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Abstract: Snow cover days (SCD) have increased significantly in winter on the Western Kunlun 
Mountains and Eastern Pamir Plateau (hereafter referred to as KMPP for short), however the 
causes have not been well understood so far. Here, we use remote sensing data to analyze the ab-
normal increase in SCD on the KMPP and explore its causes from the perspective of the local fac-
tors and water vapor transport caused by sea surface temperatures (SST) warming. We discover 
that the winter SCD on the KMPP increased significantly at a rate of 4.75 days/decade (significant 
at the 0.01 level) during 1989–2020, while there has been a significant decrease on the Tibetan 
Plateau (TP), with a rate of −1.50 days/decade (significant at the 0.1 level). Based on ERA5, GPCP, 
GHCN, and station data, we find that, in contrast to the significant warming observed on the TP, 
temperature changes on the KMPP are negligible, while precipitation is increasing, differing from 
the decreasing precipitation trend observed on the TP. The differences in local temperature and 
precipitation changes cause different variations in SCD between the KMPP and the TP. The in-
crease in SCD on the KMPP is primarily driven by increased precipitation (over 97% contribution), 
with minimal impact from the more or less unchanged temperature. In contrast, the decline in SCD 
on the TP results from decreased precipitation and significantly increased temperature. Further-
more, we found that changes in SCD on the KMPP are significantly correlated with SST in the 
northern North Atlantic Ocean. Based on the correlation vector, the anomaly field in the high/low 
SCD years of water vapor transport, and the FLEXPART model, we show that the northern North 
Atlantic Ocean is one of the major water vapor sources affecting the SCD on the KMPP. The 
warming SST in the northern North Atlantic Ocean enhances water vapor transport to the KMPP in 
winter, leading to an abnormal increase in the SCD that differs from the overall trend on the TP. 
The findings are conductive to further understand the peculiarity of winter precipitation and SCD 
on the KMPP, and the “Western Kunlun Mountains Oddity” in mountain glacial change. 

Keywords: western Kunlun Mountains; eastern Pamir Plateau; snow cover; water vapor transfer; 
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1. Introduction 
Snow Cover (SC) is prevalent in high altitudes and mid-to-high latitudes [1–3]. Due 

to its high albedo and low thermal conductivity [4–6], it can significantly impact the 
balance of the surface energy, the cycle of water, and climate change on a global and re-
gional scale [7]. SC Days (SCD) changes can significantly impact surface energy balance 
and influence thermal state [5,8–11]. Moreover, SC is also a critical component of the 
hydrological system in high altitude regions, acting as a buffer controlling river dis-
charge and associated environmental processes [9,10]. The Tibetan Plateau (TP) is the 
highest plateau in the world and one of the regions with the most SCD globally. SCD on 
the TP can influence the climate of East Asia and even the global climate [12–14]. There-
fore, changes in SCD on the TP and their mechanisms have always been a research 
hotspot. 

Since 1950, the TP has experienced significant warming [15,16], and corresponding-
ly, the SCD on the TP shows a significant decreasing trend from 1979 to 2020 [17]. How-
ever, the SCD across the plateau does not exhibit uniform changes. The western Kunlun 
Mountains and the Eastern Pamir Plateau (hereafter referred to as KMPP for short), situ-
ated at the western margin of the TP, show a significant increasing trend in SCD based 
on remote sensing data [17]. Thus, whether the SCD in the KMPP region exhibits incon-
sistent changes compared to the TP within multi-dimensional datasets is still an open 
research question [17]. 

The SCD variation results from the interplay of snowfall and melting processes, di-
rectly influenced by local precipitation and temperature [18,19]. Warming drives earlier 
snowmelt, leading to a decrease in the SCD [7,20,21]. Observational analyses and model 
simulations show that the uneven spatial distribution of precipitation changes on the TP 
results from complex interactions between land and atmosphere [22,23]. The SCD char-
acteristics across regions may be influenced by heterogeneous changes in temperature 
and precipitation [24]. Besides local factors, large-scale air-sea interactions can influence 
SCD variations on inter-annual scales through teleconnections; the influencing factors 
include the El Niño events [25,26], the Indian Ocean Dipole (IOD) [27–30], and North 
Atlantic Oscillation (NAO) [31]. El Niño events enhance monsoon intensity in the Indian 
and Western Pacific Oceans, increasing moisture sources and SCD on the TP [25,26]. 
During IOD events, high SST boosts moisture transport from the northern Indian Ocean 
to the TP, leading to increased SCD [27–30]. The NAO affects the TP by enhancing the 
meridional height gradient over the North Atlantic, which shifts the European trough 
eastward and strengthens subtropical westerlies, thereby increasing TP SCD [31]. Addi-
tionally, significant warming on the TP heightens the contrast in heat exchange between 
land and ocean, intensifying the subtropical wave pattern and affecting moisture 
transport, ultimately influencing regional SCD [32–37]. Adjustments in oceanic moisture 
transport due to SST warming are also key factors in the TP SCD variations [38,39]. 

