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Abstract: To achieve the regional goal of “double carbon”, it is necessary to map the carbon stock
prediction for a wide area accurately and in a timely fashion. This paper introduces a long- and
short-term memory network algorithm called the Self-Attention Convolutional Long and Short-Term
Memory Network (SA-ConvLSTM). This paper takes the Wuhan urban circle of China as the research
object, establishes a carbon stock AI prediction model, constructs a carbon stock change evaluation
system, and investigates the correlation between carbon stock change and land use change during
urban expansion. The results demonstrate that (1) the overall accuracy of the ConvLSTM and SA-
ConvLSTM models improved by 4.68% and 4.70%, respectively, when compared to the traditional
metacellular automata prediction methods (OS-CA, Open Space Cellular Automata Model), and for
small sample categories such as barren land, shrubs, and grassland, the accuracy of SA-ConvLSTM
increased by 17.15%, 43.12%, and 51.37%, respectively; (2) from 1999 to 2018, the carbon stock in
the Wuhan urban area showed a decreasing trend, with an overall decrease of 6.49 × 106 MgC.
The encroachment of arable land due to rapid urbanization is the main reason for the decrease in
carbon stock in the Wuhan urban area. From 2018 to 2023, the predicted value of carbon stock in
the Wuhan urban area was expected to increase by 9.17 × 104 MgC, mainly due to the conversion of
water bodies into arable land, followed by the return of cropland to forest; (3) the historical spatial
error model (SEM) indicates that for each unit decrease in carbon stock change, the Single Land
Use Dynamic Degree (SLUDD) of water bodies and impervious surfaces will increase by 119 and
33 units, respectively. For forests, grasslands, and water bodies, the future spatial error model (SEM)
indicated that for each unit increase in carbon stock change, the SLUDD would increase by 55, 7,
and −305 units, respectively. This study demonstrates that we can use deep neural networks as a
new method for predicting land use expansion, revealing the key impacts of land use change on
carbon stock change from both historical and future perspectives and providing valuable insights
for policymakers.

Keywords: carbon stock; InVEST model; LULC spatial–temporal prediction; spatial lag and error
model; SA-ConvLSTM model

1. Introduction

The carbon stock in urban land use is a fundamental component of the carbon cycle
in urban ecosystems [1], playing a critical role in regulating climate change, safeguarding
ecosystem health, and understanding the environmental dynamics of cities [2]. Neverthe-
less, changes in carbon stocks due to human activities such as urbanization have become
increasingly significant in international environmental research, particularly given the
rapid expansion of urban areas and their impact on carbon dynamics [3–6]. Urban soil
organic carbon is a significant constituent of carbon stocks that are directly influenced by

Remote Sens. 2024, 16, 4372. https://doi.org/10.3390/rs16234372 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16234372
https://doi.org/10.3390/rs16234372
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-5125-472X
https://orcid.org/0009-0004-6951-8980
https://doi.org/10.3390/rs16234372
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16234372?type=check_update&version=1


Remote Sens. 2024, 16, 4372 2 of 22

land use practices within city environments [7]. Numerous factors influence the quantity
and distribution of urban organic carbon, including meteorological conditions, urban land
use practices, and the variety of plant species in city environments [8–10]. It is crucial
to have precise estimations and predictions of urban land-use-related carbon stocks, par-
ticularly in light of the escalating consequences of climate change on densely populated
areas. The majority of conventional approaches to monitoring urban soil carbon stocks
rely on sampling and field surveys, which are often constrained by their limited temporal
and spatial coverage in city environments [11–13]. To ensure a timely and comprehensive
understanding of carbon stock fluctuations in urban areas, sophisticated remote sensing
instruments and data processing tools are essential [14]. The utilization of satellite remote
sensing technology has transformed remotely sensed data into a crucial instrument for
examining urban carbon stocks associated with land use changes [15]. Satellite observations
provide a diverse array of accurate data with significant temporal and spatial precision,
crucial for enhancing the surveillance of urban soil organic carbon stocks across various
city ecosystems [16]. In comparison to conventional methods, remote sensing offers numer-
ous benefits for urban environments, such as cost-effectiveness, extensive coverage, and
real-time data acquisition [17]. The investigation of urban carbon stocks through the imple-
mentation of machine learning models, particularly deep learning, has gained significant
attention in the scientific community, highlighting advancements in analyzing complex
urban ecosystems. For example, Zhang et al. [18] utilized the radial basis function (RF)
method along with remote sensing data from Landsat TM and OLI satellites to estimate the
spatial and temporal distribution of carbon stocks in urban forests in the Hangjiahu region.

Current research on predicting urban carbon stocks frequently employs land use simula-
tions alongside carbon stock estimation models, often involving complex models and varied
data sources [19]. Early methodologies for urban carbon stock assessment primarily included
field sampling techniques, computational methods [20], remote sensing-based estimation
methods, and model-based approaches. Various research domains, including urban ecological
regions, diverse urban land use categories, and extensive municipal and provincial levels,
have implemented these techniques. A substantial body of research, including studies by
Leh et al. [21], He et al. [22], Babbar et al. [23], and Wang et al. [24] have provided significant
evidence supporting the widespread application of the InVEST model in these urban settings.
In contrast to other models, the InVEST model demonstrates superior output capability with
reduced input requirements, making it especially effective for urban carbon stock assess-
ments [25]. Furthermore, the multilevel design of the InVEST model, comprising numerous
modules, makes it particularly suitable for examination across various urban dimensions
and contexts. The model can expedite the computation of urban carbon stocks and is ideally
suited for large-scale assessments in metropolitan areas. Subsequently, researchers have
increasingly focused on estimating forthcoming urban carbon stocks. Commonly used models
in these urban studies include CA-Markov [26], FLUS [27,28], Clue-s [29], and PLUS [30–32].
Nevertheless, in urban applications, the ability of cellular automata-based prediction methods
to integrate temporal information from time-series data with global contextual information
in spatial analysis is somewhat limited. To address these issues, our study employs deep
learning algorithms and satellite remote sensing data to accurately estimate and predict car-
bon stocks associated with urban land use in the Wuhan urban circle [33]. By integrating
urban-specific data types such as meteorology, soil, and vegetation, our study analyzes and
explores the correlation between carbon stocks generated by urban land use and the various
factors influencing these stocks. The core methodology for predicting urban carbon stocks in
this paper is structured in two steps. The first step involves predicting future urban land use,
and the second step estimates carbon stocks based on these predicted land use scenarios in
the Wuhan urban circle.

