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Abstract: This review is aimed at exploring the use of remote sensing technology with a focus on 
Unmanned Aerial Vehicles (UAVs) in monitoring and management of palm pests and diseases with 
a special focus on date palms. It highlights the most common sensor types, ranging from passive 
sensors such as RGB, multispectral, hyperspectral, and thermal as well as active sensors such as 
light detection and ranging (LiDAR), expounding on their unique functions and gains as far as the 
detection of pest infestation and disease symptoms is concerned. Indices derived from UAV multi-
spectral and hyperspectral sensors are used to assess their usefulness in vegetation health monitor-
ing and plant physiological changes. Other UAVs are equipped with thermal sensors to identify 
water stress and temperature anomalies associated with the presence of pests and diseases. Further-
more, the review discusses how LiDAR technology can be used to capture detailed 3D canopy struc-
tures as well as volume changes that may occur during the progressing stages of a date palm infec-
tion. Besides, the paper examines how machine learning algorithms have been incorporated into 
remote sensing technologies to ensure high accuracy levels in detecting diseases or pests. This paper 
aims to present a comprehensive outline for future research focusing on modern methodologies, 
technological improvements, and direction for the efficient application of UAV-based remote sens-
ing in managing palm tree pests and diseases. 
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1. Introduction 
For many years, traditional techniques used in monitoring and detecting pests in 

date palms have primarily relied on manual surveys, visual inspections, and labor-inten-
sive fieldwork requiring expert knowledge. Though they have formed the basis of pest 
management measures for ages, these methods are associated with several drawbacks 
such as being subjective by nature, time-consuming, and inefficient at identifying infesta-
tions in their early stages. In addition, timely recognition and intervention become more 
difficult due to the widespread occurrence of pest attacks such as by the red palm weevil 
(RPW) over extensive geographical areas. This often results in irreversible damage to date 
palm ecosystems and to means of livelihood [1–3]. 

As a result of pest infestations, date palm agriculture, which has always been the 
cornerstone of the cultural and economic heritage of arid regions across the world, is un-
der threat. Date palms now grow on more than 1 million hectares around the world, with 
a production of about 9.5 million metric tons per year, whilst the oil palm industry 
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globally contributes to an economy of USD 60 billion and has a cultivation area of about 
18 million hectares [4–6]. Major pests, such as the red palm weevil (RPW) and Bayoud 
disease, have caused billions in losses in the recent past. Hence, there is an urgent need 
for advanced monitoring and management systems that apply modern technologies, such 
as remote sensing, to mitigate the spread and impact of these threats.  

The RPW responsible for this destruction in date palm plantations causes irreparable 
damage to trees, leading to significant economic loss for farmers and agricultural econo-
mies. Farmers experience a direct economic impact due to reduced yields and the costs of 
pest control interventions. This is accompanied by supply chain disruptions and financial 
losses for various stakeholders in the agricultural industry, such as the market, suppliers, 
etc. Better pest detection tools have a double advantage; they prevent early infestation and 
reduce labor as well as other resources used in traditional methods of controlling pests, 
hence making it possible for farmers to adopt more sustainable agricultural practices. 

Consequently, agricultural scientists and practitioners are continuously seeking 
novel and efficient strategies to combat RPW infestation and protect date palm agriculture 
[7–9]. Recently, there has been a range of approaches and devices for identifying the RPW, 
which today includes innovative technologies such as audio detection systems to capture 
the noise made by the bugs while they feed on the date palm trees and X-ray systems to 
take internal images of tree structures showing infestation [10–12]. However, these meth-
ods have their limitations. Audio detection systems can be affected by environmental 
noise and may not detect early-stage infestations, while X-ray systems are costly, require 
significant setup, and are limited to individual trees [13]. 

Recent advancements in remote sensing technologies, particularly the emergence of 
unmanned aerial vehicles (UAVs)—commonly referred to as drones—equipped with ther-
mal sensors, offer unprecedented opportunities to revolutionize pest management strate-
gies in date palm agriculture [8,9]. UAVs rapidly gained traction as versatile platforms for 
aerial data acquisition, enabling researchers and practitioners to capture high-resolution 
imagery of agricultural landscapes with unparalleled precision and efficiency [1,2,14]. Un-
like RGB imaging, multispectral, hyperspectral, and thermal imaging involves capturing 
images across multiple wavelengths of light, providing valuable additional information 
about plant health, stress levels, and physiological conditions. These imaging techniques 
offer enhanced spectral resolution, allowing for the detection of subtle variations in vege-
tation properties that are not visible in standard RGB imagery. The key benefits of using 
remote sensing technology for monitoring plant diseases and pests can be summarized as 
follows [15–19]:  
• Plants diseases and pests can be monitored using remote sensing techniques that do 

not require physical interaction with the plants. This enables non-contact surveillance 
over large areas, providing vital data on the spatial distribution of diseases and pests. 

• Remote sensing tools can retrieve many types of data, including—for instance—spec-
tral, thermal, and radar information, which consequently indicate disease- and pest-
caused changes in plant health states. This process efficiently acquires timely data 
concerning plant status. 

• Combine remote sensing methods with plant pathology theories, allowing research-
ers to develop a better understanding of agricultural systems. This helps differentiate 
between different diseases and pests, assess infection severity levels, and create maps 
at various levels. 

• Remote sensing has been useful in practical applications, such as precision spraying 
for disease and pest control, high throughput phenotyping within plants, and loss 
assessment in agricultural insurance investigations. 

• Remote sensing technology can improve the accuracy of disease and pest monitoring 
by utilizing advanced algorithms and machine learning techniques. These methods 
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go beyond conventional spectral features and statistical approaches, allowing for 
more precise detection and monitoring of plant health issues. 