The data used for the SC research mainly include station data, satellite observations 
by the National Oceanic and Atmospheric Administration (NOAA), Scanning Multi-
channel Microwave Radiometer by the National Aeronautics and Space Administration 
(NASA), and Earth Observation System/Moderate Resolution Imaging Spectroradiome-
ter satellite retrieval products [6,40–44]. Each dataset has its advantages and limitations 
[44]. For example, there are about 133 observation stations on the TP, but most are lo-
cated in the southeastern TP (Figure 1). In the high mountains with high SCD, especially 
over the western TP, there are few stations and thus the regional representativeness of 
station data is limited [6,17,44,45]. SCD products derived from passive microwave re-
mote sensing have large uncertainties on the TP, especially in the northwest and south-
east areas [41,44]. Thus, data combining the advantages of remote sensing and station 
data with high-resolution and strong objectivity [17] are needed to examine the abnor-
mal increasing trend in the SCD on the TP, particularly in the KMPP. 
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Figure 1. The locations of the western Kunlun Mountains and eastern Pamir Plateau (KMPP) and 
the Tibetan Plateau (TP), and the distribution of the observation stations. The black curve repre-
sents the boundary of the TP, based on the recommendation from the Second Tibetan Plateau Sci-
entific Expedition and Research (STEP) program. The red box represents the KMPP. The red and 
black triangles represent station observations on the KMPP and TP. The blue curves represent riv-
ers. 

In summary, SCD changes result from the interaction between local precipita-
tion/temperature and atmospheric teleconnections. Local temperature and precipitation 
changes directly affect TP SCD, while SST variations influence atmospheric dynamics, 
adjusting oceanic moisture transport and impacting TP SCD. Therefore, the following 
key questions should be addressed: Does the increase of the SCD on the KMPP exist? 
How do the local temperature and precipitation affect the changes of the SCD on the 
KMPP? How does the warming SST affect the SCD on the KMPP and where is the oce-
anic moisture source? Here, we utilize the high-resolution remote sensing data of the 
SCD to examine the phenomenon of the abnormal increasing trend in the SCD on the 
KMPP and use multiple data sources to investigate the possible influence of the local 
precipitation/temperature and the water vapor transport on SCD changes. The analysis 
shows interesting results and provides new insights into the change in precipitation, 
SCD, and mountain glaciers on the KMPP. Because SCD on the TP and KMPP regions 
mainly occurs in winter, and the mechanisms of SCD changes on the plateau differ 
across seasons, we only focus on the changes in winter SCD. 

2. Methods and Materials 
2.1. The Western Kunlun Mountain and Eastern Pamir Plateau 

The Pamir Plateau, also known as the “Roof of the World”, is a significant highland 
region in Central Asia that serves as a confluence point for several major mountain 
ranges, including the Himalayas, Kunlun, Hindu Kush, and Tian Shan. It covers roughly 
10,100 km2, the average elevation is over 4500 m, and the Kongur Tagh is the highest 
peak (7719 m). It is under the influence of westerly and southwesterly monsoons and is 
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perennially dry and cold, with annual precipitation of 75–100 mm and an annual aver-
age temperature of 3.53 °C [46]. It is the region with the most developed glaciers in the 
high mountains of Asia, and many Asian large rivers, such as the Amu Darya, the Tarim 
River, and the Indus River, originate on the plateau. In dry years with less precipitation, 
the glaciers on the Pamir Plateau play a crucial role [46]. It is also an area with high SCD 
[17]. 

The research area in this paper is the western Kunlun Mountains and eastern Pamir 
Plateau (KMPP) (35–40.5°N, 72.5–78°E). The eastern Pamir Plateau is mainly located in 
China and the western Kunlun Mountains are included because the area exhibits a simi-
lar change in climate and SCD with that on the Pamir Plateau. Few observation stations 
exist on the KMPP, and only one at an altitude of higher than 4000 m (Figure 1). The ob-
jective and high-resolution remote sensing data of SCD are needed for this paper. 

2.2. Data Sources 
In this study, we used remote sensing SCD data, station observation SCD data, and 

temperature and precipitation data alongside SST data and reanalysis data, as shown in 
Table 1. The data availability pathways are described in the Data Availability Statement 
section. The data details are as follows: 

Table 1. The data used in this study. 

Data Types Data Names Resolution Data Sources 

SCD Data 

Remote sensing data 0.1° × 0.1° Xue et al. [17] 

Station observation data 133 Stations 
National Meteorological Information Cen-
ter, China Meteorological Administration 

(NMIC, CMA) 

Temperature 

ERA5 reanalysis data 0.25° × 0.25° 
European Centre for Medium-Range 

Weather Forecasts (ECMWF) 
Global Historical Climatology Network and 

the Climate Anomaly Monitoring System 
Gridded 2 m Temperature (Land) data 

(GHCN_CAMS) 

0.25° × 0.25° 
National Oceanic and Atmospheric Admin-

istration (NOAA) 

Station observation data 133 Stations NMIC, CMA 

Precipitation 

ERA5 reanalysis data 0.25° × 0.25° ECMWF 
Global Precipitation Climatology Project data 

(GPCP) 
2.5° × 2.5° NOAA 

Station observation data 133 Stations NMIC, CMA 
Sea surface temper-

ature (SST) 
Hadley Centre Sea Ice and Sea Surface Tem-

perature data (HadISST) 
1° × 1° Hadley Centre 

Water vapor flux 
(u/v/q) 

ERA5 reanalysis data 0.25° × 0.25° ECMWF 

The FLEXPART 
model 

Operational global analysis data 1° × 1° 
US National Center for Environmental Pre-

diction (NCEP) 

The SCD data used in this paper are derived from the 1 km snow cover dataset of the 
optical remote sensing instrument on the Qinghai-Tibet Plateau released by the National 
Tibetan Plateau/Third Pole Environment Data Center, which was obtained by using an 
optimized variation processing method [17]. These data combine the advantages of re-
mote sensing and station data with high-resolution and robust objectivity. The original 1 
km SCD data had higher Root-Mean-Square Error (RMSE) values in the southern and 
eastern parts of the TP, indicating discrepancies between station and remote sensing da-
ta. After applying an optimized variational processing method, the RMSE significantly 
decreased, particularly in regions with larger initial errors, making the remote sensing 
data more consistent with station data. Low SCD areas are similarly reflected across 
different datasets, while high SCD areas are more clearly depicted in remote sensing and 
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processed data. The trends in SCD during winter, as per the station data, show a decline, 
contrasting with the increasing trends observed in remote sensing data during the snow 
season (Januay–April, October–December). The SCD data, after optimized processing, 
align better with the station data, suggesting that they are more suitable for TP SCD re-
search. This processed SCD data, which integrate station and remote sensing observa-
tions, offers a more accurate representation of SCD changes on the TP, with detailed ac-
curacy discussed by Xue et al. [17]. It covers January-April and October-December from 
1989 to 2020, with a monthly resolution. The coverage area is 17°N–41°N, 65°E–106°E, 
and the spatial resolution is 0.1° × 0.1°. 