In this study, we utilized land use data from the Wuhan urban area spanning from
1999 to 2019. Both traditional cellular automata models and deep learning techniques
were employed to simulate and forecast land use patterns for the period from 2019 to
2023. Additionally, this research explores the effectiveness of deep learning methods
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in simulating and predicting land use changes. Subsequently, we calculated the carbon
stock from 1999 to 2023 using the InVEST model and analyzed the spatial and temporal
variations in carbon stock within the Wuhan urban area. Finally, the relationships among
three indicators—SLUDD, LC, and LUM—and their impact on carbon stock changes were
investigated using the spatial error model (SEM) and the spatial lag model (SLM). The
innovation of this study lies in the proposed prediction method for estimating carbon stock,
utilizing the SA-ConvLSTM model [34], which differs significantly from existing methods.
This approach not only predicts carbon stock changes but also examines the relationship
between land use and carbon stock variations.

The remainder of this paper is organized as follows. Section 2 presents the theoretical
framework. Section 3 details the study area, research methodology, and data sources.
Section 4 discusses the analysis of the results. Section 5 provides a discussion of these
findings, and these are followed by the Conclusion.

2. Theoretical Framework

The flowchart in Figure 1 illustrates our innovative approach to predicting and ana-
lyzing carbon stocks. It is structured into four main components: data preparation, a deep
learning-based land use prediction framework, spatio-temporal prediction of carbon stock,
and correlation analysis between carbon stock and land use. In this paper, we employ
a combination of AI technology and GIS spatial analysis to construct an AI prediction
model for carbon stock, develop an evaluation system for monitoring carbon stock changes,
and comprehensively analyze the linkage between carbon stock changes and land use
changes during urban expansion. This study provides a reference for mapping the carbon
stock background and offers guidance for government agencies to formulate future land
planning strategies aimed at achieving the dual-carbon goal promptly.
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Figure 1. Flowchart for predicting and analyzing urban carbon stocks.

3. Materials and Methodology
3.1. Study Area

The Wuhan City Circle [35] is located in the central region of Hubei Province, China
(Figure 2), and serves as both the central hub and the capital of the province. The Wuhan
City Circle is located in a subtropical monsoon climatic zone characterized by well-defined
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seasons. Summer is characterized by high temperatures and humidity and the majority of
the annual precipitation, while winter features comparatively low temperatures. Spring
and autumn, on the other hand, are characterized by mild and pleasant weather. Wuhan is
located in the Jianghan Plain, encircled by hills and mountains, with rivers such as the Han
River and Yangtze River flowing through it (Figure 2). This geographical configuration
significantly influences the city’s transit infrastructure and water use. Over the past
two decades, Wuhan has experienced significant infrastructure development, encompassing
transportation, water management, and urban construction.
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3.2. Methodology
3.2.1. Predicting Land Use Based on SA-ConvLSTM Modeling
SA-ConvLSTM Model

This study employs the encoder–decoder architecture to accurately forecast spatio-
temporal sequences by capturing both spatial and temporal characteristics of the input
data through machine learning [36]. The encoder module of the model comprises three
downsampling layers and three Self-Attention Convolutional Long Short-Term Memory
Network [34] (SA-ConvLSTM) layers. The downsampling layer reduces the image size
through methods such as max pooling, average pooling, or strided convolution to extract
important spatial features [37]. In accordance with the common time intervals used in
urban planning in China [38], the model framework is designed to use the previous 5 years
to predict changes in the subsequent 5 years. ConvLSTM effectively models both the
geographical information and the spatio-temporal elements contained in the time series.
The Spatial Attention Mechanism (SAM) enhances the model’s long-term memory by
storing and utilizing both temporal and spatial information [39].

The model is formulated as follows:

X̂t = SA(Xt), Ĥt−1 = SA(Ht−1) (1)

it = σ
(

Wxi ∗ X̂t + Whi ∗ Ĥt−1 + bi

)
(2)

ft = σ
(

Wx f ∗ X̂t + Wh f ∗ Ĥt−1 + b f

)
(3)

gt = tanh
(

Wxc ∗ X̂t + Whc ∗ Ĥt−1 + bc

)
(4)

Ct = ft ◦ Ct−1 + it ◦ gt (5)

ot = σ
(

Wxo ∗ X̂t + Who ∗ Ĥt−1 + bo

)
(6)
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Ht = ot ◦ tanh(Ct) (7)

SA is an abbreviation for the self-attention module algorithm. Implementing the
self-attention module on the input X̂t at time step t yields the result Xt. The model captures
input sequence interdependencies using the self-attention module. The result is acquired
by applying the self-attention module on the hidden state Ĥt−1 from the previous time
step. It helps the model capture hidden state internal linkages. it represents the input gate.
The sigmoid function (σ) determines the new state magnitude, which controls the addition
of fresh information gt to the cell state Ct.The forgetting gate is ft. A sigmoid function
controls the forgetting gate such that information from the previous time step cell state Ct−1
is maintained in the current time step. The hyperbolic tangent (tanh) function processes gt,
which contains additional information. It calculates the value to add to Ct, a candidate cell
state. Variable Ct denotes cell state. Input data are stored in the LSTM cell’s memory. With
gt, the forgetting gate ft controls the assimilation of new information and the retention
and omission of information from the previous time step’s cell state. The output gate is
ot. A sigmoid function determines the cell state Ct, which is provided to the hidden state
Ht. At time step t, H is the concealed state. This is the LSTM cell’s main output. The
cell state Ct is multiplied by the output gate ot and processed using a hyperbolic tangent
function. The altered input sequences and prior hidden states are linearly combined using
the weight matrices Wxi, Wx f , Wxc, Wxo, Whi, Wh f , Whc, and Who. This calculation calculates
input gates, oblivion gates, candidate cell state values, and output gates. Training generates
weight matrices as model parameters. The bias variables bI , b f , bc, and bo fine-tune gate
behavior and the computation of the candidate cell state [34].