• Remote sensing enables quick and effective data acquisition across wide areas, hence 
large-scale coverage. This is in contrast to ground-based field techniques, which are 
time-consuming and cost-intensive when applied over large regions. 

• Remote sensing offers temporal analysis. Tracking these temporal changes is very 
important for understanding how diseases evolve and how pests invade ecosystems. 
This review paper represents a range of wider research into the use of remote sensing 

technology, and machine learning techniques for crop monitoring and management, but 
given the context, it is finally applied to date palm trees. By understanding the findings of 
several studies, this manuscript shows how such advanced technologies may be applied 
and modified for pest and disease detection in date palm trees toward improving man-
agement practices in date palm agriculture. 

2. Remote Sensing for Pest and Disease Monitoring 
Researchers can acquire a variety of data on plant health indicators such as spectral 

reflectance, fluorescence, thermal properties, and structural changes by exploiting diverse 
remote sensing technologies.  
• Visible, red-edge, and near-infrared sensors: These sensors collect data that can help 

detect variations in plant health caused by diseases or pests through the analysis of 
vegetation spectral reflectance values. The collected data are frequently used for 
plant diseases and pest monitoring since the sensors detect minute physiological 
changes in plants.  

• Thermal sensors: These sensors capture surface temperature data, which can reveal 
important insights into the thermal properties of plants. Temperature variations may 
indicate stress caused by factors such as diseases, pests, or water deficiency. Thermal 
data can reveal how plants respond physiologically when attacked by pathogens, al-
lowing for early diagnosis of the disease diagnosis.  

• Synthetic aperture radar (SAR) and light detection and ranging (LiDAR) sensors: 
SAR sensors provide detailed information regarding physical structure, while Li-
DAR sensors give specific details about canopy geometry as influenced by insect ac-
tivity. This information helps track any developments related to plant health and 
identify disease vectors. 
In the following sections, we will discuss the possible applications of the aforemen-

tioned sensors related to crop monitoring for palm trees and date palm trees specifically. 
Furthermore, we will explore the potential capabilities of various vegetation indices (VIs).  

2.1. Multispectral and Hyperspectral Sensors 
In precision agriculture, the importance of multispectral sensors mounted on UAVs 

is significant for pest and disease detection in crops. These sensors capture information at 
different wavelengths of the spectrum, which facilitates vegetation health analysis and 
stress level determination. By using this technology, farmers can detect initial signs of pest 
infestation or disease outbreaks, allowing for prompt and effective responses. Various 
studies have indicated that multispectral imaging benefits precision agriculture opera-
tions such as crop management and yield prediction [20–23]. 

Vegetation indices derived from multispectral and hyperspectral sensors are im-
portant for assessing plant health and identifying stressors like pests and diseases. Indices 
such as the Normalized Difference Vegetation Index (NDVI) and/or the Photochemical 
Reflectance Index (PRI) provide information about photosynthetic pigments—such as 
chlorophyll content—and photosynthetic activity in plants. These indicators help locate 
zones with poor conditions and signs of stress before they are visible to the human eyes, 
enabling early intervention and management. It is worth mentioning that these indices 
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derived from high-resolution UAV imagery can significantly improve the precision of pest 
and disease monitoring in agricultural fields. Common vegetation indices derived from 
multispectral and hyperspectral images can be listed in Table 1 as follows [24–26]: 

Table 1. Common vegetation indices derived from multispectral and hyperspectral images. 

Vegetation Index Description References 
Normalized Difference Vegetation Index 

(NDVI) 
Reflects the difference between NIR and red-light reflectance; 

useful for overall vegetation health. 
[27,28] 

Enhanced Vegetation Index (EVI) 
Similar to NDVI but improves sensitivity in high biomass re-

gions and reduces atmospheric influences. [29,30] 

Normalized Difference Red Edge Index 
(NDRE) 

Uses red-edge and NIR bands to provide better sensitivity to 
chlorophyll content and stress detection. [31] 

Soil Adjusted Vegetation Index (SAVI) 
Adjusts for soil brightness influences; useful in areas with 

sparse vegetation. [32] 

Green Normalized Difference Vegetation 
Index (GNDVI) 

Uses green and NIR bands to enhance sensitivity to chloro-
phyll content. [33,34] 

Chlorophyll Absorption Ratio Index 
(CARI) 

Sensitive to chlorophyll concentration, useful for detecting 
changes in pigment levels. [35] 

Transformed Chlorophyll Absorption in 
Reflectance Index (TCARI) 

A modified version of CARI to reduce soil background influ-
ence. [36,37] 

Structure Insensitive Pigment Index 
(SIPI) 

Measures the ratio of NIR to blue reflectance; useful for as-
sessing pigment changes while minimizing structural effects. [38] 

Photochemical Reflectance Index (PRI) 
Indicates changes in xanthophyll cycle pigments, related to 

photosynthetic efficiency. [39,40] 

Red Edge Inflection Point (REIP) 
Measures the wavelength position of the red edge, susceptible 

to chlorophyll content and stress levels. [41,42] 

According to the literature, possible applications for palm tree monitoring using mul-
tispectral and hyperspectral sensors can be summarized as follows: 
- Early disease detection: UAV multispectral and hyperspectral cameras are useful for 

capturing images for the early detection of diseases and pests in date palm planta-
tions. The anomalies indicating stress or infection in diseased vegetation can be effi-
ciently detected allowing for quick remedial actions [43–46]. 