The temperature/precipitation data used in this paper are obtained from the ERA5 
reanalysis dataset (the European Centre for Medium-Range Weather Forecasts 
(ECMWF)) after a variation processing method [17]. The data combine the advantages of 
ERA5 temperature/precipitation data and station observation data [17]. They cover the 
period from January 1961 to December 2020 and have a monthly resolution. The coverage 
area is 17°N–41°N, 65°E–106°E and the spatial resolution is 0.25° × 0.25°. 

The reanalysis data used to calculate the water vapor flux (the meridional u, the 
zonal wind v, and the specific humidity q) are from the ERA5 reanalysis dataset, and the 
spatial resolution is 0.25° × 0.25°. They cover the period from January 1940 to December 
2020 and have a monthly resolution. The SST data are derived from the Hadley Centre 
Sea Ice and Sea Surface Temperature dataset (HadISST), with a spatial resolution of 1° × 
1°. They cover the period from January 1870 to December 2020 and have a monthly res-
olution. 

The GPCP (Global Precipitation Climatology Project) data are from NOAA. The 
spatial resolution is 2.5° × 2.5°. They cover the period from January 1979 to December 
2020 and have a monthly resolution. The microwave and infrared satellite data and ob-
servation data were used to form the dataset by applying the method of optimal mixed 
estimation. 

The GHCN_CAMS Gridded 2 m Temperature (Land) data are from NOAA. The 
spatial resolution is 0.5° × 0.5°. They cover the period from January 1948 to December 
2020 and have a monthly resolution. 

The station data for temperature and precipitation are from the daily dataset of 
surface observation in China provided by the National Meteorological Information Cen-
ter (NMIC). The TP contains 133 observation stations (Figure 1) and the data cover the 
period from January 1961 to December 2020. 

The reanalysis data used to drive the FLEXPART model are the final version of the 
US National Center for Environmental Prediction (NCEP) Operational Global Analysis 
data, with a time resolution of 6 h, a spatial resolution of 1° × 1°, and a vertical layering of 
26 layers. 

The altitude data are from the Advanced Spaceborne Thermal Emission and Reflec-
tion Radiometer Global Digital Elevation Model (ASTER GDEM, V3), has and have a 
spatial resolution of 1° × 1°. 

2.3. The Whole Layer Water Vapor Flux and Related Vectors 
To research the effects of water vapor transport on the SCD of the KMPP and to an-

alyze the structural characteristics of water vapor transport pathways, a method that ex-
plores the water vapor transport vectors is used to track the sources of the water vapor 
and reveal the pathways of water vapor transport caused by SST anomalies [23]. 

The calculation formula for the whole-layer vapor flux is: Q = 1gන qv୮୲
୮ୱ dp (1)

Q can be decomposed into two directions: 
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qu = 1gන qu dp୮୲
୮ୱ  (2)

qv = 1gන qv dp୮୲
୮ୱ  (3)

where g is the gravitational acceleration, u and v are the meridional and zonal wind, re-
spectively, q is the specific humidity, ps is the surface atmospheric pressure (taken as 
1000 hPa in this study), and pt represents the top layer atmospheric pressure (taken as 
300 hPa in this study) [23]. 

Then, the composite correlation vector is as follows: Rሬሬ⃗ ሺx, yሻ = ı⃗R୳ሺx, yሻ + ȷ⃗R୴ሺx, yሻ  (4)

where Rሬሬ⃗ ሺx, yሻ is the composite correlation vector, R୳ሺx, yሻ presents the correlation co-
efficient field of qu, and R୴ሺx, yሻ presents the correlation coefficient field of qv. 

2.4. The FLEXPART Model 
The FLEXPART (Flexible Particle Dispersion) model is a Lagrangian particle 

transport model developed by the Norwegian Institute of Atmospheric Research (NILU) 
[46–48]. It describes the diffusion process of tracers in the atmosphere by calculating the 
trajectory of particles [47–49]. This model can simulate the diffusion of tracers from the 
source region to the surrounding area through time forward operation, and can deter-
mine the distribution of potential source regions that impact the fixed point through 
backward operation [47–49]. It is publicly available (https://www.flexpart.eu/) (accessed 
on 25 July 2024). Using the FLEXPART model, backward simulation of the atmospheric 
particle swarm is conducted to verify the ocean transport source affecting the SCD on the 
KMPP. 

2.5. Trend Calculation and Significance Assessment 
The Ordinary Least Squares (OLS) method is usually used to calculate the trends in 

climate research, but it assumes that the data obey the Gaussian distribution [50]. Since 
the SCD does not follow the Gaussian distribution, the Theil–Sen Median method [51,52] 
should be utilized to calculate the trend. It assumes a time series 𝑥, 𝑥ଵ, 𝑥ଶ, …, 𝑥, and for 
any 𝑖, 𝑗 < 𝑛, the calculation formula is as follows: 𝛽 = 𝑚𝑒𝑑𝑖𝑎𝑛 ൬𝑥 − 𝑥𝑗 − 𝑖 ൰ , 𝑗 > 𝑖 (5)

where 𝑥 and 𝑥 denote SCD; when β > 0, it denotes an increase, while β < 0 indicates a 
decrease. 