The model data can be categorized into two types: computational self-attention and
ConvLSTM operations, as shown in Figure 3. The purpose of employing self-attention in
data processing is to enhance the ability to retain long-term spatio-temporal information
and to boost the capability to learn from data with subtle spatial variations. ConvLSTM [40],
a variant of the LSTM architecture, replaces pointwise multiplications with convolutional
operations. This allows for the simultaneous learning of spatial and temporal information.
Additionally, ConvLSTM incorporates an attention mechanism to selectively focus on
important aspects of the data, thereby improving the retention of key information, especially
in small samples.
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SAM Module

The SAM module utilizes a unique memory cell, referred to as M, to contain spatial
information that is injected with temporal correlation. The inputs to the SAM module
are the ConvLSTM exported hidden layer state, Ht, from the current time step, and the
memory view, Mt−1, from the previous time step.

As shown in Figure 4, the SA mechanism analyzes the input Ht to generate the
characteristic Zh. This process emphasizes the significance of certain components in Ht.
Simultaneously, Ht functions as a query, while Mt−1 is processed by the attention mecha-
nism to generate the feature Zm. This highlights the components of Ht that have a distinct
reliance on Mt−1. By combining the elements Zh and Zm, we obtain the composite feature
Z, which encompasses data from the present time step and overall temporal memory.
Afterward, the combined characteristics Z are connected to the gating mechanism in the
LSTM to modify the state of the hidden layer and the memory cells. This function modifies
the hidden layer state Ĥt and the memory Mt of the current time step. The SAM module is
structured in the following manner [34]:

i′t = σ(Wm;zi ∗ Z + Wm;hi ∗ Ht + bm;i) (8)

g′t = tanh
(

Wm;zg ∗ Z + Wm;hg ∗ Ht + bm;g

)
(9)

Mt =
(
1 − i′t

)
◦ Mt−1 + i′t ◦ g′t (10)

o′t = σ(Wm;zo ∗ Z + Wm;ho ∗ Ht + bm;o) (11)

Ĥt = o′t ◦ Mt (12)
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In the above equation, the symbol i′t denotes the input gate. The sigmoid function
is used to determine the value that controls the quantity of new information, denoted as
g′t, that should be introduced to the existing state. The gating mechanism regulates the
amount of past memory that should be preserved in the present time step t. The variable
g′t represents the updated memory candidate obtained by using the hyperbolic tangent
function. It denotes the additional data that will be included in the memory Mt. Mt is the
model’s internal state, which stores input sequence information. The system is updated by
the input gate i′t, the new information g′t, and the memory gate Mt−1 forgetting the process
from the previous time step. The output gate is denoted as o′t. The value is transformed
using a sigmoid function to regulate the impact of the information stored in memory Mt on
the output and the impact it has on the resulting product. The gate mechanism quantifies
the impact of the memory gate information on the output value Ĥt. Ht represents the time
step t, which includes the memory gate Mt and the output gate o′t. This assesses the impact
of the stored information on the model’s output. The parameters used for managing the
gating and the memory update are the weight matrices Wm,zi, Wm,hi, Wm,hg, Wm,zg, Wm,zo,
Wm,ho, as well as the bias terms bm,i, bm;g, and bm,o.

3.2.2. Using the InVEST Model to Analyze the Carbon Stock

By immobilizing elemental carbon in soils and plants to control atmospheric carbon
levels, carbon storage serves as a crucial ecosystem-regulating function that helps mitigate
climate change [41]. The InVEST model is one of the most frequently used tools for
estimating carbon stocks in extensive ecosystem assessments [42]. In the carbon stocks
module of the InVEST model, ecosystem carbon stocks are categorized into four basic
reservoirs: soil carbon (found in organic and mineral soils), dead organic carbon (found in
apoplastic material, fallen or standing dead wood), above-ground biomass carbon (found
in all living plants above the soil), and below-ground biomass carbon (found in the active
root system of plants). Below are the formulae for these reservoirs:

Ci = Cabove + Cbelow + Csoil + Cdead (13)

Ctotal =
n

∑
i=1

Ci × Ai, (i = 1, 2, . . . , n) (14)

Ci represents the carbon density of land use type i (Mg/ha); Cabove represents the
carbon density of above-ground biomass (Mg/ha); Cbelow represents the carbon density of
below-ground biomass (Mg/ha); Csoil represents the soil carbon density (Mg/ha); Cdead
represents the carbon density of inorganic matter (Mg/ha); Ctotal represents the total
ecosystem carbon stock (Mg/ha), Ai represents the total area of land use type i (hm2), and
n is the total number of land use types.

The carbon storage module of the InVEST model operates on the fundamental premise
that the carbon density of each land cover type remains consistent. The computation of
regional vegetation carbon stocks was achieved by multiplying the fixed carbon density
values of various vegetation types by their corresponding geographical areas. Given the
significant variability in carbon density among various scholars [43–45], it is advisable
to rely on literature that specifically focuses on Hubei Province as a reference [46,47]. To
compensate for the lack of data on certain Land Use and Land Cover (LULC) categories, we
used the China Terrestrial Ecosystem Carbon Density Dataset [48] and gathered information
from similar locations [49]. This allowed us to improve the accuracy of the needed carbon
density data. The carbon density of different land use types is shown in Table 1.
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Table 1. Carbon intensity of each land use type in the area (Mg/ha).

Land Use Type Above-Ground
Carbon Density

Below-Ground
Carbon Density

Soil Organic
Carbon Density

Dead Organic
Matter Carbon

Density

Total Carbon
Density

Cropland 16.49 10.89 75.82 2.11 105.31
Forest 30.14 6.03 100.15 2.78 139.1
Shrubs 8.67 4.05 82.9 0.87 96.49

Grassland 14.29 17.15 87.05 7.28 125.77
Water 9.3 14.7 81.7 43.1 148.8
Barren 10.36 2.07 34.42 0.96 47.81

Impervious 7.61 1.52 34.33 0 43.46

The CLCD land use data categorizes rivers and lakes collectively as water bodies
without distinguishing between natural water bodies, reservoirs, ponds, tidal flats, and
beaches [50]. Considering that wetlands typically store significant amounts of carbon [51],
assigning a carbon density of zero to water bodies is inappropriate. Therefore, within the
study area, the wetland carbon density coefficient has been adjusted based on the area
distribution ratios of rivers and lakes from the CNLUCC data [52]. The CNLUCC land
use dataset was obtained from the Institute of Geographic Sciences and Natural Resources
Research, China (http://www.resdc.cn/, accessed on 12 November 2024). The carbon
density coefficient for water bodies is calculated by dividing the average area of lakes,
reservoirs, and tidal flats over 20 years by the total water area and then multiplying by the
carbon density coefficient for wetlands.