- Stress detection and management: Multispectral imagery helps identify environmen-
tal stressors like water scarcity, nutrient deficiencies, and high salinity. UAV-based 
monitoring captures changes in vegetation indices linked to stress response, enabling 
controlled irrigation, fertilizers application, and soil management practices to ensure 
optimal health of date palms [47–50] 

- Precision agriculture practices: Multispectral UAV-based images support advanced 
agricultural techniques by providing detailed spatial information about plant health 
on date palm farms. This information can guide site-specific management practices 
such as irrigation scheduling, fertilizer applications, frond removal, pest control 
strategies, optimizing resource utilization, and improving performance [20,51,52]. 
Therefore, UAV remote sensing data offers new possibilities for monitoring and man-

aging the health status of date palm trees, revealing details about plant growth, stress 
levels, and diseases and infections. Hyperspectral sensors with narrowband indices, par-
ticularly red-edge NDVI, and other specific narrowband VIs, have proven to be the best 
indicators due to their sensitivity to subtle physiological changes. Figure 1 shows fre-
quently utilized UAV systems equipped with multispectral and hyperspectral sensors. 
The DJI P4 Multispectral (Figure 1a) and Mavic 3 (Figure 1b) drones both have built-in 
cameras that collect RGB and multispectral information used for remote sensing in 
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agriculture. However, the Wingtra GEN II (Figure 1c) is suitable for various tasks, includ-
ing mapping and surveying with the help of multiple cameras including multispectral 
and RGB. The Matrice 300 RTK (Figure 1d) is designed to use various types of payloads, 
including Zenmuse P1 and Zenmuse X7, and RedEdge multi-spectral sensors by Mica-
Sense. SPECIM AFX SERIES (Figure 1e) and HySpex Mjolnir (Figure 1f) are equipped with 
hyperspectral imaging sensors capable of capturing a wide range of wavelengths for de-
tailed analysis of the vegetation. 

  
 

(a) (b) (c) 

 
 

 

(d) (e) (f) 

Figure 1. UAV systems with multispectral and hyperspectral sensors. (a) DJI P4 Multispectral, (b) 
DJI Mavic 3 Multispectral, (c) Wingtra GEN II, (d) Matrice 300 RTK, (e) SPECIM AFX SERIES, (f) 
HySpex Mjolnir. 

Figure 2 summarizes the workflow of using vegetation indices derived from multi-
spectral and hyperspectral sensor images for precision agriculture. 

 
Figure 2. General workflow using vegetation indices derived from multi and hyperspectral sen-
sors for precision agriculture. 

2.2. Thermal Sensors 
UAVs equipped with thermal sensors play a crucial role in monitoring the health 

conditions of date palm trees and detecting outbreaks caused by pests like the RPW. These 
sensors record leaf surface temperatures, which can indicate changes in transpiration rates 
or heat generated by pest-related fermentation processes in plant tissues due to pest 
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activity. This capability provides valuable information for early detection and manage-
ment of pest infestations. 

For the resilience and sustainability of future date palm agriculture, integrating UAV-
based pest management protocols utilizing thermal data is promising. Date palm farms 
can be remotely surveyed to identify high-risk areas for pest intervention without disrupt-
ing normal agricultural operations or requiring extensive fieldwork. This optimization of 
resource allocation enhances operational efficiency [3,13,53–56].  

Current research endeavors have demonstrated the effectiveness of thermal data 
analysis by UAVs in transforming pest management practices in date palm production. 
Land surface temperatures (LST) and indices derived from thermal images, such as the 
Crop Water Stress Index (CWSI) and Thermal Infrared Vegetation Index (TIR VI), have 
shown good performance in detecting/monitoring RPW as well as in enabling timely in-
terventions to reduce losses incurred through pest attacks in date palm trees. Furthermore, 
the integration of deep learning using Convolutional Neural Networks (CNNs) and 
Transformers, has significantly improved accuracy in individual tree detection and map-
ping, advancing precision agriculture in date palm plantations [54,55]. The important veg-
etation parameters derived from thermal sensors are: 
• Land surface temperature (LST): Measures surface temperature of vegetation—use-

ful for detecting thermal anomalies indicating stress. 
• Crop Water Stress Index (CWSI): Evaluates plant water stress levels by comparing 

canopy temperature to air temperature. 
• Thermal Infrared Vegetation Index (TIR VI): Combines thermal data with vegetation 

indices to enhance stress detection. 
Thermal imaging is particularly effective in detecting water stress in crops because it 

directly measures leaf temperature, which correlates with transpiration activity and leaf 
conductance. This technique gives reliable and accurate estimates for crop water stress 
related to leaf conductance as demonstrated by Möller, et al. [57] throughout the entire 
growing season. By monitoring changes in leaf moisture content, thermal imaging can 
effectively gauge the Crop Water Stress Index (CWSI) at different stages of plant develop-
ment, making it possible to continuously monitor the plants’ water needs [47]. Addition-
ally, thermal RGB imagery, when combined with computer vision techniques, outper-
forms traditional RGB imagery in identifying drought-stressed crops with higher classifi-
cation accuracy rates [58]. Such a comprehensive approach allows for accurate and timely 
detection of water stress, enabling efficient crop management and irrigation practices.  

Accordingly, thermal sensors are highly significant in detecting water stress, hence 
providing a major contribution to date palm tree pest and disease detection through the 
following primary ways: 
• Physiological response: Plants that lack water demonstrate some physiological 

changes impacting transpiration behavior leading to changed leaf surface tempera-
tures that can be detected by thermal sensors. Often, such indicators of early stress 
appear before any visible symptoms of a disease or infestation related to a pest [9]. 

• Pathogen susceptibility: Water stress can weaken plants, making them more suscep-
tible to pests and pathogens. Hence, the ability to identify stress at an early stage is 
important for timely management and intervention [59,60]. 