The Mann–Kendall test is used to judge the significance of the trend in the SCD 
[51,52]. OLS is used to calculate the trends of variables that comply with the Gaussian 
distribution assumption [50]. 

In addition, other methods, such as variable standardization, correlation coefficient, 
and multiple partial regressions, are also used. Since SCD is mainly concentrated in 
winter, the research period for this paper is the climatological winter, defined as January, 
February, and December of the previous year. The flowchart (Figure 2) below shows the 
data collection, methods, and analysis steps. 
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Figure 2. The flowchart of this paper. Green rectangles present data, blue rectangles present re-
search contents, orange rectangles present research methods, and red rectangles present conclu-
sion. 

3. Results 
3.1. Spatiotemporal Characteristics of the SCD on the KMPP 

Figure 3 shows the spatial and temporal distribution characteristics of SCD in winter 
from 1989 to 2020, based on remote sensing SCD data after an optimized variation pro-
cessing method. It shows that on the KMPP, the average SCD in winter is 50.22 days, 
significantly higher than the average of the TP, which is 22.74 days, making the KMPP a 
high-value region for SCD in winter (Figure 3a). From the spatial variation characteristic 
of the SCD (Figure 3b), it can be observed that there is a decreasing trend in most regions 
of the TP in winter, but the KMPP shows a significant increasing trend. Overall, the av-
erage SCD in winter on the TP significantly decreased at a rate of −1.50 days/decade 
(significant at the 0.1 level), while on the KMPP, it experiences a significant increase at a 
rate of 4.75 days/decade (significant at the 0.01 level) (Figure 3c,d), confirming the 
anomalous increasing trend of the SCD in winter on the KMPP. Interestingly, the north-
ern rim of the TP, including the central Kunlun Mountains, also experienced an increase 
in the SCD during the analysis period. This is consistent with the so-called “Western 
Kunlun Mountains Oddity” in mountain glacial change, as found in previous studies 
[53–56]. 
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Figure 3. The spatial distribution (a) and the trend characteristics (b) of winter SCD, and the re-
gion-averaged yearly time series and trends of the winter SCD, on the KMPP (c) and TP (d) from 
1989 to 2020. (c,d) present the standardized series of the SCD in winter, with the black dashed line 
representing the regression line and the black solid line representing the three-point moving av-
erage line. In (a,b), the areas within the black curve represent the TP, and the KMPP is defined as 
the region 35–40.5°N, 72.5–78°E. Winter SCD on the KMPP increased at a rate of 4.75 days/decade 
(significant at the 0.01 level), while TP decreased at a rate of −1.50 days/decade (significant at the 
0.1 level). 

3.2. Effects of the Temperature and Precipitation on the Increasing SCD on the KMPP 
The variation of SCD is the result of local and atmospheric teleconnection synergies, 

where changes in local temperature and precipitation directly influence the variation in 
SCD. During the period from 1989 to 2020, based on ERA5/GHCH/GPCP/Station data 
(Figure 4), the temperatures all present significant increasing trends in winter on the TP, 
with those in most parts of the region passing the confidence significance test at the 95% 
level (Figure 4a,c,e). However, the temperature-increasing trend on the KMPP is signifi-
cantly weaker than that of the TP. Some grids show a decreasing trend based on ERA5 
and station data (Figure 4a,e). The significant rise of the temperature contributes to snow 
melting, leading to a decrease of SCD on the TP. 

The precipitation trend in winter on the TP exhibits significant regional heterogene-
ity (Figure 4b,d,f), but the precipitation on the KMPP shows an increasing trend in most 
grids. The changes of the temperature and precipitation in winter on the KMPP have a 
certain uniqueness compared to the TP, and the synergistic effect of the temperature and 
precipitation may have directly caused the abnormal increase of the SCD in winter on 
the KMPP. 
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Figure 4. The temperature trends ((a,c,e), units: °C/decade) and precipitation ((b,d,f), units: 
mm/decade) in winter from 1989 to 2020. (a,b) are based on the ERA5 reanalysis dataset, (c,d) are 
based on the GHCN and GPCP dataset, and (e,f) are based on station observation data. The areas 
with black dots indicate that the trends pass the 95% confidence significance test. Areas within the 
black curve represent the TP. Block areas indicate the KMPP. 

Figure 5 depicts the region-averaged temporal change of the tempera-
ture/precipitation in winter for the KMPP and the TP based on 
ERA5/GHCH/GPCP/station data during the period from 1989 to 2020. The results, based 
on different kinds of data, show a high level of consistency. They show that the change 
in temperature on the KMPP is notably weaker than that on the TP, with the latter expe-
riencing a significant increase at 95% confidence significance (Figure 5a). The winter 
precipitation on the KMPP is increasing, while on the TP it is decreasing (Figure 5b). 
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This affirms that the long-term changes in temperature and precipitation on the 
KMPP differ from those observed on the TP. The more-or-less stable temperature and the 
upward trend of precipitation both contribute to the abnormal change of SCD in winter 
on the KMPP. On the other hand, the decrease in precipitation and a significant increase 
in temperature on the TP both play a role in SCD decline as a whole. 

 
Figure 5. The trends of temperature (a) and precipitation (b) in winter from 1989 to 2020. * indicates 
that the trends pass the 95% confidence significance test. The temperature trends on the TP and 
KMPP are positive; the precipitation trends on the TP are negative while they are positive on the 
KMPP. 