3.2.3. Indicators for the Assessment of Predictive Models

The performance of the multivariate classification model is evaluated using the following
metrics. In land use forecasting, it is common to encounter an uneven data distribution, with
some categories having fewer samples. If emphasis is placed solely on overall accuracy, the
model may perform well in categories with a larger number of samples but exhibit subpar
performance in categories with fewer samples. Emphasizing the precision of small data
samples is crucial for accurately assessing the model’s performance in these critical areas.

Accuracy =
TP

TP + FN + FP
(15)

Precision =
TP

TP + FP
(16)

Recall =
TP

TP + FN
(17)

F1 = 2 × Precision × Recall
Precision + Recall

(18)

Accuracy refers to the ratio of correctly predicted samples to the total number of
samples. Precision quantifies the proportion of samples classified as positive that are truly
positive. Recall measures the proportion of actual positives correctly identified by the
model. The F1 Score is a metric that combines Precision and Recall by calculating their
harmonic mean. True Positives (TP) refer to the number of samples the model correctly
predicts as belonging to a specific land use category, False Positives (FP) indicate the
number of samples from other categories that the model incorrectly predicts as this land
use category, and False Negatives (FN) represent the number of samples from a specific
land use category that the model incorrectly predicts as belonging to other categories.

3.2.4. Metrics for Assessing the Correlation Between Land Utilization and Carbon Storage

The correlation between changes in land use over time and variations in carbon
stock is examined by utilizing metrics that capture the dynamics of land use. The indices

http://www.resdc.cn/
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used are the Single Land Use Dynamic Degree (SLUDD) [53], Comprehensive Land Use
Dynamic Degree (LC) [54], and Entropy Index of Land Use Mix (LUM) [55]. SLUDD aims
to emphasize the rate of change specific to a single Land Use and Land Cover (LULC)
category. LC is linked to the overall rate of change in land use and the transformation of
a particular Land Use and Land Cover (LULC) category into different LULC categories.
An entropy index of land use mix assesses the degree of even distribution or mixture of
different Land Use and Land Cover (LULC) categories within a specific year, reflecting the
diversity of land usage.

SLUDD =
Ub − Ua

Ua
× 1

T
× 100% (19)

LC =

[
∑n

i=1 ∆LUi−j

2∑n
i=1 LUi

]
× 1

T
× 100% (20)

UM = A/(LN(N)) (21)

Ua is the area of a land use type at the beginning of the study, Ub is the area of the
land use type at the end of the study, T is the length of the study. LUi is the area of a land
use type of category i at the starting time of the study, ∆LUi−j is the absolute value of the
area of land of category i transformed into land use type of category j at the time of the
study, and T is the length of the study. A = (b1/a) ln (b1/a) + (b2/a) ln (b2/a) + . . . + (bn/a)
ln (bn/a). a = Total area of all land use types. bn = area under land use type ‘n’. N = Total
number of land use types.

3.2.5. Spatial Dependence Between Land Use Dynamics and Carbon Stocks

The SLUDD, LC, and LUM indices were utilized as independent factors, while carbon
stock was considered the dependent variable. These variables were used to assess the spatial
relationship between land use and carbon stock using the spatial lag model (SLM) [56] and
spatial error model (SEM) [56]. The fundamentals of SLM and SEM are as follows:

ySLM = pWy + Xβ + ε (22)

y is the dependent variable, X is the explanatory variable matrix without an intercept
term, Wy is the spatial weight matrix, β is the vector of slope indicating the influence of the
independent variables over the dependent factor, ε is the vector of the random error terms.

ySEM = Xβ + λWε + µ (23)

λ is the spatial autoregressive coefficient following error term, µ is the Vectors of the
error term, Wε is the Spatial weight matrix.

3.3. Data Sources

This research utilized the first Landsat-derived 30 m annual Chinese Land Cover
Dataset (CLCD) spanning the years 1999–2019 [50]. The classification includes nine distinct
categories: cropland, forest, shrubland, grassland, water, snow and ice, barren land, im-
permeable surface, and wetland. Based on the current conditions of the research region
and the land use categorization in this dataset, the land use/cover types were divided
into seven distinct categories: cropland, forest, shrubland, grassland, water, barren land,
and impervious surface. The determinants of Land Use and Land Cover (LULC) changes
are crucial data inputs for conducting land use simulations. The driving factors of LULC
changes are primarily derived from two socio-economic data points, one environmental
data point, and three accessibility data points, as shown in Figure 5. Detailed data de-
scriptions and sources are provided in Table 2. In this work, these determinants primarily
consist of physico-geographical characteristics, accessibility, and socio-economic aspects.
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Table 2. Specific description of each driver and its source.

Specific Data Resolution Type Source

Population 1000 m Raster Resource and Environment Science and Data Centre of the Chinese Academy of Sciences
(https://www.resdc.cn/, accessed on 25 April 2023)GDP 1000 m Raster

DEM 30 m Raster
NASA(National Aeronautics and Space Administration) and NGA (National

Geospatial-Intelligence Agency)
(https://www2.jpl.nasa.gov/srtm/, accessed on 9 September 2023)

The distance to
Rivers 30 m Raster National Catalogue Service for Geographic Information

(https://www.webmap.cn/commres.do?method=result100, accessed on
5 September 2023)

The distance module in ArcGIS 10.8 was used to calculate the distances from the shapefile
format of each source data

The distance to
Railways 30 m Raster

The distance to
Road 30 m Raster

4. Results
4.1. Analysis of LULC Prediction Results

Table 3 shows the combined performance scores of OS-CA (Open Space Cellular
Automata Model) [57], ConvLSTM, and SA-ConvLSTM. From Table 3, it can be seen that
both the ConvLSTM model and SA-ConvLSTM model based on the deep learning method
perform better than the OS-CA model.

Table 3. Comparison of the prediction results of the three models. The best results are marked in bold.

Model Accuracy Precision Recall F1 Kappa

OS-CA 94.629% 81.879% 78.321% 80.061% 90.498%
ConvLSTM 99.313% 95.173% 95.460% 95.277% 98.820%

SA-ConvLSTM 99.325% 95.337% 96.549% 95.919% 98.884%

https://www.resdc.cn/
https://www2.jpl.nasa.gov/srtm/
https://www.webmap.cn/commres.do?method=result100
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The extrapolation performance of the SA-ConvLSTM model is superior to that of
the ConvLSTM model. Among the seven land use classifications, shrubland, grassland,
and barren land accounted for only 0.003%, 0.037%, and 0.008% of the total land area,
respectively. However, due to the uneven distribution of data samples, further analysis
is needed to better understand the accuracy of the predictions. To address the uneven
distribution of data samples, it is necessary to gain a more comprehensive understanding
of the prediction performance. Table 4 compares the prediction accuracy for small data
samples, with the best results highlighted in bold.