• Changes in date palm tree trunk temperature: Palm pests like the RPW spend a sig-
nificant portion of their life cycle within the palm tree trunk, consuming plant tissue. 
The damage inflicted on the palm tree tissue, along with the debris generated by the 
pest, initiates a fermentation process that produces heat. This temperature change 
can be sensed by thermal sensors, thus allowing for the prediction of infected palm 
trees and upcoming outbreaks [54,56,61]. 

• Thermal Imaging Sensitivity: Variations in temperatures within the palm tree canopy 
are detected using thermal imaging, as they may indicate specific stress levels. These 



Remote Sens. 2024, 16, 4371 7 of 22 
 

 

variations can signal potential hotspots for pests and diseases even before they 
spread [9,54]. Worth mentioning that combining thermal data with machine learning 
models (ML) is an efficient approach to predicting the occurrence of pests and dis-
eases based on detected patterns of water stress. These models can analyze extensive 
datasets to identify correlations and predict risk. Figure 3 illustrates a summarized 
workflow of pest and disease detection based on the water stress analysis from ther-
mal remote sensing data [58,60,62,63]. 

 
Figure 3. General workflow using water stress analysis for pest and disease detection and relying 
on thermal remote sensing data. 

2.3. Light Detection and Ranging (LiDAR) Sensors 
During the past few years, there has been an emergence of using LiDAR technology 

(ground-based or terrestrial and mobile mapping LiDAR) to aid in conducting all-inclu-
sive forest analysis. LiDAR point clouds provide detailed vertical canopy structure eval-
uation, tree-by-tree modeling, and species classification. Advanced algorithms and meth-
odologies have been developed using LiDAR data for various applications, from vertical 
canopy structure analysis to precise individual tree segmentation and species classifica-
tion. It is important to clarify that valuable vegetation indexes can be derived from the 
LiDAR data; however, these are not traditional spectral vegetation indices (such as NDVI). 
Instead, LiDAR-derived indices include: 
• Canopy Height Model (CHM): Represents the height of the canopy̶useful for as-

sessing growth and detecting structural changes due to pests. 
• Leaf Area Index (LAI): Measures the total leaf area per unit ground area, useful for 

estimating biomass and canopy density. 
• Other structural VIs: Include metrics such as canopy cover, tree crown delineation, 

and volumetric measurements. 
Furthermore, LiDAR is excellent for extracting the digital terrain model (DTM) under 

the canopy, making it well-suited for precise canopy height calculation. This leads to an 
important question: Is LiDAR technology effective in plant disease detection? To address 
this, numerous research publications have been reviewed. Recent studies have explored 
the potential of LiDAR data in detecting plant diseases, including those affecting palm 
trees. Key characteristics of LiDAR for forestry applications and plant disease detection 
include the following [64–73]. 
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- LiDAR technology efficiently captures the three-dimensional (3D) structure of vege-
tation, providing geometric details necessary for disease diagnosis. For example, tree 
parameters like height, volume, and canopy structure can be measured with high 
accuracy using a UAV equipped with a LiDAR sensor [64,65,74,75]. Furthermore, the 
digital terrain model (DTM) that lies beneath the forest is well derived by LiDAR. In 
this case, a precise estimate of canopy height can only be possible when the DTM 
below the canopy is adequately established. This makes it especially useful for in-
depth vegetation analysis and precision disease detection. 

- LiDAR data improve both the detection and understanding of plant stress responses 
when combined with other imaging techniques, such as multispectral and/or hyper-
spectral imagery. This integration enables comprehensive analysis of structural and 
physiological changes related to infections by studying the 3D structures of the trees 
along with multi-spectral/hyperspectral imagery [64,76,77]. 

- LiDAR point cloud processing algorithms have high success rates in individual tree 
segmentation (clustering) which is critical for diseased tree analysis. Segmentation 
techniques (region growing or parameter domain segmentation) are commonly used 
for isolating individual trees with their structural attributes analyzed as part of Li-
DAR-based disease detection methodologies. 
- Region growing segmentation: This technique initiates with the selection of 

some seed points and then expands outwards to add neighboring points sequen-
tially inwards with regard to a given estimation criterion (e.g., distance, color, 
surface normal, etc.). It is good in its simplicity and effectiveness for homogene-
ous regions but performs poorly in handling crown structures and non-uni-
formity in point distribution [78,79]. 

- Parameter domain segmentation: In this approach, the trees are divided into 
specific groups defined by the used parameters—for example, crown width lim-
ited by tree height. This approach especially highlights where dense forest is 
making it difficult to identify specific trees. On the other hand, however, it has 
manual parameters to set, which sometimes can be a limitation in using this 
method in different places [80,81]. 

- Model-based segmentation: The specific feature of this method is the attaching 
of geometric parameters, such as ellipsoid or cylinder, to cloud point data in an 
attempt to segment the tree structures. It demands heavy computation but 
comes with the benefit of higher accuracy in tree structures with rather eccentric 
shapes and canopies. The major disadvantage is the necessity of prior under-
standing of the tree structure, which limits the approach in forests of great vari-
ability [78,82]. 

These segmentation methods do work and perform their functions appropriate to the 
environment and the nature of the data acquired from the LiDAR. 
- Ground-based LiDAR systems have been particularly effective in detecting specific 

diseases such as basal stem rot (BSR) in oil palm trees using canopy parameters that 
were established as good indicators of disease severity [83–88]. 

- Temporal changes in LiDAR point clouds may be exploited to detect changes in trees, 
enabling the tracking of disease progression over time. The ability to detect even the 
smallest structural changes in palm trees allows for the early detection of diseases 
and timely application of intervention measures [85,89–91]. 