It shows that SCD in winter are negatively correlated with temperature but are pos-
itively correlated with precipitation on both the TP and the KMPP (Figure 6a). The cor-
relation coefficients between SCD and precipitation on the KMPP/TP in winter are very 
close, but the coefficient with temperature on the KMPP is notably smaller than that on 
the TP. The relative contributions of the temperature and precipitation to the SCD based 
on ERA5/GHCH/GPCP/station data are calculated by multiple partial regressions (Fig-
ure 6b). It shows that on both the KMPP and the TP, precipitation plays a more im-
portant role than temperature for SCD. On the KMPP, the relative contributions of pre-
cipitation are greater than 97%. This indicates that the anomalous increasing trend of 
SCD on the KMPP is mainly related to the precipitation increase. 

 
Figure 6. The correlations between the temperature/precipitation and SCD (a), and the relative 
contributions of temperature/precipitation to SCD (b), in winter for the TP and the KMPP during 
1989–2020. The red dots in (a) indicate positive correlations, blue dots indicate negative correla-
tions, and * indicates that the trends pass the 95% confidence significance test. The larger dot rep-
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resents the larger correlation. The columns in (b) indicate the relative contributions. The larger 
column presents the larger relative contributions. 

3.3. Correlation Between Global SST and KMPP SCD 
The global annual average SST has significantly increased almost linearly from the 

1970s to the 2000s, with the 1980s and 1990s seeing the most rapid warming [23]. The 
characteristics of SST changes in boreal winter from 1989 to 2020 are analyzed. It is found 
that SST in boreal winter has significantly increased (Figure 7a). The correlation between 
SCD on the KMPP and SST in global oceans in boreal winter shows that there is a sig-
nificant correlation between the SST of northern North Atlantic Ocean (50–80°N, −25–
20°E) and SCD on the KMPP (Figure 7b). It indicates that the north Atlantic Ocean SST 
may have a high impact on SCD increase on the KMPP. Inter-annual to decadal variabil-
ity of the SST in boreal winter in the North Atlantic Ocean may have led to variations in 
SCD on the KMPP. 

 
Figure 7. The trends of the SST ((a), unit: °C/decade) and its correlations with SCD on the KMPP (b) 
in winter from 1989 to 2020. The black dotted areas indicate trends/correlations that pass the 95% 
significance test, and the black boxed areas denote the northern North Atlantic Ocean. Areas within 
the red curves represent the TP. Red areas indicate the KMPP. 

3.4. The Influence of Water Vapor Transport in the Northern North Atlantic Ocean on the KMPP 
SCD 

The plateau can act as a powerful thermal pump through the “hollow heat island” 
effect, continuously absorbing anomalously warm and moist airflows from the ocean [9]. 
Zhang et al. [57] suggest that because of climate warming, the water vapor over the TP 
has changed dramatically, affecting the moisture balance. The enhanced transport of the 
water vapor from the ocean to the TP promotes the water cycle and is one of the main 
reasons for the increased humidity on the TP [23]. Using water vapor transport related 
vectors as tracers of moisture sources, we aim to expose the water vapor transport 
pathways from the northern North Atlantic Ocean that affect SCD on the KMPP. 

The correlation between SCD and precipitation on the KMPP in winter and the 
whole layer water vapor flux indicates that there are water vapor transports from the 
northern North Atlantic Ocean to the KMPP (Figure 8a,b). The water vapor flows out of 
the northern North Atlantic Ocean, spreads northeastward along the north side of the 
anticyclone at the Eastern European Plains, turns southwestward at the Baikal Lake or 
Kara Sea, then spreads southwestward along the south side of the anticyclone and north 
side of a cyclone west of the KMPP, and finally turns to the KMPP through the Iranian 
Plateau. 
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The correlation between the SST of the northern North Atlantic Ocean in winter and 
the whole layer water vapor flux also indicates a similar but more direct water vapor 
transport route from the northern North Atlantic Ocean to the KMPP (Figure 8c). The 
water vapor flows out of the northern North Atlantic Ocean, spreads southwestward 
along the western side of the cyclone at the eastern Mediterranean Sea, then turns 
northeastward, and finally reaches the KMPP through the Iranian Plateau. 

Therefore, the water vapor transport caused by SST warming from the northern 
North Atlantic Ocean is a crucial factor for the observed variability of and change in 
winter precipitation on the KMPP, which influences the variability and trends of SCD on 
the plateau. 

 
Figure 8. The distribution of correlations between whole-layer water vapor flux and winter SCD on 
the KMPP (a): precipitation on the KMPP (b)/SST of the northern North Atlantic Ocean (c) from 
1989 to 2020. The color shading represents the significance level of the correlation, with red indi-
cating regions where the correlations pass a high (99%) level of a significance test. The yellow ar-
rows represent the pathway of the water vapor transport from the northern North Atlantic Ocean to 
the KMPP. The black boxed areas denote the northern North Atlantic Ocean. Areas within the 
black curve represent the TP. The small boxed areas indicate the KMPP. 

By comparing the anomalies in water vapor flux fields between high and low years 
of winter SCD on the KMPP, it is found that the abnormal water vapor flux patterns 
affecting the KMPP are exactly opposite between the two kinds of years (Figure 9). In the 
years with high SCD, the water vapor flows out of the northern North Atlantic Ocean, 
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spreads northeastward along the north side of the anticyclone in the Eastern European 
Plains, turns southwestward at the Kara Sea, then spreads southwestward along the west 
side of the cyclone west of the KMPP, turns northeastward on the Iranian Plateau, and 
finally reaches the KMPP (Figure 9a). These water vapor transport pathways are similar 
to Figure 8a,b. It proves again that the water vapor transport caused by SST warming 
from the northern North Atlantic Ocean is a crucial factor for the abnormal increasing 
trend of SCD on the KMPP. 