Table 4. Accuracy of the three models for each category. The best results are marked in bold.

Evaluation
Indicators Model

Type
Cropland Forest Shrubs Grassland Water Barren Impervious

Accuracy
OS-CA 91.42% 91.00% 70.37% 35.85% 79.34% 36.98% 81.36%

ConvLSTM 98.78% 99.06% 85.63% 78.27% 96.16% 78.91% 98.15%
SA-ConvLSTM 98.79% 99.05% 87.52% 78.96% 96.20% 88.35% 98.14%

Precision
OS-CA 95.52% 95.29% 86.33% 64.62% 91.82% 53.99% 85.58%

ConvLSTM 99.57% 99.41% 89.84% 85.75% 96.72% 94.49% 99.90%
SA-ConvLSTM 99.58% 99.41% 90.64% 86.09% 96.74% 95.02% 99.91%

Recall
OS-CA 95.52% 95.29% 79.19% 44.60% 85.38% 53.99% 94.28%

ConvLSTM 99.20% 99.64% 94.81% 89.97% 99.39% 82.71% 98.21%
SA-ConvLSTM 99.21% 99.64% 96.22% 90.51% 99.42% 92.63% 98.23%

F1
OS-CA 95.52% 95.29% 82.61% 52.77% 88.48% 53.99% 89.72%

ConvLSTM 99.39% 99.52% 92.26% 87.81% 98.03% 88.21% 99.05%
SA-ConvLSTM 99.39% 99.53% 93.34% 88.24% 98.06% 93.81% 99.06%

Table 4 demonstrates that both ConvLSTM and SA-ConvLSTM models can predict
land use patterns after training, and the Self-Attention Memory Module (SAM) enhances
the prediction accuracy for small-sample categories. The feasibility of the SA-ConvLSTM
model in predicting time-series land use data is demonstrated, offering a new approach for
analyzing land use development patterns through deep learning.

The SAM module helps the SA-ConvLSTM network capture long-range connections
and contextual information in input data, adding value. This is performed by allowing the
network to focus on input sequence parts or attributes that are most important to each time
step prediction. This concentrating mechanism allows the network to dynamically assign
different degrees of relevance to geographical and temporal characteristics, improving
its ability to capture complex data patterns and linkages. In occupations where long-
distance interactions or dependencies are vital for exact prediction, it may capture long-term
dependencies.

The data in Figure 6 demonstrate that both the ConvLSTM and SA-ConvLSTM models
accurately predict changes over a 5-year period, in contrast to the OS-CA model, whose
accuracy decreases with time. However, due to the limited area of shrubland, grassland, and
barren land categories in the land use dataset (CLCD), areas with significant and obvious
changes could not be accurately identified, limiting the demonstration of the advantages of
SA-ConvLSTM over ConvLSTM. Therefore, we selected Guanggu, a regional center within the
Wuhan City Circle. Both the ConvLSTM and SA-ConvLSTM models accurately represent the
city’s dynamic characteristics in terms of cropland, forest land, water bodies, and impervious
surfaces during the urban development period from 2009 to 2018.

The SA-ConvLSTM model has a powerful feature learning capability and can effec-
tively integrate multiple data sources. Incorporating population and GDP data can enhance
the model’s understanding of urban development changes. Additionally, the model in-
corporates geographic and economic evaluation factors to enhance its understanding of
similar or non-similar land use change [58]. Distances to roads, rivers, and railroads can
help understand the variability of land changes caused by human engineering activities
in the study area [59]. In addition, DEMs can introduce dynamic facilitating or limiting
factors [60]. The ConvLSTM module captures localized patterns, while the self-attention
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module provides a broader context to further improve the model’s understanding of land
use change [61]. Furthermore, the SA-ConvLSTM model demonstrates superior capability
in simulating urban sprawl dynamics compared to traditional land use change modeling
techniques. This study aims to achieve the integrated use of multiple data sources. Due to
its powerful feature extraction capabilities, deep learning shows great potential as a tool
for predicting land use in time-series data.
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4.2. Carbon Stock Dynamics in Wuhan City Circle from 1999 to 2018

The carbon module of the InVEST model indicates that the carbon stock in the Wuhan
urban area was 6.75 × 108 MgC in 1999 and decreased to 6.68 × 108 MgC in 2018. From
1999 to 2018, the carbon stock in the urban area experienced a notable decline, with a
total reduction of 6.49 × 106 MgC. The carbon stock of different land use categories, listed
in decreasing order, is as follows: cropland, forest, water bodies, impervious, grassland,
shrubs, and barren land.

Figure 7 shows that the geographic distribution of carbon storage in the Wuhan
metropolitan area from 1999 to 2018 exhibited no significant variation. Most areas within
the metropolitan region experienced minimal changes in carbon storage. Reductions in
carbon storage primarily occurred in areas undergoing urbanization, while increases were
concentrated in regions with newly established forests and farmland. Over the period
from 1999 to 2018, carbon storage remained generally stable across most regions. For the
Wuhan urban circle, the areas of carbon stock reduction are primarily forests and water
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bodies, while the sources of increased carbon stock are mainly the conversion of forests
and grasslands to land types with higher carbon densities. However, the conversion of
agricultural land near the urban center led to a decline in carbon storage. The carbon storage
within national nature reserves in the Wuhan metropolitan area remained stable due to
the implementation of ecological conservation measures, highlighting the effectiveness of
these policies in protecting carbon storage.
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Table S1 indicates that above-ground carbon storage in Wuhan’s urban area increased
by 204,403 MgC, while below-ground carbon storage decreased by 2,292,636.9 MgC, soil
carbon storage declined by 4,174,011.8 MgC, and dead organic matter carbon storage
reduced by 224,241.6 MgC, resulting in a total decrease of 6,486,487.3 MgC. The estimated
results are subject to an error margin of ±25%, owing to model uncertainties [62] and the
precision of land use data [50]. In terms of land use changes, the primary drivers of carbon
storage reduction from 1999 to 2018 included the conversion of cropland to impervious
surfaces, forests to cropland and impervious surfaces, and water bodies to cropland and
impervious surfaces. The main sources of carbon storage increase were the conversion
of cropland to forests and water bodies. With the development of the metropolitan area,
farmlands have likely been subdivided into smaller plots. The urban area of Wuhan,
characterized by economic prosperity, high urbanization rates, dense population, and
rugged terrain, has experienced extensive land development. This urban expansion has
encroached upon large agricultural, forested, and water bodies, making it a primary driver
of carbon storage reduction within the Wuhan metropolitan area. Urbanization activities,
such as road and building construction, lead to soil compaction and degradation, thereby
weakening the carbon retention capacity of farmland.