2.4. Summary of UAV Sensor Applications and Vegetation Indices 
The efficacy of UAV sensors in conjunction with vegetation indices (VIs) has been 

extensively documented in various literature. This review highlights principal studies that 
have utilized different types of UAV-mounted sensors to derive VIs, enhancing precision 
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in agricultural practices. Multispectral sensors are frequently used to calculate indices 
such as NDVI and NDR. These indices are essential for assessing plant vigor and chloro-
phyll content. Hyperspectral sensors capture data across a wide range of narrow bands, 
enabling the calculation of detailed indices such as PRI and REP for photosynthetic effi-
ciency and plant stress levels, respectively. This is because they cover a very wide variety 
of colors in their wavelength band, making it easier to see abnormalities in plants before 
they develop into diseases or irreparable damage. Thermal sensors measure emitted in-
frared radiation, enabling the computation of indices like CWSI to identify water stress or 
temperature anomalies indicative of pest infestations and diseases. Additionally, these 
sensors measure the infrared radiation emitted by objects around them to determine their 
temperature. This capability provides a means of detecting insects that can cause crop 
failures during dry seasons, as their temperature is typically higher compared to the sur-
rounding plants (Figure 4). 

(a) (b) 

Figure 4. (a) True-color image (RGB) of an infected tree, (b) a thermal image of an infected palm 
tree [54]. 

Furthermore, LiDAR maps depict the canopy structure, highlighting areas where 
pest and disease damage manifests through biomass loss and poorly formed trees due to 
defoliation among other indicators. 

To conclude Section 2, Table 2 has been created to illustrate the research papers that 
have focused on using specific sensors mounted on UAVs for tree and crop management 
and detection. The citations for the listed papers can be found in the references section at 
the end of this review article. 

Table 2. Applications of crop monitoring using different UAV sensors. 

Sensor Type Application Area Relevant References 
Multispectral Cameras Disease Detection in Trees [46,92] 

 Pest Infestation Mapping [44,93] 
 Early Disease Detection [94,95] 
 Precision Agriculture Applications [20,51] 
 Tree Crown Extraction and Analysis [96] 

Hyperspectral Cameras Disease and Stress Detection [44,94] 
 Chlorophyll and Water Stress Detection [48,97] 
 Plant Phenotyping and Productivity [52,70] 
 Precision Agriculture and Pest Surveillance [26,93] 
 Detection Methodologies [17,48] 

Thermal Cameras Disease Detection in Trees and Crops [54,98] 
 Water Stress Detection [48,99] 
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 Pest Infestation Monitoring [100,101] 
 Plant Phenotyping [99,102,103] 
 Feasibility and Application Studies [47,55] 

LiDAR Forest Trees Structure Monitoring [67,72,88] 
 Individual Tree Detection and Segmentation [68,88] 
 Tree-Level Morphometric Traits [69] 
 Species and Provenance Variation Detection [70] 
 Pest and Disease Stress Detection [73] 
 Comparison Studies [104,105] 

The relationship between advanced UAV sensors and vegetation indices, demon-
strating their role in enhancing efficiency in palm farming management, is highlighted in 
Table 3. This survey presents a variety of sensors and indices utilized for palm tree dis-
eases and pest management. For detailed citations of studies considered, refer to the ref-
erence section of this paper. 

Table 3. Selected literature shows the relationships between each type of UAV sensor and specific 
vegetation indices for palm tree pest and disease management. 

Sensor Type Index/Feature Relevant References 
Multispectral Cameras NDVI (Normalized Difference Vegetation Index) [1,9] 

 NDRE (Normalized Difference Red Edge) [3,50] 
 EVI (Enhanced Vegetation Index) [15,49] 
 SAVI (Soil-Adjusted Vegetation Index) [8] 

Hyperspectral Cameras PRI (Photochemical Reflectance Index) [49,97] 
 NDVI (Normalized Difference Vegetation Index) [16,17] 
 Chlorophyll Fluorescence [49,97] 

Thermal Cameras LST (Land Surface Temperature) [54,55,106] 
 CWSI (Crop Water Stress Index) [54,56] 
 TIR VI (Thermal Infrared Vegetation Index) [55] 

LiDAR Sensors 3D Canopy Structure [64,65,77] 
 Canopy Volume [52,66,85] 
 CHM (Canopy Height Model) [74] 
 LAI (Leaf Area Index) [74] 

As mentioned, recent advances in UAV technology have substantially improved the 
monitoring of palm tree pests and diseases. However, some limitations constitute yet a set 
of challenges for UAV technology to succeed under widespread and effective use in this 
context, here are some of the challenges: 

1. Cost of data acquisition: The initial investment in UAV equipment, along with the 
cost of regular deployment of UAV flights, may be very expensive for many agricul-
tural practitioners, particularly in developing countries. Such financial barriers to fly-
ing UAVs limit the accessibility and scalability of UAV technologies for consistent 
monitoring. According to [14], UAV technology’s cost needs to be lowered if it is to 
be more widely adopted for agricultural purposes. 

2. Processing complexity: UAV data, especially from multispectral, hyperspectral, and 
LiDAR sensors, involve advanced expertise and software in data analysis and inter-
pretation. Such complexity may hinder or delay decision-making processes and the 
incorporation of any insight gained from such data sources into pest management 
strategies [1]. 
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3. Weather impacts: UAV operations are ideally conducted on sunny, cloud-free days 
with low wind speeds. Weather conditions of strong wind, rain, or extreme temper-
ature, may destabilize the aircraft during flight, leading to poor information and spa-
tial resolution with data, which disables the UAV from being employed during the 
reference monitoring days [9]. 
After the discussions of the capabilities and advantages of various UAV sensor tech-

nologies in Section 2, more specific applications for monitoring palm tree health will be 
presented in the following Section 3. A particular focus will be shown on how the sensors 
have been employed to detect and manage diseases and pests in date palm trees. 