Conversely, in years with low SCD, water vapor flows out of the KMPP, spreads 
southwestward along the south side of the anticyclone west of the KMPP, turns north-
ward at the Persian Gulf, goes westward along the north side of the cyclone near the 
Black Sea, and then flows to the northern North Atlantic Ocean (Figure 9b). 

 
Figure 9. Schematic diagrams of water vapor flux anomalies and transport in high (a) and low (b) 
years of SCD on the KMPP in winter during 1989–2020. The high SCD years are 2006, 2008, and 
2012, and the low SCD years are 1990, 1997, and 1998. The reference period for calculating anoma-
lies is 1989–2020. The black boxed areas denote the northern North Atlantic Ocean. Areas within 
the black curve represent the TP. The small boxed areas indicate the KMPP. The red and yellow 
arrows represent the pathway of the water vapor transport. 

The water vapor transport patterns for years with high and low SCD are exactly 
opposite, which once again proves that the SST warming in the northern North Atlantic 
Ocean can lead to anomalous water vapor transport, influencing the abnormal increasing 
trend of SCD in winter on the KMPP. SST warming in the North Atlantic Ocean has a 
significant heating effect on the atmosphere above. The air is forced to rise, and an 
anomalous low-level cyclonic is formed over the North Atlantic, which is conductive to 
forming a Rossby wave train-like pattern. The North Atlantic SST thus has the potential 
to influence the SCD changes on the KMPP by exerting a regulatory effect on the 
large-scale atmospheric circulation patterns, as pointed out by Liu et al. [58]. The SST 
warming-associated circulations favor the transport of water vapor from the North At-
lantic Ocean to the KMPP, allowing for greater-than-normal precipitation that leads to 
SCD increase in the study area. In this study, we mainly focus on the effect that the water 
vapor transport caused by SST warming in the North Atlantic Ocean has on SCD increase 
on the KMPP. We intend to conduct an in-depth analysis of these dynamics in the future. 

3.5. Simulation of the Water VAPOR Transport Influence from the Northern North Atlantic 
Ocean 

The previous discussion indicates that SST warming in the northern North Atlantic 
Ocean may have affected the abnormal increasing trend of SCD in winter on the KMPP. 
Here, we use FLEXPART model simulation to determine the water vapor transport 
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pathways. Previous studies conducted model simulations to trace water vapor based on 
the global average residence time of the water vapor (10 days) [59]. Because SST in the 
northern North Atlantic Ocean experienced the most significant warming in December 
2016, this paper selects December 2016 as the time point for the simulation using the 
FLEXPART model. Simulations for periods lasting 5 days and 10 days were conducted. 
During the simulation period, the total number of particles remained constant (100 par-
ticles for the simulation in this paper). From the simulation backwards for 5 days from 
the KMPP, the water vapor flows from the northern North Atlantic Ocean to the KMPP 
can be visualized (Figure 10). One branch of the water vapor flows out of the northern 
North Atlantic Ocean, turns southeastward at the Black Sea and eastern Mediterranean 
Sea, and finally travels to the KMPP through the Iranian Plateau. 

The water vapor transport pathway based on the FLEXPART model (Figure 10) is 
similar to that obtained by analyzing the water vapor transport by the related vectors 
(Figure 8a,b) and the anomalies in water vapor flux fields in high SCD years (Figure 9a). It 
reaffirmed that the water vapor transport caused by SST warming from the North Atlan-
tic Ocean is an important contributor to the abnormal increasing trend of SCD in winter 
on the KMPP. Our observations and simulations also confirm that the water vapor path 
is an inverted S-shape. 

 
Figure 10. The FLEXPART model simulation of the water vapor transport from the northern North 
Atlantic Ocean to the KMPP. The black curve represents the TP, and the large and small black 
squares represent the northern North Atlantic Ocean and the KMPP, respectively. One track is a 
simulated particle, and the colors represent the different particles. The gray arrows represent the 
water vapor transport pathways. 

4. Discussion 
4.1. The Representativeness of SCD Data 

SCD changes at stations on the TP are similar to those from remote sensing data after 
an optimized variation processing in areas with station coverage (Figures 3a,b and 
11a,b), and their time series are closely aligned (Figure 11d). However, in areas with no 
stations, spatial differences are more pronounced (Figure 11c). On the KMPP, stations are 
mainly concentrated in the northeastern region, and the observed SCD increase is also 
seen in this area (Figure 11a,b). The only station in the central KMPP shows a decrease in 
SCD, so apart from the station-rich northeastern KMPP, SCD shows a decrease in other 
areas (Figure 11). This also helps explain the inconsistency between the station and re-
mote sensing SCD time series data shown in Figure 11c. 
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Figure 11. The spatial distribution (a) and the trend characteristics (b) of winter SCD based on sta-
tion observation SCD data, and the region-averaged yearly time series and trends of the winter 
SCD, on the KMPP (c) and TP (d) from 1989 to 2020. (c,d) present the standardized series of SCD in 
winter based on station observation SCD data (blue, Station SCD) and remote sensing SCD data 
after an optimized variation processing used in this study (black, SCD), with the dashed line rep-
resenting the regression line. In (a,b), the areas within the black curve represent the TP, the black 
boxes represent the KMPP (defined as the region 35–40.5°N, 72.5–78°E), and red triangles represent 
station observations. 

However, when using the more comprehensive variational SCD data, we find that 
the overall SCD on the KMPP is still increasing, which aligns with the SCD changes in 
areas with dense station coverage. This indicates that in regions with low station cover-
age, relying on only a few stations to estimate SCD changes introduces greater uncer-
tainty, potentially leading to contradictory trends. Data combining the advantages of 
remote sensing and station data with high-resolution and strong objectivity are needed 
to examine the trend in the SCD on the TP, particularly on the KMPP. 