4.3. Prediction of Carbon Storage in the Wuhan City Circle in 2023

The carbon module of the InVEST model indicates that the carbon stock in the Wuhan
urban area was 6.69 × 108 MgC in 2018, increasing to 6.69 × 108 MgC in 2023. From 2018
to 2023, the carbon stock in the urban area had a significant rise, increasing by a total of
9.17 × 104 MgC. Carbon stocks in different land use categories are in the following order:
cropland, forest, water bodies, impervious, grassland, shrubs, and barren land.
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Figure 8 indicates that the geographic distribution of carbon storage in the Wuhan
metropolitan area from 2018 to 2023 showed no significant variation. Most areas within the
metropolitan region experienced minimal changes in carbon storage. Increases in carbon
storage mainly occurred in areas undergoing urbanization, while significant growth was
observed in regions with newly established forests and water bodies. Throughout this
period, carbon storage remained generally stable across most regions.
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Table S2 shows that from 2018 to 2023, above-ground carbon storage in Wuhan’s
urban area increased by 158,093.1 MgC, while below-ground carbon storage decreased by
99,746.8 MgC, soil carbon storage rose by 147,011 MgC, and dead organic matter carbon
storage decreased by 113,645.1 MgC, leading to a net increase of 91,712.1 MgC in total
carbon storage. The estimated results are subject to an error margin of ±25%, owing
to model uncertainties and the precision of land use data. Areas with increased carbon
storage were primarily forests and water bodies, with the main drivers of this increase
being the conversion of cropland to forests and water bodies. In contrast, reductions in
carbon storage were mainly due to the conversion of water bodies to cropland, forests to
cropland, and cropland to impervious surfaces. These findings underscore the critical role
of afforestation and the conversion of cropland to water bodies in enhancing carbon storage,
highlighting the importance of forests and water bodies in the ecosystem’s carbon storage
function. The results also reveal that impervious urban surfaces have gradually transformed
into water bodies and barren land, while barren land has shifted to cropland, forests,
grasslands, and water bodies. Additionally, shrubs have been converted into cropland,
forests, and grasslands, reflecting the positive impact of ecological protection policies on
carbon storage amid rapid urbanization. A degree of cropland preservation, along with
policies encouraging afforestation and conversion to water bodies, can effectively mitigate
carbon storage loss. Understanding the relationship between land use and carbon storage is
essential for effective land use planning and carbon management strategies. Policymakers
and urban planners should consider the carbon impact of land use decisions to support
sustainable development.
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4.4. Effects of Land Use/Land Cover Change on Carbon Stock

This study demonstrates how carbon stock pools are impacted by LULC changes from
1999 to 2023. According to the InVEST carbon model, within the Wuhan urban circle, carbon
stocks in croplands are higher than those in forests, impervious surfaces, and grasslands.
As shown in Figure 9, during the 25-year period, carbon stocks in soil and forests generally
declined, followed by a sharp increase between 2008 and 2013. This increase may be
attributed to significant infrastructure developments initiated in the Wuhan urban area
around 2008. Subsequently, the expansion of urban areas resulted in reduced cropland and
forest areas. Post-2018, changes in cropland and forest areas were mitigated by stringent
cropland protection measures and policies advocating the reforestation of agricultural land.
The expansion of urban infrastructure in the Wuhan urban area from 2008 to 2018 occurred
at the expense of land use types such as cropland, forest, and grassland. Under the direction
of policy-driven sustainable development, the extent of land use change is increasingly
limited, while carbon stock itself requires a long period to undergo significant changes. As
a result, the impact of land use transitions on carbon stock is less likely to exhibit noticeable
trends within a 5-year period.
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4.5. Changes in the Land Use Dynamics from 1999 to 2023

From 1999 to 2018, the dynamics of LULC are presented in the form of annual rates
of change in SLUDD, LC, and LUM. The first two indices closely correlate with the inter-
annual change rate in the LULC category, while the third index concentrates on the vari-
ability of land use patterns. Figure 10 presents the output associated with these indices.
Tables S3 and S4 in the Supplementary Information offer detailed tabular data for each
region regarding the different indicators mentioned above.
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Figure 10. The figures (A–I) for 1999–2018 and (J–R) for 2019–2023 show the change in entropy of
Single Land Use Dynamics Degree (SLUDD), entropy of composite land use dynamics (LC), and
entropy of land use mixture (LUM) for different land use types (1999–2018 and 2018–2023) over time.
Land use types include cropland (CL), forest (FL), shrubland (SL), grassland (GL), water bodies (WB),
barren land (BL), and impervious land (IL).