3. Palm Tree Pests and Diseases 
UAV-based remote-sensing technologies have been used with great success in detect-

ing pests and diseases affecting palm trees. This section provides a brief review of the use 
of multispectral, hyperspectral, and thermal sensors for the detection of pests and dis-
eases, with emphasis on real-world case studies. 

Date and oil palm trees are important agricultural crops that face numerous chal-
lenges from pests and disease. These issues typically impact various parts of the tree, in-
cluding the fronds, leading to observable damage or signs of distress. 

Palm tree diseases involve several major and minor economic diseases, besides nu-
trient deficiencies and this requires having different control strategies depending on the 
regional and the country’s contexts. Table 4 illustrates some of these diseases, pests, and 
deficiencies. 

Table 4. Some of the common diseases, pests, and nutrient deficiencies of palm trees. 

Disease/Pest/Nutrient 
Deficiency 

Type Control Strategy Reference 

Fusarium wilt Major disease Fungicides, sanitation [107] 
Ganoderma boninense Fungal pathogen Tree removal, fungicides [108–110] 

Basal stem rot (BSR) Major disease Soil drenching, fungicides [110,111] 
Red palm weevil (RPW) Major pest Pesticides, pheromone traps [11,112] 

Oligonychus Afrasiaticus 
(Old World date mite) 

Minor pest Miticides, biological control [113,114] 

Dubas bug Minor pest Pesticides, biological con-
trol 

[115,116] 

Leaf blight Minor disease Pruning infected leaves, 
fungicides 

[117,118] 

Leaf spot Minor disease Fungicides, good cultural 
practices 

[119] 

Phosphorus deficiency Nutrient defi-
ciency 

Phosphorus fertilizers [120,121] 

Potassium deficiency Nutrient defi-
ciency 

Potassium fertilizers [122] 

Many arthropod pests, such as mites and insects, attack date palm trees, and some 
species target foliage. The damage caused by such pests as the Old World date mite, frond 
borer, and RPW includes changes in the shape or condition of infested palm tree leaves. 
Studies [123–125] indicate that in date palm trees, umbrella-shaped fronds can be symp-
tomatic of infestations. Notably, umbrella-like fronds in date palm trees serve as a good 
indicator of plant stress or a pest problem. This is because some pests, like the frond borer 
and longhorn date palm stem borer, can cause damage leading to frond breakage or 
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gradual drying. Additionally, the RPW is a significant pest that burrows into the trunk 
and fronds, causing severe structural damage. Figure 5 illustrates a profile section of a 
point cloud that was taken on a date palm tree farm in Jordan showing an infected palm 
tree among healthy palm trees with visibly dead upper fronds. 

 

Figure 5. A profile section taken from a LiDAR point cloud of a palm tree farm shows a possible 
infected tree with missing fronds. 

The palm tree pests are usually managed through chemical pesticides, which may, 
however, spark secondary pest outbreaks and resistance problems. Therefore, other meth-
ods like biological control and the use of light traps for monitoring and mass trapping are 
also employed [3,123,124,126]. A summary of papers to review that apply research on us-
ing remote sensing techniques for the detection of pests and diseases on palm trees is 
shown in Table 5. 

Table 5. Summary of papers from the literature on using remote sensing technology for palm tree 
monitoring. 

Title/Concept DOI Sensors Used VIs 
ML Techniques 

Red Palm Weevil Detection in 
Date Palm Using Temporal 

UAV Imagery 

10.3390/rs15051
380 

UAV, multispec-
tral camera 

NDVI, SAVI 
Deep learning, CNN 

Use of Drones and Satellite 
Images to Assess the Health 

of Date Palm Trees 

10.1109/IGARSS
39084.2020.9324

065 

UAV, satellite im-
agery NDVI, EVI 

Relationship of Date Palm 
Tree Density to Dubas Bug 
Infestation in Omani Or-

chards 

10.3390/agricul-
ture8050064 

Satellite, 8 band 
images 

NDVI, GNDVI 
random forest 

Unmanned aerial vehicles 
(UAV) utilization for map-
ping the health of oil palm 

plants 

10.3390/rs14030
799 

UAV, hyperspec-
tral camera ML, random forest, 

  Infected tree 
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Efficient Framework for Palm 
Tree Dubas Bug Detection 

Using Satellite Images 

10.3390/su15191
4045 

Satellite RGB, NIR 
images Deep learning, CNN 

Use of Drones and Satellite 
Images to Assess the Health 

of Date Palm Trees 

10.1109/IGARSS
39084.2020.9324

065 

UAV, Satellite, 
RGB, multispectral 

camera 
NDVI, GIS analysis 

Seismic sensor-based man-
agement of the red palm wee-

vil in date palm plantations 
10.1002/ps.7836  

Seismic sensors, 
IOTree None 

Detection of Palm Tree Pests 
Using Thermal Imaging: A 

Review 

10.1007/978-3-
030-02357-7_12 UAV, thermal LWP, CWSI 

Identification of Damaged 
Date Palm Tree in a Farm us-
ing IoT-based Thermal Image 

Analysis 

10.1109/CITS583
01.2023.1018873

0 

UAV, thermal 
camera ML, SVM 

Efficient Framework for Palm 
Tree Detection in UAV Im-

ages 

10.1109/JSTARS.
2014.2331425 

UAV, RGB Extreme learning ma-
chine (ELM) classifier 

UAV Derived NDVI Vegeta-
tion Index and Crown Projec-

tion Area (CPA) To Detect 
Health Conditions of Oil 

Palm Trees 

10.5194/isprs-
archives-XLII-4-
W16-611-2019 

UAV, RGB, multi-
spectral camera 

NDVI 

Large-Scale Date Palm Tree 
Segmentation from Mul-

tiscale UAV-Based and Aerial 
Images Using Deep Vision 

Transformers 

10.3390/drones7
020093. 

