on. Table 3 shows all hyperparameter values used to
tune the model. The choice of search space bounds was conducted through intuition. Large
values for rule lambdas tended to worsen model performance. Model performance was
found to vary with model initialization; therefore, we ran the experiment 10 times, each
time initializing the random number generator with a different value and averaging the
results. The scale variable was set arbitrarily to 1.0. We ran separate sets of 10 trials of 64
using all 3 search algorithms for comparison. When tuning for a production model, this
need not be the case. We chose the validation macro F1 score to compare results across
trials. We define F1, precision, and recall in Section 4.1.4, where TP is the number of true
positives, FP denotes the number of false positives, and FN denotes the number of false
negatives. We report the performance of the tuned model using the test set macro F1 score.
The model was tuned and trained on one node of a high-performance computing cluster
using 16 GB of RAM, 1 NVIDIA A100 GPU, and 1 CPU.

5.5. Results

As shown in Table 4, all three search methods found parameters that improved the
model’s performance compared to the non-neuro-symbolic model. Again, the random
search algorithm achieved the largest improvement with 3.02 F1 points. Bayesian opti-
mization fared second best with 1.11 F1 points, and the grid search algorithm only found
parameters that improved the model by 0.8 F1 points. The bottom image in Figure 8 shows
the predicted species for the zoomed-in region at the top of the figure. The circles indicate
ground truth labels.

Figure 10 shows density plots of the points selected in the search space by each
algorithm. The Bayesian optimization algorithm focused its search heavily on the lower
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right corner of the search space. Grid search points were evenly distributed throughout the
space. The random search algorithm points show no recognizable pattern.

Figure 10. The density plots of the points selected by each search algorithm.

Figure 11 shows the distribution of the model validation set and test set F1 scores
as a function of the number of trials. The median of the validation distribution for all
3 algorithms increases up to 8 trials and remains relatively flat after 43 trials.

Figure 11. The left graph shows the distribution of the validation F1 scores for the indicated number
of trials for each search algorithm. The right graph shows the distribution of test F1 scores for
the indicated number of trials. The hyperparameters selected for the test model were the ones
corresponding to the highest validation F1 score up to the indicated trial. In the test graph, the two
horizontal black lines indicate the 95% confidence intervals for non-neuro-symbolic test set F1 scores.
The horizontal dashed red line indicates the mean of the non-neuro-symbolic model test set F1 scores.

The Bayesian optimization model improved at a faster rate than the other two algorithms.
There was a great deal of overlap between the test set F1 scores for the non-neuro-symbolic
model and the neuro-symbolic model due to the small improvement in performance from
the rule implementation that is roughly of the same order as the model variance.

Figure 12 plots the neuro-symbolic model’s validation F1 scores over the rule lambda
search space. Larger λ1 values correspond with higher validation scores, suggesting that
rule 1 is more impactful than rule 2. This is surprising since rule 1 is for the black oak class,
which has the fewest number of instances in the dataset. The highest validation scores are
concentrated in the lower right corner of the search space, which corresponds to the area
focused on by the Bayesian optimization algorithm.
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Figure 12. Validation F1 as a function of λ1 and λ2.

6. Discussion

We explored the application of our neuro-symbolic framework to crown delineation
and species classification. The use of the neuro-symbolic framework increased the accuracy
of both crown delineation and species classification over non-neuro-symbolic deep learning
algorithms. The increase was modest but found for all four rules that were used. This
indicates that knowledge about tree crown size and height-crown area allometry, translated
into simple rules, can improve crown delineation from image data alone. In addition, simple
formulations about the heights of co-occurring canopy species can improve species classifica-
tion. Additional rules developed from ecological knowledge, such as which species are likely
to co-occur together or at different elevations, may further enhance model performance and
be tailored to local ecological contexts. Ecological knowledge about natural forests may be
translated into FOL rules, although the benefit in classification accuracy of adding these
rules needs to be tested more broadly across more forest types, including closed-canopy
broadleaf forests. In addition, specific knowledge about management, such as planting
spacing, could potentially generate useful rules in plantation forests. The four rules that
we demonstrated cover the formulation that domain knowledge is likely to take when
converted into FOL, using implication and if-and-only-if clauses. However, more complex
rules may require more creativity on the part of the user to implement. Nevertheless, the
tools needed to express more complex ideas are present within the framework.

Additionally, we demonstrated the use of three hyperparameter tuning algorithms to
find optimal rule parameters. All three algorithms were able to find sets of parameters that
improved the neuro-symbolic models’ performance over the baseline model. Parameters
found by the random search algorithm outperformed those found with Bayesian optimiza-
tion and the grid search algorithm for both models explored. No method was consistently
more efficient than any other, which is surprising due to the closed-loop nature of the
Bayesian optimization algorithm. Our results are partially in line with the findings of [53].

The conventional wisdom is that—like machine learning models—there is no best
hyperparameter optimization method; each method has its pros and cons. Bayesian op-
timization is efficient in high-dimensional search spaces, but more complex than grid
search and random search. Grid search is often only practical for small- or low-dimensional
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spaces. One of the greatest advantages of the random search algorithm is that it is easy to
parallelize. In our example use cases, we only explored search spaces with two dimensions,
which may not be a sufficiently powerful test to discriminate between the efficiencies of
search methods, and we did not explore time complexity at all.

Neuro-symbolic models also hold promise in enabling model transferability across
sites. Citation [58] showed that neuro-symbolic models (in this case, for crown delineation)
can be fine-tuned to improve crown delineation at different sites. Some rules, such as
constraining delineation based on the mean crown sizes per site, improved delineation
scores at all sites. Other rules (constraining delineation based on height to crown allometries,
as in this study) only improved delineation accuracy at some sites. As in the case of this
study, levels of improvement are dependent on many factors, including crown and species
characteristics, quality of data at each site, and other factors.

7. Conclusions

We showed that our framework applies to crown delineation and species classification
models. We demonstrated the use of our neuro-symbolic framework and tested three of
the most common automated hyperparameter tuning algorithms’ abilities to find optimal
rule parameters. We provided a straightforward method for turning domain knowledge
into a coded set of rules. The use of automated tuning allows the user to test multiple rules
at once and determine which rule is better suited for a dataset. Manually tuning models
is labor-intensive and more of an art than a science. Our framework provides an ad hoc
method to convert deep learning models into more powerful neuro-symbolic models.

Neuro-symbolic models provide users with a way to ensure that their models learn
concepts that may not be easily extracted from the training data due to factors such as data
scarcity, noise, or other factors. Creative use of rules encoded from domain knowledge is a
potential cure for some of the shortcomings of ML models used for crown delineation and
species classification. It also provides a way to utilize ecological knowledge of sites and
species characteristics to improve delineation and classification models.
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