Table S3 in the Supplementary Materials indicates that from 1999 to 2018, Districts 21
and 5 were the only areas to observe positive SLUDD increases in agricultural land; all
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other districts experienced a decrease in the net area of agricultural land. District 10
experienced the highest increase in the SLUDD area of forests, with an annual growth
rate of 42.4%. The closer the forest area is to the center of the Wuhan urban area, the
more significant the decrease, as observed in Districts 38, 44, and 36, among others. No
increases in the SLUDD of shrubs are observed across the districts, and nearly half of these
districts exhibit no changes in the SLUDD of shrubs. This lack of change is attributable
to the shrub category’s very small proportion in the Wuhan urban area. The Wuhan City
Circle shows a notable absence of a shrub category, with districts 17, 4, and 5, among
others, undergoing a decline. The districts with the highest increases in the SLUDD of
grassland—17, 18, and 22—are located primarily in the central and southern parts of the
Wuhan City Circle, likely due to the eco-watershed management of the region. The five
districts experiencing a five percent decrease include districts 38, 46, 40, 14, and 13, all
located in the old urban area. This decrease is likely due to the reduction in grassland
areas resulting from improved infrastructure. Additionally, the diminished SLUDD area of
water bodies is primarily found in the central urban areas, likely resulting from increased
land and road resource demands driven by population growth, leading to partial lake
infillings. District 16 experienced the largest increase in water body area, at 3.52%, followed
by District 31 with 1.14%. Districts 1 and 2 are the only areas with positive growth in the
SLUDD of barren lands, recording annual growth rates of 820% and 245%, respectively.
Simultaneously, these districts have seen significant increases in impervious surfaces,
likely due to the geographic characteristics of Districts 1 and 2 over the past two decades.
Initially, land was converted from agricultural, forestry, and water uses to barren land and
subsequently prepped for development into impervious surfaces. All areas designated as
impervious surfaces experienced positive growth, particularly in the new urban centers
of the Wuhan City Circle—notably, districts 1, 2, 3, and 4. These districts likely represent
areas where urban expansion offers lower costs and higher benefits. However, the old
urban areas in the central region of the Wuhan City Circle and the outer ring exhibit lower
growth rates, specifically in districts 37, 40, and 45. This slowdown is likely due to the
higher renovation costs in the old urban areas and the diminished benefits of expanding
more distant urban areas. Table S4 from the Supplementary Materials indicates that from
2018 to 2023, cropland SLUDD shifted from only two areas showing growth to twelve;
forest SLUDD continued to decline, more so nearer the center; shrub SLUDD saw growth
in six areas, up from none; grassland SLUDD showed no growth; water body SLUDD
increased most significantly in Area 1 and least in District 33; barren land SLUDD showed
no growth; impervious surface SLUDD changes were more dispersed, with central districts
like 37 and 40 unchanged, while Districts 38, 36, and 42 experienced slight increases.

LC is designed to reveal the annual rate of conversion from one LULC type to another
across the total area, illustrating the overall rate of land use change throughout the region.
Table S3 reveals that the regions with the largest increases from 1999 to 2018 were all key
areas within the Wuhan City Circle. Table S4 shows that between 2018 and 2023, the regions
experiencing the largest growth rates were primarily the 43rd, 1st, and 39th districts, with
the remaining top ten comprising neighboring cities.

LUM measures the degree of uniform distribution and integration of land use within
a specific area. Its primary advantage is that it promotes the diversity and balance of land
use types in that area. Table S3 indicates that from 1999 to 2018, the areas with the most
significant changes in LUM were economically prosperous urban areas, notably districts 36,
37, and 38. Table S4 reveals that from 2018 to 2023, the districts with the most changes in
LUM were the 18th, 33rd, and 43rd. These districts, while having fewer lakes compared to
others, feature a more developed urban base, potentially enhancing land use diversity.

4.6. Spatial Dependence Between Changes in Land Use Dynamics and Carbon Stocks

This study employed the spatial lag model and the spatial error model to examine
the spatial dependence of interannual Land Use and Land Cover dynamics across two
periods: 1999 to 2018 and 2018 to 2023. Tables 5 and 6 showcase the principal findings
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from the spatial lag regression analysis and the spatial error model analysis. The Breusch–
Pagan test applied to the spatial lag model and the likelihood ratio test assessing spatial
error dependence within the spatial error model both yielded results that are statistically
significant, with significance levels below 0.05.

Table 5. Results of spatial error and spatial lag regression models for various LULC types from 1999
to 2018.

Output of Spatial Lag Regression (1999–2018) Output of Spatial Error Model (1999–2018)

Variable Coefficient Std. Error z-Value Probability Variable Coefficient Std. Error z-Value Probability

CONSTANT 137.05 111.79 1.23 0.22 CONSTANT 216.84 149.62 1.45 0.15
SLUDD_CL −54.55 104.68 −0.52 0.60 SLUDD_CL −47.19 101.30 −0.47 0.64
SLUDD_FL −1.18 5.96 −0.20 0.84 SLUDD_FL −1.58 4.92 −0.32 0.75
SLUDD_SL 1.71 20.94 0.08 0.94 SLUDD_SL 24.56 22.08 1.11 0.27
SLUDD_GL 0.42 1.76 0.24 0.81 SLUDD_GL −0.90 1.69 −0.53 0.60
SLUDD_WL −74.47 47.12 −1.58 0.11 SLUDD_WL −119.53 45.14 −2.65 0.008 **
SLUDD_BL −0.52 0.31 −1.68 0.09 SLUDD_BL −0.45 0.26 −1.74 0.08
SLUDD_IL −25.81 15.01 −1.72 0.09 SLUDD_IL −33.17 15.59 −2.13 0.033 *

LC −184.78 201.29 −0.92 0.36 LC −208.37 165.71 −1.26 0.21
Changes in

LUM(%) −486.53 1189.57 −0.41 0.68 Changes in
LUM(%) −410.90 1271.31 −0.32 0.75

W_CC_SUM 0.56 0.13 4.36 0.000 ** LAMBDA 0.74 0.09 7.92 0.000 **

* p < 0.05, ** p < 0.01.

Table 6. Results of spatial error and spatial lag regression models for various LULC types from 2018
to 2023.

Output of Spatial Lag Regression (2019–2023) Output of Spatial Error Model (2019–2023)

Variable Coefficient Std. Error z-Value Probability Variable Coefficient Std. Error z-Value Probability

CONSTANT 1.30 10.03 0.13 0.90 CONSTANT 1.93 9.34 0.21 0.84
SLUDD_CL −173.57 94.03 −1.85 0.07 SLUDD_CL −132.82 86.26 −1.54 0.12
SLUDD_FL 43.88 21.20 2.07 0.038 * SLUDD_FL 55.68 21.01 2.65 0.008 **
SLUDD_SL 8.03 12.05 0.67 0.51 SLUDD_SL 0.03 11.52 0.00 1.00
SLUDD_GL 5.94 2.30 2.59 0.010 ** SLUDD_GL 7.73 2.14 3.62 0.000 **
SLUDD_WL −302.68 33.78 −8.96 0.000 ** SLUDD_WL −305.17 31.07 −9.82 0.000 **
SLUDD_BL −1.78 1.76 −1.01 0.31 SLUDD_BL −0.83 1.73 −0.48 0.63
SLUDD_IL −97.61 139.17 −0.70 0.48 SLUDD_IL −30.11 138.35 −0.22 0.83

LC 475.95 305.84 1.56 0.12 LC 627.53 295.85 2.12 0.034 *
Changes in

LUM(%) 1197.77 1682.75 0.71 0.48 Changes in
LUM(%) 920.24 1588.93 0.58 0.56

W_CC_SUM −0.17 0.12 −1.50 0.13 LAMBDA −0.45 0.20 −2.29 0.022*

* p < 0.05, ** p < 0.01.