UAV, satellite 
RGB images 

Deep learning VT, 
CNN 

High-Resolution Multisensor 
Remote Sensing to Support 

Date Palm Farm Management 

10.3390/agricul-
ture9020026 

Aerial sensor, hy-
perspectral, ther-
mal, RGB, LiDAR 

NDVI, REP, statistical 
analysis 

Red Palm Weevil Detection in 
Date Palm Using Temporal 

UAV Imagery 

10.3390/rs15051
380 

UAV, RGB, multi-
spectral, thermal 

cameras 
NDRE, CHM, gNDVI 

Drones applications for smart 
cities: Monitoring palm trees 

and street lights 

10.1515/geo-
2022-0447 

UAV, multispec-
tral camera NDVI 

Physical and Physiological 
Monitoring on Red Palm 

Weevil-Infested Oil Palms 

10.3390/in-
sects14110859 General General 

Data obtained from UAV-based remote sensing technologies help determine physical 
changes within palm trees. Nevertheless, advancements in data processing can further 
increase the reliability and efficiency of disease and pest detection. The next section will 
review some of the machine learning and deep learning techniques that are used to ana-
lyze sensor data for more precise and automated detection of diseases and pests in crops 
and palm trees. 
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4. Machine and Deep Learning for Disease and Pest Detection in Palm Trees 
Machine learning (ML) and deep learning (DL) techniques have revolutionized the 

analysis of remote sensing data. These advanced algorithms can process large datasets, 
identify patterns, and make predictions with high accuracy, significantly enhancing tra-
ditional remote sensing methods. 

Previous sections focused primarily on remote sensing technologies specific to palm 
trees while this section presents ML and DL applications. While the references mentioned 
in this section are initially developed for other crops or different types of palm trees, they 
provide valuable insights and can be effectively adapted for disease and pest detection in 
date palm trees. 

ML algorithms, such as support vector machines (SVM), random forest (RF), and k-
nearest neighbors (k-NN), have been widely used to classify healthy and infested palm 
trees based on spectral, thermal, and structural data [16,17,127,128]. These algorithms can 
handle the complex and high-dimensional nature of remote sensing data, improving the 
detection of subtle changes in tree health that may be indicative of pest or disease pres-
ence. 

DL, particularly convolutional neural networks (CNNs), has shown even greater 
promise due to its ability to automatically extract relevant features from raw data without 
manual feature engineering. CNNs have been successfully applied to hyperspectral and 
multispectral data for detecting diseases like RPW infestation, with studies reporting high 
classification accuracies [45,97,129]. The depth and complexity of CNNs enable them to 
capture intricate patterns and relationships within the data, making them highly effective 
for pest and disease detection. 

For example, Kuswidiyanto, et al [45] used deep learning on hyperspectral images to 
diagnose plant diseases, achieving significant improvements in detection accuracy com-
pared to traditional methods. Similarly, [17] applied SVM to hyperspectral reflectance 
data for early detection and classification of plant diseases, demonstrating the potential of 
ML in enhancing disease management. Mohanty, et al. [130] determined that DL models 
trained on large public datasets can accurately identify 14 crop species and 26 diseases, 
paving the way for close-range smartphone images for crop disease diagnosis on a global 
scale. 

Integrating ML techniques with multi-sensor data further enhances their efficacy. By 
combining spectral, thermal, and structural data, these algorithms can leverage the 
strengths of each sensor type, leading to more accurate and reliable predictions. For in-
stance, Easterday, et al [50] demonstrated the effectiveness of using UAV-based multispec-
tral and thermal imagery analyzed with machine learning to monitor water stress and 
disease in crops, highlighting the potential for similar applications in palm tree monitor-
ing. Albattah, et al. [131] found that a drone-based deep learning approach using an im-
proved EfficientNetV2-B4 achieves very high accuracy in detecting and categorizing crop 
leaf diseases, outperforming other recent techniques, and reducing time complexity. Fur-
thermore, Marrs, et al [132] found that combining LiDAR and hyperspectral data im-
proves classification accuracy for tree species, suggesting that multi-sensor data provides 
richer information. While Albattah, et al [131,132] focus on crop leaves and trees, the meth-
odology can be directly applicable to palm tree health monitoring where palm tree dis-
eases can be effectively detected and categorized using deep learning techniques. 