4.2. Changes in SCD on the TP and KMPP 
The data for SCD on the TP include station observations, satellite remote sensing 

data, reanalysis data, and climate model output products [44]. Research results based on 
different data have some differences in the variations of SCD on the TP (Table 2). The 
station data are highly accurate, but there are few meteorological stations in the areas 
above 5000 m, resulting in poor regional representativeness in the central and western 
regions of the plateau [7]. The satellite remote sensing data have a high resolution, but are 
subject to cloud contamination issues, and their accuracy is thus limited [44]. Most rea-
nalysis data perform poorly when analyzing the SCD trend on the TP, while the model 
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output products are often too coarse to resolve the local changes of SCD on the TP [44]. 
Because of the high resolution and strong objectivity of SCD data in this paper, the re-
sults showing that TP SCD decreases and KMPP SCD increases are considered to be re-
liable. 

Research regarding SCD changes on the KMPP is limited because of the limited ob-
servation data from the region (only 11 stations, Figure 1). Based on the NOAA Climate 
Data Record of the snow cover extent, Liu et al. [58] showed that SCD in the western TP 
(including the KMPP) have remarkable decreasing trends in spring. Huang et al. [7] an-
alyzed the daily cloud-free remote sensing snow cover data from 1980 to 2020, indicating 
that the SCD in the Amu Darya basin has increased. The conclusions regarding SCD 
trends from these studies on the KMPP are exactly the opposite to ours. In this paper, we 
used remote sensing SCD data after an optimized variation processing process [17] and 
found that winter SCD on the KMPP increased significantly at a rate of 4.75 days/decade 
during the period from 1989 to 2020, while there has been a significant decrease on the TP 
with a rate of −1.50 days/decade. Our research confirms the increasing trend of SCD on 
the KMPP, as found in Huang et al. [7]. The increase in SCD on the KMPP differs from the 
changes in SCD on the TP. 

Table 2. Summary of SCD changes on the TP. 

Region Dataset Period Results Reference 

TP Cloud-free SCD remote sensing data 1980–2020 
TP decrease, Amu Darya 

basin increase 
Huang et al. [7] 

TP Snow cover fraction from MODIS 2001–2014 
Slightly decreased by 

about 1.1% 
Li et al. [13] 

TP 
MODIS daily snow products and the 

Interactive Multi-sensor Snow 
and Ice Mapping System (IMS) 

2000–2015 No widespread decline Wang et al. [14] 

TP 
Snow cover fraction data of the Northern 

Hemisphere Snow Cover 
Version 4.1 

1966–2016 
Large interannual 

variations in cold seasons 
Wang et al. [30] 

Eastern and 
central TP 

69 stations above 2000 m from CMA 1961–2005 Weakly positive You et al. [43] 

TP NOAA Climate Data Record of SCD 1985–2020 
Western TP decrease, 
eastern TP increase 

Liu et al. [58] 

TP Snow cover fraction from MODIS 2003–2010 Decrease since 2003 Wang et al. [60] 

TP Remote sensing SCD data 1989–2020 
TP decrease, KMPP 

increase 
This study 

4.3. Causes and Impacts of SCD Changes on the KMPP 
Wu and Wu [31] found that the North Atlantic tri-pole SST anomalies induced by the 

spring NAO can persist into summer and excite downstream atmospheric teleconnec-
tions. The Rossby wave train, triggered by the tri-pole SST anomalies, exhibits an anom-
alous cyclonic or anticyclonic center over the Pamir-Tienshan region, favoring excessive 
or reduced snow cover, respectively. The change in the spring NAO is responsible for the 
inter-decadal variability of the spring NAO impact on summer Pamir-Tienshan snow 
cover. This indicates that high-latitude atmospheric patterns can influence spring SCD on 
the plateau. In this paper, we focus on winter SCD variability in the KMPP region and 
explore the reasons for the increase in SCD on the KMPP from the perspective of local 
climatic factors and water vapor transport. We found that the changes in SCD on the 
KMPP differ from those on the TP. The difference can be summarized in a mechanism 
diagram (Figure 12). For local climatic factors, we find that precipitation on the KMPP 
almost dominates the changes in SCD, while the changes in SCD on the TP are jointly 
influenced by precipitation and temperature. Furthermore, the increased SCD on the 
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KMPP is attributed to SST warming in the northern North Atlantic Ocean. Previous 
studies have shown that tropical ocean phenomena like ENSO and IOD significantly 
impact TP snow levels [25–30], but here we highlight that the spatial inconsistency of TP 
snow changes is mainly regulated by high-latitude North Atlantic SST. 

 
Figure 12. The mechanism diagram for increased SCD on the KMPP compared to that on the TP. 

SCD are closely related to the snow depth and mountain glacial mass balance. Pre-
vious studies have found that the glacial area of the western Kunlun Mountains shows a 
different change from that of other regions in China and central Asia [53–56]. Under cli-
mate warming conditions, most mountainous glaciers are melting, but the western 
Kunlun Mountains and the Pamir Plateau are experiencing increased mass balance [53–
56]. This phenomenon has been termed the “Western Kunlun Mountains Oddity” [53–
56]. As shown in this paper, the findings can well explain the peculiarities of winter pre-
cipitation and SCD on the KMPP and the “Western Kunlun Mountains Oddity” in the 
mountains’ glacial change. This analysis will also be crucial for further understanding the 
current and future changes in the mountainous hydro-cycle and water resources, which 
are closely related to managing and using water resources in the central Asian highlands. 