Table 6 demonstrates that from 1999 to 2018, the seven impact factor variables of
SLUDD, LC, and LUM associated with cropland, forest, shrubland, grassland, and barren
land were not statistically significant (p > 0.05). The regression coefficient for the SLUDD
of water is −119.532, indicating a significant negative impact on carbon stocks at the
0.01 level of significance (p = 0.008 < 0.01). The regression coefficient for the SLUDD of
previous years is −33.165, which demonstrates a significant negative impact on carbon
stocks at the 0.05 significance level (p = 0.033 < 0.05). The regression coefficient for the
residual spatial lag variable LAMBDA is 0.741, indicating a significant positive impact on
carbon stocks at a 0.01 level of significance (p = 0.000 < 0.01).

Table 6 reveals that the four impact factor variables of the SLUDD and LUM associ-
ated with cropland, shrubs, barren lands, and impervious surfaces were not statistically
significant (p > 0.05) from 2018 to 2023. The regression coefficient for the SLUDD of forest is
55.677, indicating a significant positive impact on carbon stocks at the 0.01 significance level
(p = 0.008 < 0.01). The regression coefficient for the SLUDD of grassland is 7.733, indicating
a significant positive effect on carbon stocks at a 0.01 significance level (p = 0.000 < 0.01).
The regression coefficient for the SLUDD of water is −305.170, demonstrating a significant
negative effect on carbon stocks at the 0.01 significance level (p = 0.000 < 0.01). The regres-
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sion coefficient for LC is 627.532, indicating a significant positive effect on carbon stocks
at the 0.05 significance level (p = 0.034 < 0.05). The regression coefficient for the residual
spatial lag variable LAMBDA is −0.451, indicating a significant negative impact on carbon
stocks at the 0.05 significance level (p = 0.022 < 0.05).

5. Discussion

This paper presents the SA-ConvLSTM model, a hybrid approach that integrates the
InVEST model for forecasting carbon stock. The SA-ConvLSTM model extends the original
ConvLSTM by incorporating the self-attention mechanism. To improve the accuracy of land
use predictions, additional auxiliary factors are integrated with time-series land use data.
Moreover, multiple data sources are utilized in the prediction process. The ConvLSTM
model effectively captures both spatial and temporal information from time-series land
use data. The self-attention memory module significantly enhances the model’s ability to
process global contextual information. Geographic and economic auxiliary factor data help
guide and reinforce developmental changes. The encoder–decoder structure is employed
to enhance the smoothness of the model training process. The experimental findings
demonstrate that the model effectively captures the characteristics of land use alterations
and produces predictions that are more accurate than those of the ConvLSTM model.

Our research findings indicate that the carbon stock of the Wuhan urban circle in 1999,
2008, and 2018 were 6.72 × 108 MgC, 6.71 × 108 MgC, and 6.65 × 108 MgC, respectively.
The primary drivers of these changes include rapid population growth and development
policies focused on urban expansion, which accelerated the conversion of cropland and
forests, thereby impacting the region’s carbon stocks. Additionally, insufficient monitoring
and planning of natural resources have emerged as critical factors influencing the balance
between natural and urban ecosystems.

Previous literature has indicated that urban expansion results in carbon stock losses
associated with the loss of agricultural land and forests [63], a finding that is also observed
in this study. Furthermore, as forests and agricultural land serve as species-rich habitats
and provide valuable ecosystem services, the loss of forests and wetlands due to urban
expansion is evident not only in Wuhan but also globally [64]. Compared to the results of
J Zhang [32], the carbon stock calculated in this study is higher. The discrepancy can be
attributed to the following reason: J Zhang’s study did not distinguish between different
water bodies, and the carbon stocks of the turbulent Yangtze River and lake wetlands were
both uniformly calculated as water bodies, which warrants further investigation.

This research is limited by the need for more precise land use data for SA-ConvLSTM
and by the temporal variability of carbon density, influenced by factors such as precipi-
tation, temperature, and soil organic carbon sensitivity. Additionally, regularly updated
carbon pool densities are necessary. Expanding this study’s scope to examine land use
changes across various urban areas and conducting a more comprehensive analysis of the
underlying factors and external impacts on urban growth could broaden its findings.

6. Conclusions

This paper proposes a spatio-temporal land use prediction model utilizing SA-ConvLSTM.
By integrating the SA-ConvLSTM model with the InVEST, SLM, and SEM models, a compre-
hensive prediction and evaluation system of carbon stock is established to assess the impact
of land use changes on carbon stock in the Wuhan City Circle. The following conclusions
are drawn:

1. Compared to the traditional metacellular automata prediction method, the SA-ConvLSTM
model demonstrates a 4.7% improvement in prediction accuracy. Furthermore, com-
pared to traditional ConvLSTM, the self-attention memory module enhances the model’s
prediction accuracy for small sample sizes.

2. From 1999 to 2018, the carbon stock in the Wuhan City Circle exhibited a decreasing
trend, with an overall decline of 6.49 × 106 MgC. The primary cause of this reduction
is the encroachment of arable land due to rapid urbanization. From 2018 to 2023,
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the predicted carbon stock in the Wuhan urban circle was expected to increase by
9.17 × 104 MgC, primarily due to the conversion of water bodies into cropland,
followed by the reforestation of cropland.

3. The historical spatial error model suggests that a decrease of 1 unit in carbon stock
change corresponds to an increase of 119 units in the SLUDD of water bodies and
33 units in impervious surfaces. The future spatial error model suggests that for each
unit increase in carbon stock changes, the SLUDD would increase by 55 units for
forests, 7 units for grasslands, and decrease by 305 units for water bodies.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/rs16234372/s1, Table S1. Changes in carbon storage caused by land use
change, 1999−2018; Table S2. Changes in carbon storage caused by land use change, 2018−2023;
Table S3: Changes in LC, changes in LUM, and annual changes in SLUDD for each LULC type in
Wuhan from 1999 to 2018; Table S4: Changes in LC, changes in LUM, and annual changes in SLUDD
for each LULC type in Wuhan from 2018 to 2023.
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