The adoption of these advanced analytical techniques also facilitates the develop-
ment of automated monitoring systems, reducing the need for manual inspections and 
enabling real-time detection and response to pest and disease outbreaks. This not only 
improves the efficiency of agricultural practices but also contributes to sustainable pest 
and disease management by enabling precise and targeted interventions. 
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In the following, some useful literature that discussed the use of machine learning or 
deep learning techniques for crop monitoring and management using remote sensing 
were identified. While these studies focus on crops beyond palm trees, they provide foun-
dational insights into how similar technologies can be adapted for palm tree pest and dis-
ease management. For example, Sishodia, et al [1] presented a review covering the appli-
cations of remote sensing in precision agriculture, including the use of machine learning 
techniques for various crop monitoring tasks. In a review paper, Zhang et al [9] discussed 
the application of remote sensing technologies, including ML, for the monitoring of plant 
diseases and pests. Similarly, [14] reviewed the achievements and challenges of remote 
sensing in agriculture, highlighting the role of ML in enhancing crop monitoring and man-
agement. The study by Rumpf, et al [17] demonstrated the use of SVM for the early detec-
tion and classification of plant diseases using hyperspectral reflectance data. Sharifi [19] 
focused on yield prediction using ML algorithms in conjunction with satellite imagery. 
Candiago, et al [20] evaluated the use of multispectral images and vegetation indices from 
UAVs for precision farming, including the application of ML techniques. Zhou, et al  [21] 
used machine learning to predict rice grain yield from multi-temporal vegetation indices 
obtained from UAV-based multispectral and digital imagery. Chivasa, et al. [133] applied 
UAV-based multispectral data with a Random Forest classifier to accurately classify maize 
varieties into resistant, moderately resistant, and susceptible groups under artificial maize 
streak virus injection. Kuswidiyanto, et al  [45] focused on the use of DL techniques for 
plant disease diagnosis using aerial hyperspectral images, and Albattah et al  [131] pre-
sented an AI-based drone system utilizing DL (CNN) for multiclass plant disease detec-
tion. Table 6 provides selected references on crop health and pest monitoring using ML 
and DL techniques that can be adopted for palm trees as well. 

Table 6. Selected literature discussed the use of AI-based techniques on remote sensing data for 
crop monitoring. 

 AI Technique Application Reference 

Machine 
Learning 

Support Vector Ma-
chines (SVM) 

Classify healthy and infested 
palm trees 

Rumpf, Mahlein, et 
al. [17] 

Random Forest (RF) Detect disease stress in crops Chivasa, et al. [133] 
k-Nearest Neighbors 

(k-NN) 
Classify healthy and infested 

palm trees 
Rumpf, Mahlein, et 

al. [17] 
Integrating ML with 
Multi-Sensor Data 

Monitor water stress and dis-
ease in crops 

Easterday, Kislik, et 
al. [50] 

Deep 
Learning 

Convolutional Neural 
Networks (CNNs) 

Detecting diseases like Red 
Palm Weevil infestation 

Kuswidiyanto, Noh, 
et al. [45] 

Improved Efficient-
NetV2-B4 

Detecting and categorizing 
crop leaf diseases 

Albattah, Javed, et al. 
[131] 

Combining LiDAR and 
Hyperspectral Data 

Improves classification accu-
racy for tree species 

Marrs and Ni-Meister 
[132] 

Deep Learning on Hy-
perspectral Images Diagnose plant diseases 

Kuswidiyanto, Noh, 
et al. [45] 

Deep Learning on Pub-
lic Datasets 

Identify 14 crop species and 
26 diseases 

Mohanty, Hughes, et 
al. [130] 

5. Conclusions 
The overall analysis of remote sensing technology for identifying pests and diseases 

in palm trees emphasizes significant advancements and methodologies that improve the 
monitoring and management of agriculture. This is made possible through multispectral 
and hyperspectral sensors which use indices such as NDVI, NDRE, PRI, chlorophyll 
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fluorescence, etc. to provide important information about the physiological condition of 
palm trees. Thermal sensors offer critical data on plant stress and water status using indi-
ces such as LST and CWSI. Detailed structural analysis input comes from LiDAR sensors 
by measuring canopy height, volume, and LAI. 

Despite the capabilities of these technologies, each type of sensor has its limitations. 
RGB vegetation indices cannot accurately distinguish between infested and non-infested 
trees in most cases. On the other hand, multispectral and hyperspectral indices can iden-
tify changes in plant health but may require advanced analytic techniques or machine 
learning methods for precise interpretation. Combining spectral information with Li-
DAR’s structural data is essential for comprehensive pest and disease monitoring. 

Machine learning and deep learning- approaches have proven effective in enhancing 
the accuracy and reliability of pest and disease detection. However, integrating these into 
operational agricultural practices remains a major challenge that needs further research 
and development. 

Future studies should consider increasing the emphasis on the development of UAV 
systems that are low-cost, optimization of algorithmic data acquisition and processing, 
and integration of multi-sensor data fusion techniques to enhance detection accuracy and 
operational efficiency. Moreover, advancing machine learning models for the automated 
interpretation of complex datasets and real-time monitoring capabilities will be essential. 
Future opportunities for emerging technologies, especially Internet of Things (IoT) tech-
nologies or edge computing for remote sensing applications in palm tree sciences, also 
offer promising opportunities for research. Furthermore, a promising line that could be 
pursued is the application of chemical mapping techniques in remote sensing. This new 
technology involves the detection and mapping of chemical substances, one of which is 
volatile organic compounds (VOCs) that are emitted by stressed plants. UAV sensors and 
satellite data can be employed to monitor the chemical emissions that reflect biotic stress, 
which can be considered as an additional data layer for early pest and disease detection. 
Although the current review has not focused extensively on chemical mapping, it offers 
exciting prospects for enhancing the precision of pest and disease monitoring in palm tree 
plantations. Future research will be able to determine the possibility of using chemical 
mapping in combination with remote sensing techniques that are already in use as a more 
complete solution; thus, more innovations in the field are to be expected. 

In conclusion, UAV remote sensing technologies provide a powerful toolkit for palm 
tree health monitoring, their successful application requires a multi-sensor approach sup-
ported by advanced data analytics methods. Subsequent studies will need to refine these 
technologies to incorporate them within practical pest and disease management systems, 
thereby boosting sustainable palm tree agriculture productivity levels. 
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