The TP, also known as the “Water Tower of Asia”, is the source of several major 
rivers in Asia, including the Yangtze, Yellow, Yarlung Zangbo, Indus, Ganges, Mekong, 
Amu Darya, and Tarim rivers [12–14]. Yao et al. [61] noted a decrease in solid water re-
sources and an increase in liquid water resources reflected in rising river flows and the 
expansion of plateau lakes. Walter et al. [62] assessed the impact of climate change on 
the plateau’s water resources and found that increased glacial melt and snowmelt have 
altered river flows. While changes in the Indus River are mainly glacier-driven, other 
rivers are primarily influenced by snowmelt. Yao et al. [61] also indicated that the varia-
tion in water resources across the plateau is uneven due to differing regional climatic 
factors, a trend that may intensify under future climate change. The KMPP, as the source 
of the Tarim, Indus, and Amu Darya rivers, shows an increase in the number of snow 
days based on satellite SCD data, suggesting a potential rise in solid water reserves in 
this area. This contrasts with other regions of the plateau and supports Yao et al.’s [61] 
conclusion of spatially uneven changes in water resources due to climate change. The 
findings reported in this paper will not only enhance our understanding of the regional 
change in climate, hydro-cycle, and environment, but also contribute to a more efficient 
and integrated management of water resources in the KMPP and the surrounding areas. 
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4.4. Limitations 
Although this paper utilizes high-resolution and objective remote sensing data to 

confirm the abnormal increasing trend of SCD in winter on the KMPP from 1989 to 2020, 
the reasons for the increase are explored from the perspectives of temperature, precipi-
tation, and water vapor transport caused by SST warming in the northern North Atlantic 
Ocean; as such, it must be noted that the variations of SCD on the KMPP and TP are a 
complex process. Other factors, such as Indian and Pacific Ocean SST, Arctic sea ice, sta-
tionary waves, and human activity, including anthropogenic global warming and aero-
sol emission [44,58], may also play an important role. Moreover, this paper did not un-
dertake a quantitative assessment of the individual contributions of these factors. The 
numerical models can be used in the future to address this limitation and provide a 
more in-depth understanding of the relative contributions of these factors. Another issue 
worthy of research in the future is whether the factors affecting SCD variations in the 
KMPP and the TP have experienced changes in the past. You et al. [44] indicated that 
SCD variation on the TP experienced a turning point around 1990. Was the effect of the 
water vapor transport caused by SST warming in the northern North Atlantic Ocean on 
the KMPP SCD before 1989 different than that after 1989? These questions need to be 
investigated in the future. 

5. Conclusions 
This study utilizes high-resolution and objective remote sensing data obtained using 

an optimized variation processing method to confirm the abnormal increasing trend of 
SCD in winter on the KMPP from 1989 to 2020. The possible influencing factors and 
mechanisms are discussed, and the impacts of local climatic factors and water vapor 
transport caused by SST warming on SCD on the KMPP are explored from the perspec-
tives of temperature, precipitation, and northern North Atlantic Ocean SST. The 
FLEXPART model was used to simulate water vapor transport. The main results of this 
study are as follows: 
(1) From 1989 to 2020, SCD increased significantly, with the trend of 4.75 days/decade 

(significant at the 0.01 level), in winter on the KMPP, while that of the TP decreased 
significantly at −1.50 days/decade (significant at the 0.1 level). This confirms 
previous research findings that SCD on the KMPP have not decreased, but show a 
significant increase that differs from that on the TP region. Additionally, using 
more comprehensive variational SCD data, we found that SCD on the KMPP 
continue to increase, which is consistent with trends in areas with dense station 
coverage. This highlights the uncertainty of relying on sparse station data and the 
need for high resolution remote sensing and station data to better assess SCD 
trends, particularly on the KMPP. 

(2) The variation of SCD results from the combined effect of local temperature and 
local precipitation. On the KMPP, there is an increasing trend of precipitation, 
derived from ERA5, GPCP, and station data, while a decreasing trend is clear on 
the TP. The relative contributions of precipitation to SCD play a dominant role on 
the KMPP. Increasing precipitation is the local influencing factor for the abnormal 
increase of SCD in winter on the KMPP. This is clearly different from the reasons 
for SCD changes on the TP, where the decrease in SCD is attributed to a 
combination of temperature and precipitation changes. 

(3) The correlation vector, the anomaly fields of water vapor transport in high SCD 
years, and the FLEXPART model simulation all confirm that the northern North 
Atlantic Ocean is one of the main water vapor sources. The water vapor caused by 
SST warming flows out of the northern North Atlantic Ocean and then travels to 
the KMPP through the Iranian Plateau. Atlantic SST warming has enhanced 
moisture transport, increasing precipitation and SCD in winter on the KMPP. This 
indicates that the warming of high-latitude SST in the North Atlantic plays an 
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important role in regulating regional differences in TP snow changes. However, this 
study only focuses on the impact of water vapor transport from North Atlantic SST 
warming on SCD increase on the KMPP, and an in-depth dynamic analysis is 
needed in the future. 
The KMPP, as the source of the Tarim, Indus, and Amu Darya rivers, exhibits an in-

crease in snow days, indicating rising solid water reserves. This supports the trend of 
uneven water resource changes across the plateau due to climate change. It can also help 
explain the previously observed “Western Kunlun Mountains Oddity” phenomenon. 
The findings presented in this paper deepen our understanding of regional climate, hy-
drological, and environmental changes while also supporting more efficient and inte-
grated water resource management in the KMPP and its surrounding areas. Future re-
search could delve into the long-term impacts of climate change on regional water re-
sources and the development of adaptive strategies for water management in the KMPP 
region. 
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